Selective Preemption Strategies for Parallel Job Scheduling

A Thesis

Presented in Partial Fulfillment of the Requirements for

the Degree Master of Science in the

Graduate School of The Ohio State University
By

Rajkumar Kettimuthu, B.E.

* ok k% %
The Ohio State University

2003

Master’s Examination Committee: Approved by

P. Sadayappan, Adviser

Mario Lauria]
Adviser

Department of Computer
and Information Science

© Copyright by
Rajkumar Kettimuthu

2003

ABSTRACT

Although theoretical results have been established regarding the utility of pre-
emptive scheduling in reducing average job turn-around time, job suspension/restart
is not much used in practice at supercomputer centers for parallel job scheduling. A
number of questions remain unanswered regarding the practical utility of pre-emptive
scheduling. We explore this issue through a simulation-based study, using job logs
from a supercomputer center. We develop a tunable selective-suspension strategy,
and demonstrate its effectiveness. We also present new insights into the effect of pre-
emptive scheduling on different job classes and deal with the impact of suspensions

on the worst-cases.

il

Dedicated to my parents

iii

ACKNOWLEDGMENTS

I thank my adviser Dr. P Sadayappan for all the help, support and encouragement
that he provided to me. He was a great source of inspiration for me. He was very
helpful during the paper submissions. It was a great and wonderful experience working
with him.

I thank Dr. Mario Lauria for serving on my thesis committee. He was very
understanding and helped me a lot in many occasions.

I thank my friends Srividya and Vijay for helping me with my research. I thank
my roommates Ramki, Chala, Niranjan and Gopal for their co-operation and under-

standing.

v

VITA

March 16, 1978 Born - Dharapuram, India

1999 L B.E. Computer Science and Engineer-
ing

July 1999-August 2000 Network Engineer,
Cisco’s Offshore development Center,
India.

Fall 2000-Winter 2001 Graduate Teaching Associate,
Ohio State University.

Spring 2001-Spring 2002 Graduate Research Associate,
Ohio State University.

Summer 2002-Fall 2002 Research Aide,
Argonne National Laboratory.

Winter 2003-Present Graduate Teaching Associate,

Ohio State University.

PUBLICATIONS

Research Publications

R. Kettimuthu, V. Subramani, S. Srinivasan, T. B. Gopalsamy, D. K. Panda and
P. Sadayappan “Selective Preemption Strategies for Parallel Job Scheduling”. Pro-
ceedings of the 2002 International Conference on Parallel Processing, 602—610, Aug.
2002.

S. Srinivasan, R. Kettimuthu, V. Subramani and P. Sadayappan “Selective Reser-
vation Strategies for Backfill Job Scheduling”. 8th Workshop on Job Scheduling
Strategies for Parallel Processing, July 2002.

V. Subramani, R. Kettimuthu, S. Srinivasan and P. Sadayappan “Distributed Job
Scheduling on Computational Grids using Multiple Simultaneous Requests”. Pro-
ceedings of the 11th IEEE International Symposium on High Performance Distributed
Computing, 359-366, July 2002.

S. Srinivasan, R. Kettimuthu, V. Subramani and P. Sadayappan “Characterization
of Backfilling Strategies for Parallel Job Scheduling”. Proceedings of the ICPP-2002
Workshops, 514-519, Aug. 2002.

V. Subramani, R. Kettimuthu, S. Srinivasan, J. Johnson and P. Sadayappan “Selec-
tive Buddy Allocation for Scheduling Parallel Jobs on Clusters”. Proceedings of the
IEEFE International Conference on Cluster Computing, Sep. 2002.

S. Srinivasan, V. Subramani, R. Kettimuthu, P. Holenarsipur and P. Sadayappan
“Effective Selection of Partition Sizes for Moldable Scheduling of Parallel Jobs”. Pro-

ceedings of the 9th International Conference on High Performance Computing, Dec.
2002.

FIELDS OF STUDY

Major Field: Computer and Information Science

vi

TABLE OF CONTENTS

Abstract

Dedication.

Acknowledgments Lo

Vita . . . o

List of Tables e

List of Figures
Chapters:

1. Imtroduction L

1.1 Organization of Thesis

2. Background and Related Worko

2.1 Backfilling

2.1.1 Conservative Backfilling

2.1.2 Aggressive Backfilling o000

2.2 Metricso

2.3 Related Work

2.4 Workload Characterization

3. Selective Suspension

3.1 Theoretical Analysis,

3.2 Preventing Starvation without Reservation Guarantees

vii

Page
ii
iii

v

ix

3.3 Algorithmo 18

34 Results 19

3.5 Tunable Selective Suspension (TSS), 22

3.5.1 Control of variance 25

3.5.2 Results 25

4. Impact of User Estimate Inaccuracies 29
4.1 Modeling of Job Suspension Overhead 37

4.2 Load Variation oo 37

5. Conclusions and Future Work0 47
5.1 Future Work oo 47
Bibliography 49

viii

LIST OF TABLES

Table Page
2.1 Job categorization criteriao Lo 13
2.2 Job distribution by category oo 13

2.3 Average slowdown for various categories with non preemtive scheduling 13
4.1 Job categorization criteria for load variation studies 40

4.2 Job distribution by category for load variation studies 40

ix

LIST OF FIGURES

Figure

2.1

2.2

3.1

3.2

3.3

3.4

3.5

Conservative Backfilling. L.
Aggressive Backfilling. oo o000

Comparison of the average slowdowns of the SS scheme with the NS and
IS schemes. Compared to NS, SS provides significant benefit for the VS,
S, W and VW categories, slight improvement for most of L categories, but
a slight deterioration for the VL categories. Compared to IS, SS performs
better for all the categories except for the VS categories.

Comparison of the average turnaround times of the SS scheme with the
NS and IS schemes. The trends observed here are similar to the the trends
observed with the average slowdown metric.

Comparison of the worstcase slowdowns of the SS scheme with the NS
and IS schemes. SS is much better than NS for most of the categories
and is slightly worse for some of the VL categories. Compared to IS, SS
is much better for all the categories except for the VS categories.

Comparison of the worstcase turnaround times of the SS scheme with the
NS and IS schemes. SS is much better than NS for most of the categories
and is slightly worse for some of the VL categories. Compared to IS, SS
is much better for all the categories except for the VS categories.

Comparison of the worstcase slowdowns of the TSS scheme with the SS,
NS and IS schemes. TSS improves the worstcase slowdown for the VL
categories and some of the S categories without adversely affecting the
other categories. L

23

24

26

3.6

4.1

4.2

4.3

4.4

4.5

4.6

4.7

Comparison of the worstcase turnaround times of the TSS scheme with
the SS, NS and IS schemes. TSS improves the worstcase turnaround time

for most of the categories without adversely affecting the other categories.

Comparison of the average slowdowns of the SS scheme with the NS and
IS schemes with inaccurate user esitmates of runtime. Similar trends are
observed here as for the case with accurate user estimates.

Comparison of the average turnaround times of the SS scheme with the
NS and IS schemes with inaccurate user esitmates of runtime. The trends
are similar to the trends observed with accurate user estimates.

Comparison of the average slowdowns of the SS scheme with the NS and
IS schemes for the well-estimated jobs. The trends are similar to that
of the accurate user estimate case for the S, L and VL categories. The
performance of the SS scheme for the VS categories is better or comparable
to that of the ISscheme. L.

Comparison of the average slowdowns of the SS scheme with the NS and
IS schemes for the poorly-estimated jobs. The trends are similar to that
of the accurate user estimate case for the S, L and VL categories. The
SS scheme tends to penalize poorly estimated jobs that belong to the VS
category. L oL e e e e

Comparison of the average turnaround times of the SS scheme with the
NS and IS schemes for the well-estimated jobs. The performance of the
SS scheme for the VS category is comparable to that of the IS scheme.
For the other categories the trends are similar to that of the accurate user
estimate Case. e

Comparison of the average turnaround times of the SS scheme with the
NS and IS schemes for the poorly-estimated jobs. The SS scheme tend to
penalize the poorly-estimated short jobs.

Comparison of the average slowdowns of the SS scheme with the IS and NS
schemes, with modeling of overhead for suspending/restarting a job. The
performance of the SS scheme with modeling of overhead is comparable
to its performance in the absence of overhead.

xi

27

34

35

36

4.8

4.9

4.10

4.11

4.12

4.13

Comparison of the average turnaround times of the SS scheme with the
IS and NS schemes, in the presence of overhead for suspending/restarting
a job. The overhead does not introduce any significant change in the
performance of the SS scheme.

Comparison of overall system utilization of the SS scheme with the NS and
IS schemes under different load conditions. The overall system utilization
with the SS scheme is better or comparable to the NS scheme. IS is much
worse in terms of overall system utilization.

Comparison of the average slowdowns of the SS scheme with the IS and
NS schemes under different load conditions. The improvements achieved
by the SS scheme are more pronounced under high load.

