
Future Generation Computer Systems 19 (2003) 983–997

Grid-enabled particle physics event analysis: experiences using a
10 Gb, high-latency network for a high-energy physics application

W. Allcocka,∗, J. Bresnahana, J. Bunnb, S. Hegded, J. Insleya, R. Kettimuthue,
H. Newmanb, S. Ravotb, T. Rimovskyc, C. Steenbergb, L. Winklera

a Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
b California Institute of Technology, Pasadena, CA, USA

c National Center for Supercomputing Applications, Urbana, IL, USA
d Illinois Institute of Technology, Chicago, IL, USA
e The Ohio State University, Columbus, OH, USA

Abstract

This paper examines issues encountered attempting to exploit a high-bandwidth, high-latency link in support of a high-energy
physics (HEP) analysis application. The primary issue was that the TCP additive increase/multiplicative decrease (AIMD)
algorithm is not suitable for “long fat networks”. While this is a known problem, the magnitude of the impact on application
performance was much greater than anticipated. We were able to overcome much of the impact, by altering the AIMD
coefficients. Such an approach, of course, is non-TCP compliant, and there was insufficient time to test the network friendliness
of these modifications.
Published by Elsevier Science B.V.

Keywords: Networks; DataGrid; Congestion avoidance; 10 GigE; Web100

1. Introduction

The major high-energy physics (HEP) experiments
of the next 20 years will break new ground in our
understanding of the fundamental interactions, struc-
tures, and symmetries that govern the nature of matter
and space–time. Among the principal goals are to find
the mechanism responsible for mass in the universe,
the Higgs particles associated with mass generation,
and the fundamental mechanism that led to the pre-
dominance of matter over antimatter in the observable
cosmos.

The largest collaborations today, such as CMS[10]
and ATLAS [4], which are building experiments for

∗ Corresponding author.
E-mail address: allcock@mcs.anl.gov (W. Allcock).

CERN’s Large Hadron Collider (LHC) program[19],
each encompass 2000 physicists from 150 institutions
in more than 30 countries. Each of these collabora-
tions include 300–400 physicists in the US, from more
than 30 universities as well as the major US HEP lab-
oratories. The current generation of operational exper-
iments at SLAC (BaBar[5]) and Fermilab (D0[11]
and CDF[9]), as well as the experiments at the Rel-
ativistic Heavy Ion Collider (RHIC) program at BNL
[27], faces similar challenges. BaBar in particular has
already accumulated datasets approaching a petabyte
(1 PB= 1015 bytes).

An impression of the complexity of the LHC data
can be gained fromFig. 1, which shows simulated
particle trajectories in the inner “tracking” detectors
of CMS. The particles are produced in proton–proton
collisions that result from the crossing of two proton

0167-739X/03/$ – see front matter. Published by Elsevier Science B.V.
doi:10.1016/S0167-739X(03)00076-1



984 W. Allcock et al. / Future Generation Computer Systems 19 (2003) 983–997

Fig. 1. Simulation of particle trajectories in the Large Hadron Collider.

bunches. A rare proton–proton interaction (approxi-
mately 1 in 1013) resulting in the production of a Higgs
particle that decays into the distinctive signature of
four muons is buried in 30 other “background” inter-
actions produced in the same crossing, as shown in the
upper half of the figure. The CMS software filters out
the background interactions by isolating the point of
origin of the high-momentum tracks in the interaction
containing the Higgs particle. This filtering produces
the clean configuration shown in the bottom half of
the figure. At this point, the mass of the Higgs parti-
cle can be deduced from the parameters of its muon
decay products, the four straight tracks shown in the
figure.

The HEP experiments noted above currently re-
quire access to terabyte and petabyte sized datasets
and involve massive computations by a geographically
distributed set of researchers. These requirements are
expected to increase by several orders of magnitude
in the next decade. This is representative of a broad
class of problems referred to as DataGrid problems
[1]. The advent of 10 Gb optical networking is making
such analyses practical, at least in theory.

At iGrid2002 [17], a HEP analysis application,
Root[28], was used to test the “real-world” feasibility
of such analyses. During the experiment, Root ac-
cessed large datasets from Chicago over the Starlight
Chicago–Amsterdam 10 GigE link using GridFTP
as the transport mechanism. A tool called geeViz
[2] was used to visualize the transfer on a world
map. Unfortunately, the bandwidth achieved during
this demonstration was very low, in fact less than
that achieved over lower-bandwidth, lower-latency
links in the US. Investigation showed that three fac-
tors were involved. First, a hardware problem caused
wildly varying round trip time (RTT) estimates; such
variance reduces the rate at which the TCP sender
side congestion window can open. Second, if a packet
is refused because the interface queue is full, the
Linux TCP implementation considers this to be a
congestion event, and the transfer enters conges-
tion avoidance. Third, and much more fundamental,
the current additive increase/multiplicative decrease
(AIMD) algorithm of the TCP protocol is simply not
suitable for bulk data transport on long, fat networks.
This issue has been recognized before[12–14,30],



W. Allcock et al. / Future Generation Computer Systems 19 (2003) 983–997 985

but the magnitude of the impact was still surprising.
Our results show that standard TCP was unable to
achieve better than 200 Mbps per host. Use of the
work around daemon (WAD)[34] from the Web100
[35]/Net100[24] project, however, allowed speeds of
700 Mbps per host by altering the characteristics of
the TCP AIMD algorithm. Further testing is needed
to determine the “network fair sharing” characteris-
tics with these changes. It should be noted here, that
the work around daemon is not available for public
distribution due to its potentially serious negative
impact on general internet traffic.