Comparison of the average turnaround times of the SS scheme with the
IS and NS schemes under different load conditions. The improvements

achieved by the SS scheme are more pronounced under high load.

Comparison of the average slowdowns against the overall system utilization
for the SS, NS and IS schemes.

Comparison of the average turnaround times against the overall system
utilization for the SS, NS and IS schemes.

xii

CHAPTER 1

INTRODUCTION

Although theoretical results on the effect of pre-emptive scheduling strategies
in reducing average job turn-around time have been well established [10], [12], [9],
[30], [11] pre-emptive scheduling is not currently being used for scheduling parallel
jobs at supercomputer centers. Compared to the large number of studies that have
investigated non-preemptive scheduling of parallel jobs [28], [19], [34], [7], [20], [23],
2], [37], [26], [14], [24] little research has been reported on empirical evaluation of
preemptive scheduling strategies using real job logs [4], [5], [29], [25]. The basic
idea behind preemptive scheduling is simple: if a long running job is temporarily
suspended and a waiting short job is allowed to run to completion first, the wait time
of the short job is significantly decreased, without much fractional increase in the
turn-around time of the long job. Consider a long job with runtime 7;. If after time
t, a short job arrives with runtime 7. If the short job were run after completion of
the long job, the average job turnaround time would be w, or 1; + @
Instead, if the long job were suspended when the short job arrived, the turnaround

times of the short and long jobs would be T and (75 + T;) respectively, giving an

average of T + %L The average turnaround time with suspension is less if T, < T; —t,

i.e. the remaining runtime of the running job is greater than the runtime of the
waiting job.

The suspension criterion has to be chosen carefully to ensure freedom from star-
vation. Also, the suspension scheme should bring down the average turnaround times
without increasing the worst case turnaround times. Even though theoretical re-
sults [10], [12], [9], [30], [11] have established that preemption improves the average
turnaround time, it is important to perform evaluations of preemptive scheduling
schemes using realistic job mixes derived from actual job logs from supercomputer
centers, to understand the effect of suspension on various categories of jobs. The

primary contributions of this work are:

e The development of a selective-suspension strategy for pre-emptive scheduling

of parallel jobs, and

e Characterization of the significant variability in the average job turnaround time

for different job categories, and

e The study of the impact of suspension on the worst case turnaround times of
various categories and development of a tunable scheme to improve worst case

turnaround times.

1.1 Organization of Thesis

The thesis is organized as follows. Chapter 2 provides background on parallel job
scheduling and motivation for doing preemptive job scheduling. Chapter 3 presents
the proposed selective preemption strategies and evaluates their performance under

the assumption of accurate estimation of job run times. Chapter 4 studies the impact

of inaccuracies in user estimates of run time on the selective preemption strategies.
It also discusses the overhead model for job suspension and restart and evaluates
the proposed schemes in the presence of overhead. The performance of the selective
preemption strategies under different load conditions is also presented in this chapter.

Chapter 5 summarizes the results of this thesis and provides pointers to future work.

CHAPTER 2

BACKGROUND AND RELATED WORK

Scheduling of parallel jobs is usually viewed in terms of a 2D chart with time
along one axis and the number of processors along the other axis. Each job can be
thought of as a rectangle whose width is the user estimated run time and height is the
number of processors requested. Parallel job scheduling strategies have been widely
studied in the past [1], [3], [8], [21], [33], [22], [6]. The simplest way to schedule
jobs is to use the First-Come-First-Served (FCFS) policy. This approach suffers from
low system utilization due to fragmentation of the available processors. Consider a
scenario where there are a few jobs running in the system and the next queued job
requires all the processors in the system. An FCF'S scheduler would leave the currently
free processors idle, even if there are queued jobs requiring only a small number of
processors waiting. Some solutions to this problem are to use dynamic partitioning
[27] or gang scheduling [15]. However, these schemes have practical limitations. An

alternate approach to improving system utilization is backfilling.

2.1 Backfilling

Backfilling was developed for the IBM SP1 parallel supercomputer as part of the
Extensible Argonne Scheduling sYstem (EASY) [26] and has been implemented in

4

several production schedulers [18], [32]. Backfilling works by identifying “holes” in the
2D schedule and moving forward smaller jobs that fit those holes. With backfilling,
users are required to provide an estimate of the length of the jobs submitted for
execution. This information is used by the scheduler to predict when the next queued
job will be able to run. Thus, a scheduler can determine whether a job is sufficiently
small to run without causing delay to previously queued jobs.

It is desirable that a scheduler with backfilling support two conflicting goals. On
the one hand, it is desirable to move as many short jobs forward, in order to improve
utilization and responsiveness. On the other hand, it is also important to avoid
starvation of large jobs, and in particular, to be able to predict when each job will run.
There are two common variants to backfilling - conservative and aggressive(EASY)

that attempt to balance these goals in different ways.
2.1.1 Conservative Backfilling

With conservative backfill, every job is given a reservation (start time guarantee)
when it enters the system. A smaller job is allowed to backfill only if it does not delay
any previously queued job.

Thus, when a new job arrives, the following allocation procedure is executed by a
conservative backfill scheduler. Based on the current knowledge of the system state,
the scheduler finds the earliest time at which a sufficient number of processors are
available to run the job for a duration equal to the user estimated run time. This is
called the anchor point. Thus the anchor point of a job is the earliest time at which
the job can start without violating any previous commitments. The scheduler then

updates the system state to reflect the allocation of processors to this job starting

running time
jobs

Figure 2.1: Conservative Backfilling.

from its anchor point. If the job’s anchor point is the current time, the job is started
immediately.

An example is given in Figure 2.1. The first job in the queue does not have enough
processors to run, so a reservation is made for it at the anticipated termination time of
the longer running job. Similarly, the second queued job is given a reservation at the
anticipated termination time of the first queued job. Although enough processors are
available for the third queued job to start immediately, it would delay the second job;
therefore, the third job is given a reservation after the second queued job’s anticipated
termination time.

Thus in conservative backfill, jobs are assigned a start time when they are sub-

mitted, based on the current usage profile. But they may actually be able to run

sooner because previous jobs terminated earlier than expected. In this scenario, the
original schedule is compressed. This is done by releasing the existing reservations
one by one, when a running job terminates, in the order of increasing reservation
start time guarantees and attempting backfill for the released job. If due to early
termination of some job, “holes” of the right size are created for this job, then it gets
an earlier reservation. In the worst case, the released job would be reinserted in the
same position it held previously.

Obviously there is no danger of starvation, as a reservation is made for each job

when it is submitted.
2.1.2 Aggressive Backfilling

Conservative backfilling moves jobs forward only if they do not delay any previ-
ously queued job. Aggressive backfilling takes a more aggressive approach, and allows
jobs to skip ahead provided they do not delay the job at the head of the queue. The
objective is to improve the current utilization as much as possible, subject to some
consideration for queue order. The price is that execution guarantees cannot be made,
because it is impossible to predict how much each job will be delayed in the queue.

An aggressive backfill scheduler scans the queue of waiting jobs and allocates
processors as requested. The scheduler gives a reservation guarantee to the first job
in the queue that does not have enough processors to start. This reservation is given
at the earliest time at which the required processors are expected to become free,
based on the current system state. The scheduler then attempts to backfill the other

queued jobs. To be eligible for backfill, a job must require no more than the currently

E——
running L time
jobs

backfill

Figure 2.2: Aggressive Backfilling.

available processors, and in addition it must satisfy either of two conditions that

guarantee that it will not delay the first job in the queue:

e it must terminate by the time the first queued job is scheduled to commence,

or

e it must use no more nodes than that are free at the time the first queued job is

scheduled to start.

Figure 2.2 shows an example.

2.2 Metrics

Some of the common metrics used to evaluate the performance of scheduling
schemes are the average turnaround time and the average bounded slowdown. We
use these metrics for our studies. The bounded slowdown [16] of a job is defined as
follows:

Bounded Slowdown = (Wait time + Max(Run time, 10))/Max(Runtime, 10)

The threshold of 10 seconds is used to limit the influence of very short jobs on the
metric.

Pre-emptive scheduling aims at providing lower delay to short jobs relative to long
jobs. Since long jobs have greater tolerance to delays as compared to short jobs, our
suspension criteria is based on xfactor, which increases rapidly for short jobs and
gradually for long jobs.

xfactor = (Wait time + Estimated Run Time)/Estimated Run Time

2.3 Related Work

Although pre-emptive scheduling is universally used at the operating system level
to multiplex processes on single-processor systems and shared-memory multi-processors,
it is rarely used in parallel job scheduling. A large number of studies have addressed
the problem of parallel job scheduling (see [16] for a survey of work on this topic),
but most of them address non-preemptive scheduling strategies. Further, most of the
work on pre-emptive scheduling of parallel jobs considers the jobs to be malleable
[10], [29], [31], [35], i.e. the number of processors used to execute the job is permitted

to vary dynamically over time.

In practice, parallel jobs submitted to supercomputer centers are generally rigid,
i.e. the number of processors used to execute a job is fixed. Under this scenario,
the various schemes proposed for a malleable job model are inapplicable. Very few
studies have addressed pre-emptive scheduling under a model of rigid jobs, where the
pre-emption is “local”, i.e. the suspended job must be re-started on exactly the same
set of processors on which they were suspended.

In [5], a pre-emptive scheduling strategy called the “Immediate Service (IS)”
scheme was evaluated for the shared-memory systems. With this scheme, each ar-
riving job was given an immediate time-slice of 10 minutes, by suspending one or
more running jobs if needed. The selection of jobs for suspension was based on their
instantaneous-xfactor, defined as (wait time + total accumulated run time) / (total
accumulated run time). Jobs with the lowest instantaneous-xfactor were suspended.
The IS strategy was shown to significantly decrease the average job slowdown for the
traces simulated. A potential shortcoming of the IS scheme is that its preemption
decisions are not in any way reflective of the expected runtime of a job. The IS scheme
can be expected to provide significant improvement to the slowdown of aborted jobs
in the trace. So it is unclear how much, if any, of the improvement in slowdown
was experienced by the jobs that completed normally. However, no information was
provided on how different job categories were affected. Chiang et al [4] examine the
run-to-completion policy with a suspension policy that allows a job to be suspended
at most once. Both these approaches limit the number of suspensions while we use
the suspension factor to control the rate of suspensions without limiting the number
of times a job can be suspended. In [29], the design and implementation of a number

of multiprocessor preemptive scheduling disciplines are discussed. They study the

10

effect of preemption under the models of rigid, migratable and malleable jobs. They
conclude that the preemption scheme that they propose may increase the response
time for the model of rigid jobs.

So far, only very few simulation based studies have been done on preemption
strategies for clusters. With no process migration, the distributed memory systems
impose an additional constraint that the suspended jobs should get the same pro-
cessors when it restarts. In this thesis, we propose tunable suspension strategies for

parallel job scheduling in environments where process migration is not feasible.

2.4 Workload Characterization

We perform simulation studies using a locally developed simulator with workload
logs from a supercomputer center. Most supercomputer centers keep a trace file as a
record of the scheduling events that occur in the system. This file contains information
about each job submitted and its actual execution. Typically the following data is

recorded for each job

Name of job, user name, etc

Job submission time

Job resources requested, like memory, processors, etc

User estimated run time

Time when job started execution

Time when job finished execution

11

From the collection of workload logs available from Feitelson’s archive [13], a subset
of the CTC workload trace, was used to evaluate the various schemes. The trace was
logged from a 430 node IBM SP2 at the Cornell Theory Center. Under normal load,
with the standard non-preemptive aggressive backfilling strategy, using FCFS as the
scheduling priority, the utilization was 51 percent. Although it is known that user
estimates are quite inaccurate in practice, as explained above, we first studied the
effect of preemptive scheduling under the idealized assumption of accurate estimation,
before studying the effect of inaccuracies in user estimates of job run time. Also, we
first studied the impact of pre-emption under the assumption that the overhead for
job suspension and restart is negligible and then studied the influence of the overhead.

Any analysis that is based on the aggregate slowdown / turnaround time of the
system as a whole does not provide insights into the variability within different job
categories. Therefore in our discussion, we classify the jobs into various categories
based on the runtime and the number of processors requested, and analyze the slow-
down / turnaround time for each category.

To analyze the performance of jobs of different sizes and lengths, jobs were clas-
sified into 16 categories: four categories based on their run time - Very Short(VS),
Short(S), Long(L) and Very Long(VL) and four categories based on the number of
processors requested - Sequential(Seq), Narrow(N), Wide(W) and Very Wide(VW).
The criteria used for job classification is shown in Table 2.1. The distribution of jobs
in the trace, corresponding to the sixteen categories is given in Table 2.2.

Table 2.3 shows the average slowdowns for the different job categories under non-
preemptive aggressive backfilling strategy. The overall slowdown was 3.58. Even

though the overall slowdown is low, from the table, it can be observed that some of

12

1 Proc | 2-8Procs | 9-32Procs | >32 Procs
0-10min | VS Seq | VSN VS W VS VW
10min-1hr | S Seq SN SW S VW
1hr-8hr L Seq LN LW L VW
>8hr VL Seq| VLN VL W VL VW
Table 2.1: Job categorization criteria
1 Proc | 2-8 Procs | 9-32 Procs | >32 Procs
0-10min 14% 8% 13% 9%
10min-1hr | 18% 4% 6% 2%
1hr-8hr 6% 3% 9% 2%
>8hr 2% 2% 1% 1%

Table 2.2: Job distribution by category

1 Proc | 2-8 Procs | 9-32 Procs | >32 Procs
0-10min 2.6 4.76 13.01 34.07
10min-1hr | 1.26 1.76 3.04 7.14
1hr-8hr 1.13 1.43 1.88 1.63
>8hr 1.03 1.05 1.09 1.15

13

Table 2.3: Average slowdown for various categories with non preemtive scheduling

the Very Short categories have slowdowns as high as 34. Preemptive strategies aim at
reducing the high average slowdowns for the short categories with little degradation

to long jobs.

14

CHAPTER 3

SELECTIVE SUSPENSION

We first propose a preemptive scheduling scheme, called the Selective Suspension
(SS) scheme, where an idle job can pre-empt a running job if its priority is sufficiently
higher than the running job. An idle job attempts to suspend a collection of running
jobs so as to obtain enough free processors. In order to control the rate of suspensions,
a suspension factor (SF) is used. This specifies the minimum ratio of the suspension
threshold of a candidate idle job to the suspension threshold of a running job for

preemption to occur. The suspension threshold used is the xfactor of the job.

3.1 Theoretical Analysis

Let T} and T, be two tasks submitted to the scheduler at the same time. Let
both tasks be of the same length and require the entire system for execution, with
the system being free when the two tasks are submitted. Let ‘s’ be the suspension
factor. Before starting, both tasks have a suspension threshold of 1. The suspension
threshold of a task remains constant when the task executes and increases when the
task waits. One of the two tasks, say T, will be started instantaneously. The other
task, say T, waits until its suspension threshold 7 becomes ‘s’ times the threshold of
T; before it can preempt 77. Now 7 waits until its suspension thresold 7; becomes

15

‘s’ times 7, before it can preempt 7. This occurs repeatedly. The optimal value for
SF to restrict the number of repeated suspensions by two similar tasks arriving at
the same time can be obtained as follows:

Let 7, represent the suspension threshold of the waiting job and 7, represent the
suspension threshold of the running job.

Condition for the first suspension:

Tw = 8

The preemption swaps the running job and the waiting job. So after the preemp-
tion, 7, = 1 and 7, = s.

Condition for second suspension:

Tw = S * Ty

Tw = §°

Similarly, the condition for n* suspension is 7,, = s".

The lowest value of s for which at most n suspensions occur is given by,

Tw = "1, when the running job completes.

When the running job completes,

watttime+runtime

. i.e 7, = 2 ; since wait time of the waiting job = the run time
runtime

Tw =
of the running job

sl = 2 and s = 271

Thus, if the number of suspensions has to be 0, then s = 2. For at most 1
suspension, we get s as v/2. With s=1, the number of suspensions is very large, only
bounded by the granularity of the preemption routine. With all jobs having equal
length, any suspension factor greater than 2 will not result in any suspension and

will be same as the suspension factor 2. However, with jobs of varying length, the

16

number of suspensions reduces with higher suspension factors. Thus, in order to
avoid thrashing and to reduce the number of suspensions, we use different suspension

factors between 1.5 and 5 in evaluating our schemes.

3.2 Preventing Starvation without Reservation Guarantees

An idle job can preempt a running job only if its threshold is at least SF times
greater than the threshold of the running job. All the idle jobs that are able to find
the required number of processors by suspending lower threshold running jobs are
selected for execution by preempting the corresponding jobs. All backfill scheduling
schemes use job reservations for one or more jobs at the head of the idle queue as
a means of guaranteeing finite progress and thereby avoiding starvation. But start
time guarantees do not make much significance in a preemptive context. Even if we
give start time guarantees for the jobs in the idle queue, they are not guaranteed to
run to completion. Since the SS strategy uses the expected slowdown (xfactor) as
the suspension threshold, there is an automatic guarantee of freedom from starvation
- ultimately any job’s expected slowdown factor will get large enough that it will be
able to preempt some running job(s) and begin execution. Therefore, it is possible to
run the backfill algorithm without the usual reservation guarantees. So, we remove
the guarantees for all our preemption schemes.