2. Overview

The original goal of our iGrid2002 demo was to
demonstrate the Root[28] HEP analysis application
running over an OC-48 (2.5 Gb) transatlantic network,
using the Caltech cluster at StarLight and a portable
cluster from Argonne named dusty. Approximately
3 weeks prior to the conference, however, a 10 Gb
network link was brought up by Level 3 commu-
nications. This provided a second goal, filling this
pipe. Unfortunately, it was clear that the hardware
we had been planning to use was not sufficient for
that task, so we decided to use the 20-node Data-
Grid cluster at Argonne as a source for an attempt to
fully utilize the 10 Gb link. As already noted, perfor-
mance was very poor, and the majority of our sub-
sequent efforts, revolve around trying to explain this
poor performance. Because of hardware issues with
dusty, and the heavy usage of the DataGrid cluster,
most of the troubleshooting was carried out on the
“wonderland” clusters from NCSA, tweedledum at Ar-
gonne and madhatter in Amsterdam.

This paper provides details of these efforts.
Section 3 describes the hardware and networking,
while Section 4 describes the software.Section 5
describes the results of the experiment and our in-
vestigations into the underlying reasons for the poor
results.Section 6presents our conclusions and briefly
outlines future work.

3. The fabric

In this section we describe the hardware and net-
working infrastructure used for the experiments. As

noted in the overview, multiple clusters from multiple
institutions were involved. The various configurations
are described below.

3.1. The network

The experimental network constructed for the
iGrid2002 event, shown inFig. 2, enabled host con-
nections at 1 Gbps to an overprovisioned 10 Gbps
transatlantic link between Amsterdam and Chicago
(6632 km). At Argonne, hosts connected to a 10 Gb
switch on loan from Force 10 Networks, which con-
nected to a Juniper T640 exit router. From Argonne,
the I-Wire [23] network was used to connect to
StarLight [29] in downtown Chicago. At StarLight,
another Juniper T640 provided access to a 10 Gb link
provided by Level 3 communications to cross the At-
lantic and connect to a Cisco 12404 in the Amsterdam
Point of Presence (POP). There were three additional
short 10 Gb hops within the Amsterdam POP to the
final hop, a Catalyst 6509 loaned by Cisco Systems,
to which hosts in Amsterdam were connected. We
used a maximum transmission unit (MTU) value of
1500 bytes. We did not explore larger MTUs because
of hardware limitations on the Force 10 switch.

3.2. The DataGrid cluster

One of the sources for the transfer was the DataGrid
cluster located at Argonne National Laboratory in Illi-
nois. The cluster is from VA Linux and consists of 20
nodes, with a head node (mayor). Each node is a dual
processor 850 MHz, Pentium III (fullon 2× 2), with
512 MB RAM, one 9 GB system disk, four 50 GB data
disks, and an Acenic GA620 fiber Gigabit Ethernet
controller. The data disks for each node are in a RAID
0 configuration using Linux software RAID. One-half
of the RAID is partitioned for use by PVFS[8,25],
resulting in a 2 terabyte shared file system. The Linux
2.4.19 kernel was the operating system installed.

3.3. The dusty cluster

The Distributed Systems Laboratory at Argonne Na-
tional Laboratory operates three portable eight-node
clusters for wide area network testing and develop-
ment. They are referred to collectively as the Three
Amigos, after the comedy movie, and the individual



986
W

.
A

llcock
et

al./F
uture

G
eneration

C
om

puter
System

s
19

(2003)
983–997

Fig. 2. Network topology for our experiment.



W. Allcock et al. / Future Generation Computer Systems 19 (2003) 983–997 987

clusters bear the names of the lead characters, Lucky,
Dusty, and Ned. Dusty was moved to Amsterdam to
act as the receiving end of the transfers. Each node
in the cluster is a 2U Compaq DL380G2 server with
dual 1.13 GHz Pentium IIIs, 2 GB RAM, and six
36 GB SCSI hard drives with onboard HW RAID,
using RAID 0, dual redundant power supplies, and
redundant cooling fans. Six of the eight nodes in each
cluster have a SysKonnect 9821 copper Gigabit NIC.
The other two (one of which is the “mayor” or head
node) have SysKonnect 9822 dual port copper Giga-
bit NICs. During the demonstration we installed an
additional SysKonnect 9841 fiber NIC in each node.
Originally, this was to give us additional potential
bandwidth, however, as a result of the problems en-
countered, we did not use the copper cards for our
experiments.

3.4. The Caltech cluster

The six Caltech network systems at StarLight are
built from Supermicro P4DP8-G2 motherboards that
use 2.2 GHz Intel P4 Xeon processors and come
equipped with 1 GB of main memory. The systems
are also equipped with SysKonnect SK9843 Gigabit
cards in addition to the built-in Intel e1000 Gigabit
copper ports.

3.5. The wonderland clusters

The Network Research group at NCSA has a small
test cluster for network-based cluster tests. These
nodes were distributed at three sites for testing.
Eleven are placed at Argonne National Laboratory
(tweedledum), eleven remain at the National Center
for Supercomputing Applications (tweedledee), and
four are installed in Amsterdam (madhatter). The
cluster is from Rackable Systems and is comprised of
nodes configured with single processor 1 GHz Pen-
tium III CPUs, 256 MB RAM, 40 GB ATA hard drive
(ST340016A), and SysKonnect SK-9843 SX Gigabit
Ethernet controller.

4. Software

Our planned demo was comprised of three primary
software components. The driving application was the
HEP analysis program called Root. GridFTP handled

data transfer over the network, and visualization of the
data transfer was provided by a package called geeViz.
These packages are described in more detail below.

4.1. Root

To demonstrate efficient analysis of distributed sets
of intermediate-stage data produced by a production
effort of CMS institutions, we set up the analysis
infrastructure with two distinct elements: download-
ing data using globus-url-copy, and analysis of down-
loaded data using the Root analysis package.

The planned demonstration was for the transfer of
several data files of the order of 1.7 GB from the Cal-
tech/DOE cluster at the StartLight network POP in
Chicago to the cluster at Amsterdam. The data files
consisted of 180,000 simulated detector events (or col-
lisions) for the CMS detector, produced by institutions
in preparation for the arrival of real detector events
when operation of the Large Hadron Collider (LHC)
at CERN in Geneva commences. The demonstration
machine on the show floor, Rembrandt, mounted a net-
work filesystem volume from the local cluster using
PVFS. Data was requested in tandem by the cluster
nodes and placed in the network file system volume.
The analysis application monitored the network file
system for newly transferred files roughly every 2 s
while proceeding with the analysis of already received
data. In other words, the analysis and data transfer
were decoupled, with the former expected to proceed
at a much slower rate.

The C++ analysis script maintained a list of down-
loaded files, over which it iterated, producing a single
aggregated result, part of which was displayed on the
show floor.

The analysis display consisted of four panels show-
ing three physics quantities: histograms of the number
of particles in a so-called particle jets with cone sizes
of 0.5 and 0.7 steradians, the number of particles in
detector towers for a cone size of 0.5, and a scatter plot
showing the correlation between the first two quanti-
ties. The display was updated for every 50 events an-
alyzed, translating to intervals of roughly 0.5 s. When
both the data transfer and analysis was done, the anal-
ysis was repeated for the available data files to provide
a continuous display on the show floor.

Because the network performance proved to be less
than expected, the data transfer portion was scaled



988 W. Allcock et al. / Future Generation Computer Systems 19 (2003) 983–997

down to include only one node at StarLight and Rem-
brandt, the demonstration machine, was allowed to
download the files directly onto the local disk. The
analysis application was not altered. Despite the lower
data transfer rates, the analysis still proceeded at a
slower rate.

This result indicates that more CPUs are needed,
even for the simplistic analysis done in this case.
Specifically, better resource utilization planning is
needed in order to minimize the sum total of the
analysis and data transfer times. The file size of the
transferred data is in general at least two to three
orders of magnitude less than the original datasets,
virtually eliminating the constraint of transferring re-
sults to their final destination for archiving or further
processing.

4.2. GridFTP

GridFTP[16], part of the Globus ToolkitTM [15], is
a data transport protocol that provides secure, efficient,
and robust data movement in Grid environments. The
GridFTP protocol extends the standard FTP protocol
and provides a superset of the features offered by the
various Grid storage systems currently in use. The
GridFTP protocol includes the following:

• Public-key-based Grid Security Infrastructure
(GSI) and Kerberos support (both accessible via
GSS-API).

• Third-party control of data transfer.
• Parallel data transfer (one host to one host, using

multiple TCP streams).
• Striped data transfer (m hosts ton hosts, possibly

using multiple TCP streams if also parallel).
• Manual setting of the TCP buffer size.
• Partial file transfer.
• Support for reliable and restartable data transfer.
• Integrated instrumentation, for monitoring ongoing

transfer performance.