Further, jobs in some categories inherently have a higher probability of waiting
longer in the queue than another job with comparable xfactor from another job cat-
egory. For example, consider a VW job needing 300 processors, and a Seq job in the
queue at the same time. If both jobs have the same xfactor, the probability that the

Seq job finds a running job to suspend is higher than the probability that the VW

17

job finds enough lower threshold running jobs to suspend. Therefore, the average
slowdown of the VW category will tend to be higher than the Seq category. To re-
dress this inequity, we impose a restriction that the number of processors requested
by a suspending job should be at least half of the number of nodes requested by the
job that it suspends, thereby preventing the wide jobs from being suspended by the
narrow jobs. The scheduler periodically (after every minute) invokes the preemption

routine.

3.3 Algorithm

Let 7; be suspension threshold for a task 7; which requests n; processors. Let IV;
represent the set of processors allocated to T;. Let I} represent the set of free proces-
sors and f; represent the number of free processors at time ‘t’ when the preemption
is attempted.

Let candidates(T;) represent the set of tasks that can be preempted by task 7;.

candidates(7;) = { 7j : 7, > SF * 7; and 72 <2 }

T; can be scheduled by preempting one or more tasks in candidates(7;) if and only
if

ni < (Xn; + fi) VT; € candidates(7;)

If T; is itself a previously suspended task attempting reentry, the processor re-
striction also applies. So the above condition becomes:

candidates(T;) = { T; : 7, > SF * 7; and 7 < 2 and N;NN; # 0}

T; can be scheduled by preempting one or more tasks in candidates(T;) if and only
if

ni < (Enj + fi) VT; € candidates(T;)

18

and

N; C F; U N; VT; e candidates(T;)

For both of the above scenarios, T; preempts tasks in candidates(7;) as given by
the following condition: The set of tasks suspended by 7; is
P ={T} : T e candidates(7;) and n; < f; + Xn;}

and ((Zng (VIx € P)) - (nn : Ty € P)) < my

3.4 Results

We compare the SS scheme run under various suspension factors with the No-
Suspension(NS) scheme with aggressive backfilling and the IS scheme. From Figure
3.1 and Figure 3.2, we can see that the SS scheme provides significant improve-
ment for the Very-Short(VS) and Short(S) length categories and Wide(W) and Very-
Wide(VW) width categories. For example, for the VS-VW category, slowdown is
reduced from 34 for the NS scheme to under 3 for SS with SF=2 (turnaround time
is also reduced from 4000 to 600). For VS and S length categories, lower SF results
in lowered slowdown / turnaround time. This is because a lower SF increases the
probability that a job in these categories will suspend a job in the Long(L) or Very-
Long(VL) category. The same is also true for the L length category, but the effect
of change in SF is less pronounced. For the VL length category, there is an opposite
trend with decreasing SF, i.e. the slowdown / turnaround time worsens. This is due
to the increasing probability that a Long job will be suspended by a job in a shorter
category as SF decreases. In comparison to the base No-Suspension(NS) scheme, the
SS scheme provides significant benefits for VS and S categories, a slight improvement

for most of the Long categories, but is slightly worse for the VL categories.

19

Very Short Short
13.01 34.07 7.14 36.83
6 6
5 5
OsF=15 OsF=15
g 4] BSF=2 4] BSF=2
o
§ 3 OsF=5 g 3 OSsF=5
(,9, 2 | O No Suspension % 2 O No Suspension
His His
1 1
0 0
Seq Narrow Wide Very Wide Seq Narrow Wide Very Wide
Width Wwidth
Long Very Long
7.59 3.58
3 3
2.5 A 25
F=1.
:S 5 OsF=15
F=2]
5 2 |:|S g 2 HSF=2
= o
‘§ 1.5 A SF=5 'g 1.5 A OSF=5
ONo S i
(‘/_D) 1 - © Suspension % 1] O No Suspension
IS
His
0.5 - 0.5 -
0 0 4
Seq Narrow Wide Very Wide Seq Narrow Wide Very Wide
Width Width

Figure 3.1: Comparison of the average slowdowns of the SS scheme with the NS and
IS schemes. Compared to NS, SS provides significant benefit for the VS, S, W and VW
categories, slight improvement for most of L categories, but a slight deterioration for the
VL categories. Compared to IS, SS performs better for all the categories except for the
VS categories.

20

Very Short Short
3928 10835 32254
1600 9000
g 1400 M g 8000
£ 1200 OSF=15 = 7000 OSF=15
< 1000 msF=2 o 2888] mSF=2
S 800 OSF=5 S 4000 | oSF=5
% 600 O No Suspension % 3000 O No Suspension
S 400 | |: mis £ 2000 mIS
S5 200 A = 1000 -
[o [0.
Seq Narrow Wide Very Seq Narrow Wide Very
Wide Wide
Width Width
Long Very Long
72368 95167 47
20000 70000 el
2 ﬁggg i 2 60000 -
£ 1000 A £ 50000 - e zi = ;5
4 OoSF=15 o =] =
T 12000 - 2 40000 - -
S 10000 - mSF=2 5 OSF=5
O 8000 - OSF=5 o 30000 o No Suspension
3 - 8 ,
g 6000 + O No Suspension c 20000 mIS
5 4000 als S 10000 -
= 2000 - [0.
0)
. Seq Narrow Wide Very
Seq Narrow Wide \\/lvtla;); Wide
Width Wwidth

Figure 3.2: Comparison of the average turnaround times of the SS scheme with the NS
and IS schemes. The trends observed here are similar to the the trends observed with the
average slowdown metric.

21

The performance of the IS scheme is very good for the VS category. It is better
than the SS scheme for the VS length category and worse for the other categories.
Even though, the overall slowdown for IS, is considerably less than the No-Suspension
scheme, it is not better than SS. Moreover, in IS the VW and VL categories get

significantly worse.
3.5 Tunable Selective Suspension (TSS)

From the graphs from the previous section, it can be observed that the SS scheme
significantly improves the average slowdown and turnaround time of various job cat-
egories. But from the practical point of view, the worst case slowdowns / turnaround
times are much important. A scheme that improves the average case slowdowns /
turnaround times for most of the categories and makes the worst case slowdown /
turnaround time for the long categories worse, is not an acceptable scheme. For ex-
ample, a delay of 1 hour for a 10 minute job (slowdown = 7) is tolerable whereas a
slowdown of 7 for a 24 hour job is unacceptable.

In Figure 3.3, we compare the worst case slowdowns for SF=2 with the worst
case slowdowns of the NS scheme and the IS scheme. It can be observed that the
worst case slowdowns of the SS scheme is much better than the NS scheme in most
of the cases. But the worst case slowdowns for some of the long categories is worse
than the NS scheme. Even though the worst case for SS is less than that of NS,
the absolute worst case slowdowns are much higher than the average slowdown for
some of the short categories. For the IS scheme, the worst case slowdowns for the
very short categories is less and is very high for the long ones, which is unacceptable.

Figure 3.4 compares the worst case turnaround times for the SS scheme with worst

22

Very Short Short
135.48 291.51 746.15 757.65
70 -
120
H c 60 B
S 100 =
] S 50 -
g 80 OsF=2 = OsF-
@ Bros _ S 4 _ _ | | SF=2
% 60 No Suspension o E No Suspension
30 1
S 40+ ais 8 ais
5 @ 20 -
= 20 A g
ol 10 A l
Seq Narrow Wide Very 0 - —
Wide Seq Narrow Wide Very Wide
Width Width
Long Very Long
93.49 96.6 27.58 26.65
40 |- 10 -
o 351] c 97
B — Z 8] OsF=2
g %] R ENoS
T No Suspension
5 25 L [@sF=2 3 . i P
%) X 0 ais
o 20 H No Suspension 51
] ©
8 15 H |(Ois c 4 i
- 0 34
Z 101 S , |
’ il] I
5 f i | |
Seq Narrow Wide Very Wide Seq Narrow Wide Very Wide
Width Width

Figure 3.3: Comparison of the worstcase slowdowns of the SS scheme with the NS and
IS schemes. SS is much better than NS for most of the categories and is slightly worse
for some of the VL categories. Compared to IS, SS is much better for all the categories
except for the VS categories.

23

Very Short Short

16470 44371 107743 174603 175422
12000 45000 -
40000
'_
:: ooo |<£ 35000
'_
o 5000 mSF=2 © ggggg msF=2
g 6000 @ No Suspension @ 20000 @ No Suspension
4000 ols % 15000 - ois
5 o 10000 -
o
s 2000 § 5000 |
0 0 A L
Seq Narrow Wide Very Seq Narrow Wide Very
Wide Wide
Width Width
Long Very Long
20000 112086 205273 438900 1121651 173584 223338 712283 1711958

140000 -

60000 - 120000 -
50000 - 100000 -
40000 - OSF=2 80000 | OSF=2
@ No Suspension @ No Suspension
30000 - 60000 -
als aolis
20000 40000 -
10000 20000 -
0 L 0 4

Seq Narrow Wide Very
Wide

Worst case TAT
Worst case TAT

Seq Narrow Wide Very
Wide

Width Width

Figure 3.4: Comparison of the worstcase turnaround times of the SS scheme with the NS
and IS schemes. SS is much better than NS for most of the categories and is slightly worse

for some of the VL categories. Compared to IS, SS is much better for all the categories
except for the VS categories.

24

case turnaround times of the NS scheme and the IS scheme. Even though the trends
observed here are similar to that of worst case slowdowns, the categories where SS is
the best with respect to worst case turnaround time are not same as the categories for
which SS is the best with respect to worst case slowdowns. This is because a job with
the worst case turnaround time need not be the one with worst case slowdown. We
propose a tunable scheme to improve the worst case slowdowns / turnaround times
without losing the improvement in the average slowdowns / turnaround times. This is
done by controlling the variance in the slowdowns / turnaround times by associating
a limit with each job. Preemption of a job is disabled when its threshold exceeds this
limit. This limit is set to 1.5 times the average slowdown of the category that the job

belongs to.
3.5.1 Control of variance

Task T; preempts tasks in candidates(7;) as given by the following condition:
The set of tasks suspended by 7; is
P = { T;:T; € candidates(T;) and n; < f;+Xn; and 7; < 1.5 *SD,,,(category(7}))}
and ((Zng (VI € P)) - (ny : T € P)) < my
where SDg,4(category(T;)) represents the average slowdown for the job category

to which T; belongs.
3.5.2 Results

Figure 3.5 and Figure 3.6 show the result of this tunable scheme. It improves
the worst case slowdowns for some long categories (VL W, VL VW, L N) and some
short categories (VS Seq, VS N, S Seq) without affecting the worst case slowdowns

of the other categories. It improves the worst case turnaround times for most of the

25

Very Short Short
9274 13548 29151 74615 414 4191 757.6
40 | 40 -
o 351 c 3 | [@sF=2
2 2 1
o 30 — ° 30 = [/@ Tuned
2 - OsF=2 2 25 une
UE) | [| |mTuned UO; ONo Suspension
® 20 - —) v 201 ois
2] ONo Suspension a
o 15 A S 15
= ais o
= 10 A = 10 A
o o
2 5| S g |
[0 T T T —
Seq Narrow Wide Very Wide Seq Narrow Wide Very Wide
Width Width
Long Very Long
35.59 3172 93.49 26.6 2758 26.65
10 - 10 -
9 B 94
S 8 % 8 B
o
37 OsF=2 27 | (BsF=2
o = o B
%) g B Tuned) 2 — H Tuned
o B)
§ 4 O No Suspension g 4 O No Suspension
o o
% 3 Ll OIS 5 3 Ll OIS
o | o B
2 2 2 2 [[
1 14
0 T T — 0 - T r r —
Seq Narrow Wide Very Wide Seq Narrow Wide Very Wide
Width Width

Figure 3.5: Comparison of the worstcase slowdowns of the TSS scheme with the SS, NS
and IS schemes. TSS improves the worstcase slowdown for the VL categories and some
of the S categories without adversely affecting the other categories.

26

Very Short Short
16470 44371 107743 147603 1754226
12000 I 45000 I
M 40000 H
= - =
ke 1ooo < 35000 -
= 8000 | | |BSF=2 = 30000 | |@SF=2
® 5000 @ Tuned § 25000 L | @ Tuned
S o No Suspension o 20000 I H | o No Suspension
@ 4000 1 ols ? ﬁggg H |ois
Q2000 - - Q I
: 31 il
o 1 1 ‘ 0 11
Seq Narrow Wide Very Seq Narrow Wide Very
Wide Wide
Width Width
Long Very Long
12806 205273 438900 1121651 173584 223338 712283 1711958
70000 I 140000 I
- 60000 H — 120000 H -
< <
— 50000 | H TasFoz = 100000 - H @sFoz
& 40000 - H | @ Tuned z 80000 - H H | @ Tuned
S 30000 | | ano suspension|| S 60000 - L L |2 No Suspension
@ 20000 - L |ois 3 40000 | o L |ois
o
S 1000 | L = 20000 | o u
0 L[0 L1
Seq Narrow Wide Very Seq Narrow Wide Very
Wide Wide
Width Width

Figure 3.6: Comparison of the worstcase turnaround times of the TSS scheme with the
SS, NS and IS schemes. TSS improves the worstcase turnaround time for most of the
categories without adversely affecting the other categories.

27

categories without affecting the worst case turnaround times of the other categories.
This scheme can also be applied to selectively tune the slowdowns / turnaround times

for particular categories.

28

CHAPTER 4

IMPACT OF USER ESTIMATE INACCURACIES

We have so far assumed that the user estimates are perfect. Now, we consider the
effect of user estimate inaccuracy on the proposed schemes. This is desirable from
the point of view of modeling an actual system workload. In this context, we believe
that there is a problem that has been ignored by previous studies, when analyzing
the effect of over estimation on scheduling strategies. Abnormally aborted jobs tend
to excessively skew the average slowdown of jobs in a workload. Consider a job
requesting a wall-clock limit of 24 hours, that is queued for 1 hour, and then aborts
within one minute due to some fatal exception. The slowdown of this job would be
computed to be 60, whereas the average slowdown of normally completing long jobs is
typically under 2. If even 5% of the jobs have a high slowdown of 60, while 95% of the
normally completing jobs have a slowdown of 2, the average slowdown over all jobs
would be around 5. Now consider a scheme such as the speculative backfilling strategy
evaluated in [8]. With this scheme, a job is given a free timeslot to execute in, even
if that slot is considerably smaller than the requested wall-clock limit. Aborting jobs
will quickly terminate, and since they did not have to be queued till an adequately
long window was available, their slowdown would decrease dramatically with the
speculative backfilling scheme. As a result, the average slowdown of the entire trace

29

would now be close to 2, assuming that the slowdown of the normally completing jobs
does not change significantly. A comparison of the average slowdowns would seem
to indicate that the speculative backfill scheme results in a significant improvement
in job slowdown from 5 to 2. However, under the above scenario, the change is only
due to the small fraction of aborted jobs, and not due to any benefits to the normal
jobs. In order to avoid this problem, we group the jobs into two different estimation

categories:

e Jobs that are well-estimated (the estimated time is not more than twice the

actual runtime of that job) and

e Jobs that are poorly estimated jobs (the estimated runtime is more than twice

the actual runtime).

Within each group, the jobs are further classified into 16 categories based on their
actual run time and the number of processors requested.

It can be observed from Figure 4.1 that the Selective Suspension scheme improves
the slowdowns for most of the categories without affecting the other categories. The
slowdowns for the short and wide categories is quite high compared to the other
categories and this is mainly because of the over estimation. Since the suspension
threshold used by the SS scheme is xfactor, it favors the short jobs. But if a short job
was badly estimated, it would be treated as a long job and its priority would increase
only gradually. So, it will not be able to suspend running jobs easily and will end up
with a high slowdown. This does not happen with IS because of the 10 minute time
quantum for each arriving job irrespective of the estimated run time and therefore

the slowdowns for the very short category (whose length is less than or equal to 10

30

minutes) is better in IS than other schemes. However, for the other categories, SS
performs much better than IS.

Figure 4.2 compares the average turnaround times for the SS scheme with that
of the NS and IS schemes. The improvement in performance for the short and wide
categories is much less compared the improvement acheived with the accurate user
estimate case. The argument provided above for the increase in slowdowns for the
short and wide categories explains the reason for this. The seemingly long jobs (badly
estimated short jobs) will not be able to suspend running jobs easily and have to wait

in the queue for a longer time ending up with a high turnaround time.

Very Short Short
217 53.9 7.2 37.66
20 |- 6
18 s
16 i
14 1 O SF = 1.5 Tuned OSF =1.5 Tuned
4 4
S 12 B SF = 2 Tuned s BISF = 2 Tuned
o
‘§ 10 OSF =5 Tuned 2 3 OSF =5 Tuned
2 81 | |ONo Suspension 5 2| ONo Suspension
6 | |mis mis
44 = 1
2 4
0! i[t i il 0
Seq Narrow Wide Very Wide Seq Narrow Wide Very Wide
Width Width
Long Very Long
3.22 5.65 4.57
3 3
2.5 1 2.5 1
OSF =1.5 Tuned OSF =1.5 Tuned
2 2
g B SF =2 Tuned g B SF =2 Tuned
[=} o
2 1.5 1 OSF =5 Tuned 2 1.5 1 OSF =5 Tuned
% 1] O No Suspension % 1] O No Suspension
LIS LIS
0.5 1 0.5 1
0 0
Seq Narrow Wide Very Wide Seq Narrow Wide Very Wide
Width Width

Figure 4.1: Comparison of the average slowdowns of the SS scheme with the NS and IS
schemes with inaccurate user esitmates of runtime. Similar trends are observed here as
for the case with accurate user estimates.