Typical transfers on a single node are generally lim-
ited to less than 1 Gb because of NIC limitations on
commodity hardware today. To overcome this limi-
tation, we deployed a striped server, that is, a data
transport mechanism that transferred files many-host
to many-host. As noted in the fabric description, one
of the transfers was from the 20-node DataGrid cluster
at Argonne to a portable 8-node test cluster in Ams-

terdam. The file was block distributed across all nodes
by PVFS. Each node in the striped server read the
data local to its host and transmitted that across the
network. The receiving nodes then wrote the data to
PVFS, and it was again block distributed. The data did
not have to be local, since PVFS will do intra-cluster
transfers as necessary; but for optimization purposes,
we attempted to keep reads and writes local. This tech-
nique allows parallelism of CPUs, NICs, disks, and
possibly even networks. In our case, on the source
side, we had 40 processors, 20 NICs and 20 RAID
groups working in parallel. While we did not perform
scalability testing, the performance up to 20 nodes
was reasonable. The striped server is still a proto-
type and detailed scalability testing is planned before
release.

Normal operation for the FTP protocol closes the
data connections after each transfer is complete. This
is sub-optimal when multiple transfers between the
same two locations are taking place, particularly if
they are small files. GridFTP offers the option of “data
channel caching”, which holds the connection open
for use by subsequent transfers. For this application, a
custom service was written that took requests for file
transfers and kept the data channel connections open
until the next transfer arrived. If it was the same source,
destination, and security credentials, the cached chan-
nels were utilized.

4.3. geeViz

The GridFTP servers provide performance markers
that can be enabled by using a client-side plug-in. Dur-
ing our data transfers we used an additional plug-in to
log these performance markers to a specialized log-
ging daemon. To visualize these data transfers, we
used geeViz, a tool that integrates application-specific
performance data with network routing and connec-
tivity data to create interactive, quasi-real-time visual-
izations of Grid applications that communicate among
other data, the geographical location of application
components, the resources that they use, and the na-
ture of the interactions among these components and
resources. An interface to the logging daemon allows
geeViz to be notified when events of interest are be-
ing logged. geeViz can then subscribe to particular
streams of events, like the performance markers asso-
ciated with our GridFTP transfers.



W. Allcock et al. / Future Generation Computer Systems 19 (2003) 983–997 989

Fig. 3. Screenshot from the geeViz application.

When geeViz receives the first transfer event for a
stream, it plots the endpoints of the transfer on a map,
adds a link between the two sites, and stores the statis-
tics for the transfer (total number of bytes transferred
so far, current bandwidth, and average bandwidth). For
subsequent events for that transfer, it locates the ap-
propriate sites and link and updates their values. In
addition to showing the direct link between source and
destination, geeViz allows the user to run a traceroute
between the two sites, in order to show the path that
data actually takes.Fig. 3shows our GridFTP transfers
from the DataGrid cluster at Argonne to the dusty clus-
ter in Amsterdam. The spheres on the links each repre-
sentN MB of data and move along the links in the di-
rection of the data flow at a speed relative to the latency
on the link, as reported by the traceroute. New spheres
are added to the links based on the current bandwidth.

5. Initial results and troubleshooting

In this section we present the initial results obtained
during our striped GridFTP transfer. Because these re-
sults were significantly lower than expected, we began
trying to determine the root cause of this poor per-
formance. This work occurred in several stages. First,

we did basic “sanity checks” to ensure this was not
a configuration or software problem and to localize
which components required further scrutiny. We ana-
lyzed tcpdump[31] output using tcptrace[32]. From
this analysis, we discovered that we were actually fac-
ing three interrelated problems: hardware problems
on dusty, an unexpected congestion event resulting
from the Linux TCP implementation, and the much
more fundamental problem of the TCP additive in-
crease/multiplicative decrease (AIMD) algorithm. De-
tails of these investigations are provided below.

5.1. Initial striped GridFTP transfer results

As discussed above, a transfer was initiated to move
the dataset from Chicago to be analyzed locally in Am-
sterdam, via a striped GridFTP server. Our previous
testing had indicated that we could achieve 400 Mbs
per node. Thus, with 20 nodes participating, we were
projecting 8 Gbs performance. Early in our testing on
the Amsterdam link, however, we realized that we
were not able to achieve anywhere near this level of
performance. The results from the striped server were
somewhat erratic, but hovered around 1 Gb aggregate
bandwidth, with 20 nodes and as many as 64 streams
per node.



990 W. Allcock et al. / Future Generation Computer Systems 19 (2003) 983–997

5.2. Problem localization

First, we wanted to determine whether GridFTP
was the problem. To this end, we used a network test-
ing tool called iperf[22]. Results from iperf were on
par with the GridFTP network transfer rates, indicat-
ing that GridFTP was not the problem. At this point,
we decided to reduce the problem size and focus on
single-node, single-stream iperf results as our metric
for problem status.

Next, we began basic checks of the network to ver-
ify that the Linux ip-sysctl settings were as expected.
TCP buffer sizes were checked and were at the desired
12 MB. Selective acknowledgement (SACK) and win-
dow scaling were both enabled. We flushed the routing
cache before each transfer to ensure that congestion
events from previous transfers were not impacting our
results. We also consulted with others at the show and
determined that applications running over TCP were
all experiencing similar problems but that UDP-based
applications were not.