31

Very Short Short
5101 45663
4500 12000
g 4000 1 2 1000
= 3500 0 SF =15 Tuned = @ SF =15 Tuned
3000 _ 8000 _
Le] 2500 @ SF =2 Tuned o B SF =2 Tuned
S 000 0 SF =5 Tuned S 6000 0 SF =5 Tuned
% 1500 - 0 No Suspension % 4000 | o No Suspension
c 1000 - LIS c mis
= 5 2000 -
E 500 - E
0 - 0 4
Seq Narrow Wide Very Seq Narrow Wide Very
Wide Wide
Width Width
Long Very Long
23580 108346 88868 342395
20000 60000
(] (]
IS £ 50000 -
= 15000 - 0 SF =15 Tuned = @ SF =15 Tuned
_ 40000 - _
o° ® SF =2 Tuned ke @ SF =2 Tuned
S 10000 | 0 SF =5 Tuned S 30000 | 0 SF =5 Tuned
o : o .
a 0O No Suspension E 20000 0O No Suspension
c 5000 - mIS c LIS
E E 10000 -
0 - 0 -
Seq Narrow Wide Very Seq Narrow Wide Very
Wide Wide
Width Width

Figure 4.2: Comparison of the average turnaround times of the SS scheme with the NS
and IS schemes with inaccurate user esitmates of runtime. The trends are similar to the
trends observed with accurate user estimates.

From Figure 4.3 and Figure 4.4, it is evident that the higher slowdowns for the
VS categories in SS is due to the poorly estimated jobs.

Figure 4.5 and Figure 4.6 show that the reduction in the percentage improvement
of the average turnaround times for the short and wide categories in SS is due to the
poorly estimated jobs. It can also be observed that, for the well estimated jobs, SS
is better or comparable to IS for VS categories and SS outperforms IS in all other

categories.

32

Very Short Short
16.94 7.23 55.18
6 6
5 5 —
O SF = 1.5 Tuned O SF = 1.5 Tuned
] 4
H 4 B SF = 2 Tuned g B SF = 2 Tuned
o
g3 OSF =5 Tuned g3 OSF = 5 Tuned
70) 2 | ONo Suspension % 2| ONo Suspension
s LIS
1 1
0 0
Seq Narrow Wide Very Wide Seq Narrow Wide Very Wide
Width Width
Long Very Long
3.42 4.85 2.97 477
3 3
2.5 25 4
OSF = 1.5 Tuned OSF = 1.5 Tuned
15 21 B SF = 2 Tuned 15 21 B SF = 2 Tuned
o o
2 154 OSF =5 Tuned 2 154 OSF =5 Tuned
S 14 ONo Suspension S 1 ONo Suspension
His His
0.5 A 05 1
0 0
Seq Narrow Wide Very Wide Seq Narrow Wide Very Wide
Width Width

Figure 4.3: Comparison of the average slowdowns of the SS scheme with the NS and IS
schemes for the well-estimated jobs. The trends are similar to that of the accurate user
estimate case for the S, L and VL categories. The performance of the SS scheme for the
VS categories is better or comparable to that of the IS scheme.

33

Very Short Short
23.43 2185 59.69 6 6.33 6.61
20 I
18
5
c B @ SF =15 Tuned c O SF =15 Tuned
2 P B SF =2 Tuned 34 B SF =2 Tuned
T 10 O SF =5 Tuned T 3 O SF =5 Tuned
E 2] 0 No Suspension E 2 o No Suspension
(2t LS n LS
2 o] |
o L] 0.
Seq Narrow Wide Very Seq Narrow Wide Very
Wide Wide
Width wWidth
Long Very Long
6.35
3 3
25 25
0 SF =15Tuned c O SF =15 Tuned
c 2
= B SF =2 Tuned g B SF =2 Tuned
'§ 15 | O SF =5 Tuned T 15 O SF =5 Tuned
o 14 0 No Suspension % 1 O No Suspension
n n
0 0
Seq Narrow Wide Very Seq Narrow Wide Very
Wide Wide
Width Width

Figure 4.4: Comparison of the average slowdowns of the SS scheme with the NS and IS
schemes for the poorly-estimated jobs. The trends are similar to that of the accurate user
estimate case for the S, L and VL categories. The SS scheme tends to penalize poorly
estimated jobs that belong to the VS category.

34

Very Short Short
4472 68464
12000
o 100 o)
£ 100 - g 10000 -
= 0 SF =15 Tuned = 0 SF =15 Tuned
; 1000 1 B SF =2 Tuned ke 8000 B SF =2 Tuned
% 800 - O SF =5 Tuned § 6000 + O SF =5 Tuned
% 600 - O No Suspension S 4000 - o No Suspension
c 400 4 mis £ Lo mis
E 200 - 2 |
0 - 0 4
Seq Narrow Wide Very Seq Narrow Wide Very
Wide Wide
Width Width
Long Very Long
130543 369561
20000 70000 90287
2 2 60000 A
[15000 O SF =15 Tuned iZ 50000 O SF =15 Tuned
= SF =2 Tuned
E B SF =2 Tuned g 40000 J =] une
S 10000 - O SF =5 Tuned S 30000 O SF =5 Tuned
% O No Suspension % 0O No Suspension
c 5000 4 mIS c 20000 - als
E IE 10000 A
0 - [
Seq Narrow Wide Very Seq Narrow Wide Very
Wide Wide
Width Width

Figure 4.5: Comparison of the average turnaround times of the SS scheme with the NS
and IS schemes for the well-estimated jobs. The performance of the SS scheme for the
VS category is comparable to that of the IS scheme. For the other categories the trends
are similar to that of the accurate user estimate case.

35

Very Short Short
5000 5200 11000
[0) QE) 10000
] 9000
_E 4000 @ SF =15 Tuned i 8000 O SF =15 Tuned
T 3000 | | |®SF=2Tuned - 7000 @ SE =2 Tuned
= O SF =5 Tuned S 2888 i O SF =5 Tuned
% 2000 | |ONo Suspension % 4000 4 O No Suspension
mIS 3000 -
£ 100 - S 2000 | =S
S 2 1000 -
= 0. AN (| 0
Seq Narrow Wide Very Seq Narrow Wide Very
Wide Wide
Width Width
Long Very Long
45825 59287
30000 40000
g 25000 GE-’ 35000
iz 0 SF =15 Tuned iz 30000 O SF =15 Tuned
el 20000 4 @ SF =2 Tuned - 25000 @ SF =2 Tuned
S 15000 | O SF =5 Tuned S 20000 O SF =5 Tuned
% 10000 O No Suspension % 15000 O No Suspension
c IS c 10000 mis
E 5000 - '3 5000
0 0
Seq Narrow Wide Very Seq Narrow Wide Very
Wide Wide
Width Width

Figure 4.6: Comparison of the average turnaround times of the SS scheme with the
NS and IS schemes for the poorly-estimated jobs. The SS scheme tend to penalize the

poorly-estimated short jobs.

36

4.1 Modeling of Job Suspension Overhead

We have so far assumed no overhead for pre-emption of jobs. In this section, we
report on simulation results that incorporate overheads for job suspension. Since the
job trace did not have information about job memory requirements, we considered
the memory requirement of jobs to be random and uniformly distributed between
100MB and 1GB. The overhead for suspension is calculated as the time taken to
write the main memory used by the job to the disk. The memory transfer rate that
we considered is based on the following scenario: with a commodity local disk for every
node, with each node being a quad, the transfer rate per processor was assumed to
be 2 MBps(corresponding to a disk bandwidth of 8 MBps).

Figure 4.7 and Figure 4.8 compare respectively the slowdowns and turnaround
times of the proposed tunable scheme with NS and IS in the presence of overhead for
job suspension /restart. It can be observed that overhead does not significantly affect

the performance of the SS Scheme.

4.2 Load Variation

We have so far seen the performance of the Selective Suspension scheme under
normal load. In this section, we present the performance of the SS scheme under
different load conditions starting from the normal load (original trace) until the system
reaches saturation. The different loads correspond to modification of the traces by
dividing the arrival times of the jobs by suitable constants, keeping their run time
the same as in the original trace.

For simplicity, we reduced the number of job categories from sixteen to four for

the load variation studies: two categories based on their run time - Short(S) and

37

Very Short Short
217 53.9 7.2 3766
18 1 = 6 i -
16 — 5 |
14
c 12 | | |AOSF=2 g 4 OsF=2
_§ 10 — BESF=20H _8 3 BESF=20H
2 81 ONo Suspension _% O No Suspension
[- |ois N 24 ais
: i h)
2 4
o 1 0 1]
Seq Narrow Wide Very Wide Seq Narrow Wide Very Wide
Width Wwidth
Long Very Long
3.22 5.65 4.57
3 | 3 -
2.5 i 25 [] |
. 2 OsF=2 c 24 OsF=2
3 BSF=20H g B BSF=OH
T 15 I H) T 15 E)
g O No Suspension 2 O No Suspension
@1 ois ® o1 ois
05 = 1 0.5 1
0 : L1 0 : : L1
Seq Narrow Wide Very Wide Seq Narrow Wide Very Wide
Width Width

Figure 4.7: Comparison of the average slowdowns of the SS scheme with the IS and NS
schemes, with modeling of overhead for suspending/restarting a job. The performance of
the SS scheme with modeling of overhead is comparable to its performance in the absence
of overhead.