At this point, the problem appeared to be directly
related to TCP, so we began to analyze the output

Fig. 4. Graphical output for tcptrace from the datagrid cluster to dusty.

from the TCP monitoring tool, tcpdump. Typical out-
put from the TCPtrace tool is shown inFigs. 4 and 5.
These figures shows that both sides were advertising
advanced window scaling, the receiver was advertising
a large window scale (10), SACKs were being sent,
and there were no lost packets, no retransmissions,
and minimal packet reordering, but the sender could
not fill the advertised window. Multiple runs were an-
alyzed to and from a combination of hosts, and this
behavior was consistent.

We were left with the question of what was limit-
ing the sender. One possibility was that the machines
were more heavily CPU loaded that we thought. How-
ever, a check of the CPU load showed it to be less than
1%, indicating that the machines were mostly idle and
waiting for the network. At this point, we were con-
vinced that the problem lay in the sender-side TCP
operation, and we focused our efforts there.

5.3. Sender-side TCP operation

Our demo called for the cluster named dusty to be
the receiver in Amsterdam. During our investigations,



W. Allcock et al. / Future Generation Computer Systems 19 (2003) 983–997 991

Fig. 5. Textual output for tcptrace from the datagrid cluster to dusty.

another pair of machines (tweedledum in Chicago and
madhatter in Amsterdam), utilizing the same network
link were used to determine whether the problem was
with the end system or the network path. Almost im-
mediately, we began to see that both machines were

performing badly, but dusty was much worse than
madhatter. Since madhatter was getting better and
more stable performance, we proceeded with perfor-
mance improvement testing there, while we tried to
understand the operational problems with dusty.



992 W. Allcock et al. / Future Generation Computer Systems 19 (2003) 983–997

Since the transfer was behaving as though the net-
work was congested, although there were no dropped
packets or retransmissions, we tried three approaches
to determine the behavior of the system. First, we
began a fundamental review of TCP behavior[30].
Second, we installed Web100 kernel patches, as well
as the Net100 WAD and tracer daemons to uncover
TCP stack performance limitations. Third, we tried to
isolate the cause of performance differences between
madhatter and dusty.

5.3.1. Round trip time variance (RTTVAR)
Using the Web100 tools, we determined that the pri-

mary difference between madhatter and dusty was in
the round trip time variance (RTTVAR); seeFigs. 6
and 7. While RTTs on madhatter hovered consistently
around 98 ms, with occasional small variations, on
dusty RTTs varied wildly, varying between 98 and
>300 ms. This erratic behavior is detrimental because a
high RTTVAR will slow the opening of the sender con-
gestion window (CWND) during congestion avoid-
ance and can, though it did not in our case, cause un-
necessary retransmission.

Initially, drivers and/or network cards were sus-
pected. By swapping drivers and multiple vendors
cards between the machines, however, we were able
to isolate the problem to the Compaq servers. They
exhibited this behavior with all cards, and those same
cards behaved normally in madhatter. So, we removed
dusty from the testing and focused on madhatter. We
are in contact with Compaq but have not yet discov-
ered the root cause of this problem.

Fig. 6. Round Trip Time Variance (RTTVAR) for transfers to dusty.

Fig. 7. Round Trip Time Variance (RTTVAR) for transfers to
madhatter.

5.3.2. Linux implementation issue
While madhatter did not demonstrate the same high

RTTVAR with dusty, it did share an apparent anomaly
with dusty that was also detrimental to performance. It
appeared to be going from slow start into congestion
avoidance prematurely. Further investigation revealed
that the Linux kernel considers filling the network card
interface queue (IFQ) to be a congestion event, and
this causes the transfer to enter congestion avoidance.
This behavior is referred to as a send-stall. While it
is true that network congestion would cause this to
happen, in our case that was not the cause. Hence,
this behavior was overly aggressive and detrimental to
performance.

5.3.3. TCP additive increase/multiplicative decrease
(AIMD) algorithm

The issues discussed above exacerbated a much
more fundamental problem: the additive increase/
multiplicative decrease (AIMD) behavior of TCP.
Multiple references[12,30] address AIMD behavior
in the face of a high-bandwidth, high-latency network,
or “long fat networks” (LFNs). Nevertheless, the
magnitude of the impact on real-world applications
was surprising.

In simplified terms, under congestion, AIMD cuts
the current CWND in half and allows it to grow only
in a linear fashion equal to one maximum transmission
unit (MTU) per round trip time (RTT). While this
behavior was adequate for buffer sizes in kilobytes, the
large buffers required to fully utilize LFNs means that



W. Allcock et al. / Future Generation Computer Systems 19 (2003) 983–997 993

Fig. 8. Idealized TCP send window with a single congestion event at 500 ms.

a single congestion event is devastating. In our case,
for 1 Gbs with 100 ms latency, the bandwidth-delay
product was 12.5 MB.

Floyd [13] states that to fully utilize a 10 Gbs link
with 100 ms latency, the transfer can only tolerate one
dropped packet every 1 2/3 hours.Fig. 8 shows a
much-simplified graph of how the CWND might grow
after a single congestion event. If the congestion event
happens shortly after the transfer begins, as in our
case due to the Linux IFQ congestion event, it would
take on the order of 15 min to achieve peak band-
width.