38

Very Short Short
5101 45663
4500 - 12000 H
@ 4000 — <}
10000 [MH
E 3500 . £
= 3000 I |BsF=2 '_; 8000 ll [@sF=2
2 2500 - |mSF=20H S B SF=2O0H
g 2000 0 No Suspension g O No Suspension
? 1500 - ois § 4000 A ols
£ 1000+ 5 2000 B
2 500 | =
[[[L1
Seq Narrow Wide Very Seq Narrow Wide Very
Wide Wide
Width Width
Long Very Long
108346 90297 369581
20000 23580 H 60000 I
g qg’ 50000
= 15000] u =
; OSF=2 = 40000 4 - OSF=2
©
B SF=2OH -
S 10000 1 o) S 30000 || |mSF=OH
IS) O No Suspension o O No Suspension
| 20000 4 B
E 5000 | || |ois g ols
5 5 10000 - B
F 0 F 0]
Seq Narrow Wide Very Seq Narrow Wide Very
Wide Wide
Width Width

Figure 4.8: Comparison of the average turnaround times of the SS scheme with the IS and
NS schemes, in the presence of overhead for suspending/restarting a job. The overhead
does not introduce any significant change in the performance of the SS scheme.

39

<8 Processors

>8 Processors

<1Hr

SN

SW

>1Hr

LN

LW

Table 4.1: Job categorization criteria for load variation studies

<8 Processors

>8 Processors

<1Hr

44%

13%

>1Hr

30%

13%

Table 4.2:

Job distribution by category for load variation studies

Long(L) and two categories based on the number of processors requested - Narrow(N)
and Wide(W). The criteria used for job classifications is shown in Table 4.1. The
distribution of jobs in the trace, corresponding to the four categories is given in Table
4.2.

Figure 4.9 shows the overall system utilization for different schemes under different
load conditions. It can be observed that the SS scheme is able to achieve a better
utilization than the NS scheme at higher loads whereas the overall system utilization
is very low under the IS scheme. Also, there is no significant increase in the overall
system utilization (for both the SS and NS schemes) when the load factor is increased
beyond 1.6 which indicates that the system reaches saturation at a load factor of 1.6.
We report the performance of the SS scheme for various load factors between 1.0

(normal) and 1.6.

40

Load Vs Utilization

90 ~
80 -
70 A

60 -
50 | —e— SF =2 Tuned

—o— No Suspension
40 A
—2— 1S

30 ~
20 A
10 ~

Utilization

Figure 4.9: Comparison of overall system utilization of the SS scheme with the NS and
IS schemes under different load conditions. The overall system utilization with the SS
scheme is better or comparable to the NS scheme. IS is much worse in terms of overall
system utilization.

41

Short Narrow

Short Wide

354 140 4
30 4 120 -
251 100
S —e— SF=2 Tuned s —e— SF=2Tuned
S 20 - S 804 .
o —0O— No Suspension o —0— No Suspension
3 15 S Z 604 1S
2 —A— 2
910 - w40
51 ﬁ 20 | A/A_A/A
0 : ‘ : ‘ 0 ‘ ‘ ‘ ‘
0 0.5 1 15 2 0.5 1 15 2
Load Load
Long Narrow Long Wide
1.8 14 4
14] A/A/f 2]
1.4
10 4
g 129 —e— SF=2Tuned S —e— SF=2Tuned
o 14 . S 84 .
° —O— No Suspension ° —— No Suspension
= 0.8 = 64
o g6 ——1S o ——1S
n Y [
041 Dygﬁ
0.2 21
0 : : :) 0 : : : ‘
0 0.5 1 15 2 0.5 1 15 2

Load

Figure 4.10: Comparison of the average slowdowns of the SS scheme with the IS and NS
schemes under different load conditions. The improvements achieved by the SS scheme
are more pronounced under high load.

42

Short Narrow Short Wide
4000 - 35000 -
3500 - 30000 A
[} [
E 3000 - E 25000 4
= 2500 A —e— SF =2 Tuned = 20000 —e— SF =2 Tuned
o el 4
S 2000 —o— No Suspension S —o— No Suspension
o o 15000 -
& 1500 4 ——1Is 3 ——1Is
o f= 4
£ 1000 | :'A £ 10000
= 500 | = 5000
0 : : : 0 : : :
0 0.5 1 15 0 0.5 1 15
Load Load
Long Narrow Long Wide
45000 + 250000 ~
40000
g 35000 g 200000
i= 30000 . —e— SF=2Tuned = —e— SF=2Tuned
= | = 150000 -
s 25000 —0— No Suspension 5 —0O— No Suspension
S 20000 4 S S 100000 1 S
€ 15000 | —— s ——
2 10000 - 2 50000 -
5000 | ,;._n——ﬂzE
0 T T T 0 T T T
0 0.5 1 15 0 0.5 1 15
Load Load

Figure 4.11: Comparison of the average turnaround times of the SS scheme with the IS
and NS schemes under different load conditions. The improvements achieved by the SS
scheme are more pronounced under high load.

43

Figure 4.10 and Figure 4.11 compare the performance of the SS scheme with the
NS and IS schemes for different job categories under different load conditions. It can
be observed that the improvements obtained by the SS scheme are more pronounced
under high load. The trends with respect to different categories under higher loads
is similar to that observed under the normal load. It provides significant benefit
to the short jobs without affecting the performance of long jobs. The IS scheme is
better than the SS scheme only for the SN jobs in terms of average turnaround time,
whereas it is better than SS for both SN and SW jobs in terms of average slowdown.
It implies that the IS scheme improves the performance of only the relatively shorter
jobs in SW category by adversely affecting the performance of the relatively longer
jobs. Also, the performance of the IS scheme is much worse for the long jobs, which
is very undesirable.

From Figure 4.12 and Figure 4.13 compare respectively the average slowdowns
and the average turnaround times against the overall system utilization for various
schemes. It is evident that the SS scheme is much better than both the IS and NS
schemes. Even when the system is highly utilized, the SS scheme is able to provide
much better response times for all categories of jobs. The IS scheme is not able to

achieve high system utilization.

44

Short Narrow Short Wide
35+ 140 4
30 - 120 4
c 254 - 100 1
—e— SF =2 Tuned —e— SF =2 Tuned
= o une = g
'g —&— No Suspension g 60 —a— No Suspension
15 A 1
2 ——1S = ——1S
10 | (2T
54 *_/ 20 1 %
0 ; M ‘ ‘ 0 ‘ ‘ ‘ : ‘
0 20 40 60 80 100 0 20 40 60 80 100
Utilization Utilization
Long Narrow Long Wide
1.8+ 14 -
16 } 12
1.4
12 10 A
S —e— SF=2 Tuned S 8 —e—SF=2Tuned
14 7 .
S —a— No Suspension S —a— No Suspension
g 0.8 g 6
% 06 - —2—5 3 4 ——1S
s e
021 2
0) 0 T T T .)
0 20 40 60 80 100 0 20 40 60 80 100
Utilization Utilization

Figure 4.12: Comparison of the average slowdowns against the overall system utilization
for the SS, NS and IS schemes.

45

Short Narrow Short Wide
4000 35000 -
3500 - 30000 -
(5} L]
£ 3000+ £ 25000 |
= 2500 4 —e— SF=2Tuned = —e— SF=2 Tuned
- o= 20000 -)
S 2000 | —&— No Suspension S —a— No Suspension
° o 15000 4
s 1500 + ——1IS 3 ——1Is
c 4
E 1000 1 ./ £ 10000
500 “a " 5000 |
0 . . . ! : 0 : : : : .
0 20 40 60 80 100 0 20 40 60 80 100
Utilization Utilization
Long Narrow Long Wide
45000 - 250000 -
40000 -
© 35000 4 o 200000 -
£ £
= 30000 - . y' e SF=2 Tuned F 150000 | —e— SF=2 Tuned
4 o
5 zzggg | —a— No Suspension S —a— No Suspension
g ——15 g 100000 | —a—i5
< 15000 - g
'2 10000 - ;3 50000
5000 - ._.,J
0 ! ! ! ! : 0 :
0 20 40 60 80 100 0 20 40 60 80 100
Utilization Utilization

Figure 4.13: Comparison of the average turnaround times against the overall system
utilization for the SS, NS and IS schemes.

46

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

In this thesis, we have explored the issue of pre-emptive scheduling of parallel jobs,
using a job trace from a supercomputer center. We have proposed a tunable, selective
suspension scheme and demonstrated that it provides significant improvement in the
average slowdown and the worst case slowdowns of several job categories. It was also
shown to provide better slowdown for most job categories over a previously proposed
Immediate Service scheme. We also modeled the effect of overheads for job suspension,
showing that even under stringent assumptions about available bandwidth to disk, the
proposed scheme provides significant benefits over non-preemptive scheduling and the
Immediate Service strategy. We also evaluated the proposed schemes in the presence

of over estimations and showed that it produced good results.