Increases in RTT are particularly damaging because
RTT impacts two aspects. First, doubling the RTT
doubles the value of the bandwidth delay product and
thus proportionately double the size of the recovery
that must be made in the face of a congestion event.
Second, recovery is at the rate of one MTU per RTT;
therefore, it takes twice as long to recover. In equation

form, it can be presented as follows:

recovery time= bytes to recover

rate of recovery
,

bytes to recover∝ RTT × BW

⇒ bandwidth delay product,

rate of recovery∝ MTU

RTT

Substituting:

recovery time∝ RTT × BW

MTU/RTT
⇒ RTT2 × BW

MTU

This indicates that doubling the RTT would increase
the recovery time by a factor of 4. Also, larger MTUs
have a positive effect, but it is linear; doubling the
MTU will halve the recovery time.



994 W. Allcock et al. / Future Generation Computer Systems 19 (2003) 983–997

5.3.4. The work around daemon (WAD)
To further investigate and confirm this behavior,

we obtained access to the Net100 WAD. This daemon
allows various parameters within the TCP stack to
be altered dynamically. The daemon configuration
permits specification of tuning parameters per flow
(source, source port, destination, destination port).
The configuration entries we used for our analysis
included the additive increase factor, multiplicative
decrease factor and slow start threshold.

Using the WAD allowed us to improve recovery
after a loss or other congestion event, and hence,
throughput, by altering TCP’s multiplicative decrease.
Normally, TCP reduces CWND by 0.5 after a loss and
increases CWND by 1 segment per round trip time.
With WAD, we adjusted the multiplicative decrease
to 0.0125 and the additive increase to be 4. Our re-
sults show significant improvements are achievable.
The Net100 kernel extensions allowed us to specify
a threshold to switch to Floyd’s limited slow-start
algorithm [14]. Floyd recommends maxssthresh to
be set to 100, we chose a more aggressive setting
of 200.

Using the WAD, one also has the capability to mon-
itor any Web100 variable for any flow, via the tracer
daemon. During these experiments the Net100 tracer
daemon was used to poll the kernel every 0.1 s and
log Web100 variables to disk. Results showing iperf
performance with standard TCP settings for AIMD
and with the more aggressive setting listed above, are
shown inFigs. 9 and 10.

Fig. 9. Iperf performance achieved with standard TCP.

Fig. 10. Iperf performance achieved with Work Around Daemon.

6. Conclusions and future work

TCP has served the Internet community well for
many years. However, it was not designed for bulk
data transport at the speeds available today. This fact
has been widely discussed in the literature[12,13,30]
and multiple attempts have been made to ameliorate
this issue[3,7,13,14,18,20,21]. This demonstration
was real-world proof of this over a high-bandwidth
(10 GigE), high-latency (98 ms) link. We had no net-
work congestion events of any kind, but were still
unable to utilize the bandwidth due to the AIMD
algorithm of TCP. We were, however, able to show
that by making the AIMD algorithm more aggressive
higher bandwidth could be achieved. No experiments
have yet been run to determine the impact on fair
sharing with this more aggressive AIMD, we are un-
clear the impact it would have on general Internet use.
Web100+ WAD provide a transparent mechanisms
to expose variables critical to the operation of TCP
and for working around network tuning issues. While
the development of these tools aims to eliminate the
“wizard gap” [36], understanding and effectively us-
ing WAD to overcome TCP performance issues still
requires an intimate understanding of TCP dynamics.

For this specific experiment, the following items
need to be addressed:

• optimization of TCP AIMD parameter impact on
network fair sharing;

• effects of jumbo frames in this environment;



W. Allcock et al. / Future Generation Computer Systems 19 (2003) 983–997 995

• tuning of the interface queue and other contributors
to SendStalls.

In the longer term, an alternative to today’s TCP al-
gorithm is needed if we are to gain full advantage from
the high-speed optical networks being put in place.
Many people are working in this area. They are gen-
erally following one of two basic approaches. Sally
Floyd and others are trying to use the “evolutionary”
approach and make limited changes to the TCP pro-
tocol [3,7,13,14,18,20,21]. The other camp is taking
the “revolutionary” approach and investigating com-
pletely different transport protocols such as R-UDP
[6], RBUDP[26], Tsunami[33] and other similar re-
liable UDP-based transports.

Acknowledgements

Our thanks go out to all the support people who put
forth extraordinary efforts to make this 10 GigE link
happen, give us access to additional test hardware on
the fly, and reconfigured things for us on a moments
notice. We would particularly like to thank Charles
Bacon for getting on a plane to Amsterdam on 2 h
notice when dusty was damaged in shipment.

This work was supported in part by the Mathemati-
cal Information and Computational Sciences Division
Subprogram of the Office of Advanced Scientific
Computing Research, US Department of Energy, un-
der contract W-31-109-Eng-38, also by DOE Grants
DE-FG03-92-ER40701 and DE-FC03-99ER25410
and by NSF Grants 8002-48195, PHY-0122557 and
ACI-96-19020.

References

[1] W. Allcock, J. Bester, J. Bresnahan, A. Chervenak, I. Foster,
C. Kesselman, S. Meder, V. Nefedova, D. Quesnel, S.
Tuecke, Data Management and Transfer in High Performance
Computational Grid Environments, Parallel Comput. 28 (5)
(2002) 749–771.

[2] W. Allcock, J. Bester, J. Bresnahan, I. Foster, J. Gawor,
J.A. Insley, J.M. Link, M.E. Papka, GridMapper: a tool for
visualizing the behavior of large-scale distributed systems,
in: Proceedings of the 11th IEEE International Symposium
on High Performance Distributed Computing (HPDC-11),
Edinburgh, Scotland, 16–24 July 2002, pp. 179–187.

[3] M. Allman, V. Paxson, W. Stevens, TCP Congestion Control,
April 1999 (Request for Comments 2581).

[4] The ATLAS Technical Proposal, CERN/LHCC 94-43 (1994)
and CERN LHCC-P2. http://atlasinfo.cern.ch/ATLAS/TP/
NEW/HTML/tp9new/tp9.html. Also see the ALICE
experiment at http://www.cern.ch/ALICE and the LHCb
experiment athttp://lhcb-public.web.cern.ch/lhcb-public/.

[5] The BaBar Experiment at SLAC.http://www-public.slac.
stanford.edu/babar/.

[6] T. Bova, T. Krivoruchka, Reliable UDP Protocol—Internet
Draft, February 1999. draft-ietf-sigtran-reliable-udp-00.txt.

[7] L.S. Brakmo, L.L. Peterson, TCP Vegas: End to End
Congestion Avoidance on a Global Internet, IEEE J. Selected
Areas Commun. 13 (8) (1995).

[8] P.H. Carns, W.B. Ligon III, R.B. Ross, R. Thakur, PVFS:
a parallel file system for Linux clusters, in: Proceedings of
the Fourth Annual Linux Showcase and Conference, Atlanta,
GA, October 2000, pp. 317–327.

[9] The CDF Experiment at Fermilab.http://www-cdf.fnal.gov/.
[10] The Compact Muon Solenoid Technical Proposal,

CERN/LHCC 94-38 (1994) and CERN LHCC-P1.http://
cmsdoc.cern.ch/.

[11] The D0 Experiment at Fermilab.http://www-d0.fnal.gov/.
[12] W. Feng, P. Tinnakornsrisuphap, The failure of TCP

in high-performance computational grids, Supercomputing
(2000).

[13] S. Floyd, High Speed TCP for Large Congestion Windows,
Internet draft draft-floyd-tcp-highspeed-01.txt, work in
progress, August 2002.

[14] S. Floyd, Limited Slow-Start for TCP with Large Congestion
Windows, Internet draft draft-floyd-tcp-slowstart-01.txt, work
in progress, August 2002.

[15] Globus Project.http://www.globus.org/.
[16] Globus Project, GridFTP—Universal Data Transfer for the

Grid, White Paper, 5 September 2000.
[17] http://www.igrid2002.org/.
[18] V. Jacobson, R. Braden, D. Borman, TCP Extensions for High

Performance, May 1992 (Request for Comments 1323).
[19] http://www.cern.ch/LHC.
[20] M. Mathis, J. Mahdavi, S. Floyd, A. Romanow, TCP

Selective Acknowledgment Options, October 1996 (Request
for Comments 2018).

[21] M. Mathis, J. Mahdavi, Forward Acknowledgement: Refining
TCP Congestion Control, SIGCOMM, August 1996.

[22] Iperf Tool. http://dast.nlanr.net/Projects/Iperf/.
[23] I-Wire Project.http://www.i-wire.org/.
[24] Net100 Project.http://www.net100.org/.
[25] PVFS Project.http://parlweb.parl.clemson.edu/pvfs/.
[26] RBUDP. http://www.evl.uic.edu/paper/pdf/cluster2002.pdf.
[27] The Relativistic Heavy Ion Collider at BNL.http://www.

bnl.gov/RHIC/.
[28] The ROOT System.http://root.cern.ch/.
[29] StarLight Project.http://www.startap.net/starlight/.
[30] W.R. Stevens, TCP/IP Illustrated, vol. 1, The Protocols,

Addison-Wesley, Reading, MA, 1994.
[31] Tcpdump Tool.http://www.tcpdump.org/.
[32] Tcptrace Tool. http://irg.cs.ohiou.edu/software/tcptrace/

tcptrace.html.