5.1 Future Work

e In this thesis, we compared the performance of the selective preemption schemes
with non-premptive and Immediate Service scheme. It is of interest to compare

the performance of the selective preemption scheme with gang scheduling [15],

[17], [36].

47

e The system utilization is an important consideration especially under high load.
The selective preemption scheme, though it improves the overall system utiliza-
tion, is not aimed directly at improving the system utilization. It would be
useful to devise a scheme that takes utilization also into consideration in per-

forming preemption decisions.

e The next step is to evaluate the selective preemption schemes in a realistic

environment by incorporating it in a production job scheduler.

48

BIBLIOGRAPHY

[1] K. Aida. Effect of Job Size Characteristics on Job Scheduling Performance. In
Workshop on Job Scheduling Strategies for Parallel Processing, pages 1-17, 2000.

[2] S. V. Anastasiadis and K. C. Sevcik. Parallel Application Scheduling on Networks
of Workstations. Journal of Parallel and Distributed Computing, 43(2):109-124,
1997.

[3] O. Arndt, B. Freisleben, T. Kielmann, and F. Thilo. A Comparative Study of
Online Scheduling Algorithms for Networks of Workstations. Cluster Computing,
3(2):95-112, 2000.

[4] S. H. Chiang, R. K. Mansharamani, and M. K. Vernon. Use of Application
Characteristics and Limited Preemption for Run-to-Completion Parallel Proces-
sor Scheduling Policies. In ACM SIGMETRICS Conference on Measurement
and Modeling of Computer Systems, pages 33-44, 1994.

[6] S. H. Chiang and M. K. Vernon. Production Job Scheduling for Parallel Shared
Memory Systems. In Proceedings of International Parallel and Distributed Pro-
cessing Symposium, 2002.

[6] W. Cirne. When the Herd is Smart: The Emergent Behavior of SA. In IEEE
Trans. Par. Distr. Systems, 2002.

[7] W. Cirne and F. Berman. Adaptive Selection of Partition Size for Supercomputer
Requests. In Workshop on Job Scheduling Strategies for Parallel Processing,
pages 187208, 2000.

[8] P. J. Keleher D. Perkovic. Randomization, Speculation, and Adaptation in Batch
Schedulers. In Proceedings of Supercomputing 2000.

[9] Bhaskar DasGupta and Michael A. Palis. Online real-time preemptive scheduling
of jobs with deadlines. In APPROX, pages 96-107, 2000.

[10] X. Deng, N. Gu, T. Brecht, and K. Lu. Preemptive Scheduling of Parallel Jobs
on Multiprocessors. In SODA: ACM-SIAM Symposium on Discrete Algorithms,
1996.

49

[11] Xiaotie Deng and Patrick Dymond. On multiprocessor system scheduling. In
Proceedings of the eighth annual ACM symposium on Parallel algorithms and
architectures, pages 82—-88. ACM Press, 1996.

[12] Leah Epstein. Optimal preemptive scheduling on uniform processors with non-
decreasing speed ratios. Lecture Notes in Computer Science, 2010:230-248, 2001.

[13] D. G. Feitelson. Logs of real parallel workloads from production systems. http://
www.cs.huji.ac.il/labs/parallel /workload /logs.html.

[14] D. G. Feitelson. Analyzing the Root Causes of Performance Evaluation Results.
Technical report, Leibniz Center, Hebrew University, 2002.

[15] D. G. Feitelson and M. A. Jette. Improved utilization and responsiveness with
gang scheduling. In Workshop on Job Scheduling Strategies for Parallel Process-
ing, pages 238-261. 1997.

[16] D. G. Feitelson, L. Rudolph, U. Schwiegelshohn, K. C. Sevcik, and P. Wong.
Theory and Practice in Parallel Job Scheduling. In Workshop on Job Scheduling
Strategies for Parallel Processing , pages 1-34. 1997.

[17] Dror G. Feitelson. Packing Schemes for Gang Scheduling. In Dror G. Feitelson
and Larry Rudolph, editors, Job Scheduling Strategies for Parallel Processing —
Proceedings of the IPPS’96 Workshop, volume 1162, pages 89-110. Springer,
1996.

[18] D. Jackson, Q. Snell, and M. J. Clement. Core Algorithms of the Maui Scheduler.
In Wkshp. on Job Sched. Strategies for Parallel Processing, pages 87-102, 2001.

[19] J. P. Jones and B. Nitzberg. Scheduling for Parallel Supercomputing: A His-
torical Perspective of Achievable Utilization. In Workshop on Job Scheduling
Strategies for Parallel Processing, pages 1-16, 1999.

[20] W. A. Ward Jr., C. L. Mahood, and J. E. West. Scheduling Jobs on Parallel
Systems Using a Relaxed Backfill Strategy. In Proceedings of the 8th Workshop
on Job Scheduling Strategies for Parallel Processing, 2002.

[21] P. J. Keleher, D. Zotkin, and D. Perkovic. Attacking the Bottlenecks of Back-
filling Schedulers. Cluster Computing, 3(4):245-254, 2000.

[22] J. Krallmann, U. Schwiegelshohn, and R. Yahyapour. On the Design and Eval-
uation of Job Scheduling Algorithms. In Workshop on Job Scheduling Strategies
for Parallel Processing, pages 17-42, 1999.

90

[23]

[24]

[25]

[26]

[27]

28]

[29]

[30]
[31]

32]

33]

[34]

B. G. Lawson and E. Smirni. Multiple-queue Backfilling Scheduling with Prior-
ities and Reservations for Parallel Systems. In Proceedings of the 8th Workshop
on Job Scheduling Strategies for Parallel Processing, 2002.

B. G. Lawson, E. Smirni, and D. Puiu. Self-adapting Backfilling Scheduling
for Parallel Systems. In Proceedings of the International Conference on Parallel
Processing, 2002.

L. T. Leutenneger and M. K. Vernon. The Performance of Multiprogrammed
Multiprocessor Scheduling Policies. In ACM SIGMETRICS Conference on Mea-
surement and Modelling of Computer Systems, pages 226-236, May 1990.

D. Lifka. The ANL/IBM SP Scheduling System. In Workshop on Job Scheduling
Strategies for Parallel Processing, pages 295-303, 1995.

C. McCann, R. Vaswani, and J. Zahorjan. A Dynamic Processor Allocation
Policy for Multiprogrammed Shared-Memory Multiprocessors. In ACM Trans.
Computer Systems, volume 11, pages 146-178, 1993.

A. W. Mu’alem and D. G. Feitelson. Utilization, Predictability, Workloads, and
User Runtime Estimates in Scheduling the IBM SP2 with Backfilling. In IEEE
Trans. Par. Distr. Systems, volume 12, pages 529-543, 2001.

Eric W. Parsons and Kenneth C. Sevcik. Implementing Multiprocessor Schedul-
ing Disciplines. In Dror G. Feitelson and Larry Rudolph, editors, Job Scheduling
Strategies for Parallel Processing, pages 166-192. Springer Verlag, 1997. Lect.
Notes Comput. Sci. vol. 1291.

Uwe Schwiegelshohn and Ramin Yahyapour. Fairness in parallel job scheduling.

K. C. Sevcik. Application Scheduling and Processor Allocation in Multipro-
grammed Parallel Processing Systems. Performance Evaluation, 19(2-3):107—
140, 1994.

J. Skovira, W. Chan, H. Zhou, and D. Lifka. The EASY - LoadLeveler API
Project. In Wkshp. on Job Sched. Strategies for Parallel Processing, pages 41—
47, 1996.

A. Streit. On Job Scheduling for HPC-Clusters and the dynP Scheduler. In Proc.
Intl. Conf. High Perf. Comp., pages 5867, 2001.

D. Talby and D. G. Feitelson. Supporting Priorities and Improving Utilization
of the IBM SP Scheduler Using Slack-Based Backfilling. In Proceedings of the
13th International Parallel Processing Symposium, pages 513-517, 1999.

ol

[35]

[36]

[37]

J. Zahorjan and C. McCann. Processor Scheduling in Shared Memory Multipro-
cessors. In ACM SIGMETRICS Conference on Measurement and Modelling of
Computer Systems, pages 214-225, May 1990.

Y. Zhang, H. Franke, J. E. Moreira, and A. Sivasubramaniam. An integrated
approach to parallel scheduling using gang-scheduling, backfilling, and migration.
Lecture Notes in Computer Science, 2221:133-150, 2001.

D. Zotkin and P. Keleher. Job-length Estimation and Performance in Backfilling
Schedulers. In Proceedings of the 8th High Performance Distributed Computing
Conference, pages 236-243, 1999.

52