http://atlasinfo.cern.ch/ATLAS/TP/NEW/HTML/tp9new/tp9.html
http://atlasinfo.cern.ch/ATLAS/TP/NEW/HTML/tp9new/tp9.html
http://www.cern.ch/ALICE
http://lhcb-public.web.cern.ch/lhcb-public/
http://www-public.slac.stanford.edu/babar/
http://www-public.slac.stanford.edu/babar/
http://www-cdf.fnal.gov/
http://cmsdoc.cern.ch/
http://cmsdoc.cern.ch/
http://www-d0.fnal.gov/
http://www.globus.org/
http://www.igrid2002.org/
http://www.cern.ch/LHC
http://dast.nlanr.net/Projects/Iperf/
http://www.i-wire.org/
http://www.net100.org/
http://parlweb.parl.clemson.edu/pvfs/
http://www.evl.uic.edu/paper/pdf/cluster2002.pdf
http://www.bnl.gov/RHIC/
http://www.bnl.gov/RHIC/
http://root.cern.ch/
http://www.startap.net/starlight/
http://www.tcpdump.org/
http://irg.cs.ohiou.edu/software/tcptrace/tcptrace.html
http://irg.cs.ohiou.edu/software/tcptrace/tcptrace.html


996 W. Allcock et al. / Future Generation Computer Systems 19 (2003) 983–997

[33] Tsunami—a hybrid TCP/UDP based file transfer
protocol. http://www.ncne.nlanr.net/training/techs/2002/0728/
presentations/pptfiles/200207-wallace1.ppt.

[34] WAD. http://www.csm.ornl.gov/∼dunigan/net100/wad.html.
[35] Web100 Project.http://www.web100.org/.
[36] http://ncne.nlanr.net/training/techs/1999/991205/Talks/

mathis991205PushingUp Performance/sld003.htm.

W. Allcock is the technology coordina-
tor for GridFTP and is a member of the
Globus Project. He has a Bachelor of Sci-
ence degree in Computer Science, with an
emphasis in Electronics and Instrumenta-
tion from the University of Wisconsin—
Oshkosh, and a Master of Science in Pa-
per Science from the Institute of Paper
Science and Technology. His research in-
terests center around DataGrid technology
and particularly high-speed network trans-
port.

J. Bresnahan received his BS in Com-
puter Science from Northern Illinois Uni-
versity in 1997 and his MS in Computer
Science from Northern Illinois University
in 1998. He is a senior scientific pro-
grammer with the Mathematics and Com-
puter Science Division at Argonne Na-
tional Laboratory, where he is currently
working with the Globus Project as a
member of the GridFTP team, designing
and implementing data transfer protocols
for the Grid.

J. Bunn is a Senior Scientist at the Cen-
ter for Advanced Computing Research
at the California Institute of Technology
in Pasadena, USA. He gained his BSc
(Hons) in Physics from the University
of Manchester in 1980, and his PhD in
Experimental Particle Physics from the
University of Sheffield in 1983. His re-
search interests include high-performance
network and computing systems and Grid

architectures that will address the data analysis challenges posed
by the Large Hadron Collider experiments at CERN.

S. Hegde is currently doing Masters in
Computer Science at Illinois Institute of
Technology, Chicago and is a Research
Aide at Argonne National Lab. He re-
ceived Bachelor’s degree from Banga-
lore University, India. His previous work
experience was as Software Engineer at
The John F. Welch Technology Centre
(integral part of GE Global Research)
and ANZ Information Technology, for 3

years. Research interests includes distributed computing, fault and
performance management in high-performance networks. Currently
working with Network Aware GridFTP and Linux Kernel Instru-
mentation.

J. Insley received his BFA in electronic
media from Northern Illinois University
in 1991, his MFA in electronic visual-
ization from the University of Illinois at
Chicago in 1997, and his MS in computer
science from the University of Illinois at
Chicago in 2002. He has been a scien-
tific programmer with the Mathematics
and Computer Science Division at Ar-
gonne National Laboratory and developer

for the Globus Project since 1997. His research interests include
distributed computing, and distributed and scientific visualization.

R. Kettimuthu is a graduate student
in the Department of Computer and In-
formation at the Ohio State University.
His research interests include Grid Com-
puting, High-Performance Networking,
Scheduling and Resource Management in
Parallel and Distributed Systems. He is
currently working on developing efficient
techniques for Parallel Job Scheduling.
As a student intern at Argonne National

Laboratory, he has been working on tuning the transport protocols
to improve the performance of bulk data transfer in wide area net-
works. He received his Bachelor’s in Computer Science and Engi-
neering in 1999 from Anna University, India.http://www.cis.ohio-
state.edu/∼kettimut.

H. Newman (Sc. D, MIT 1974) is Pro-
fessor of Physics at the California Insti-
tute of Technology, and a Caltech fac-
ulty member since 1982. He co-led the
MARK J Collaboration that discovered
the gluon, the carrier of the strong force,
at the DESY laboratory in Hamburg in
1979. He has had a leading role in the de-
velopment, operation and management of
international networks and collaborative

systems serving the High Energy and Nuclear Physics communities
since 1982, and served on the Technical Advisory Group for the
NSFNet in 1986. He originated the Data Grid Hierarchy concept
and the globally distributed Computing Model adopted by the four
LHC high-energy physics collaborations in 1998–2000. He is the
PI of the LHCNet project, linking the US and CERN in support of
the LHC physics program, a PI of the DOE-funded Particle Physics
Data Grid Project (PPDG) and a Co-PI of the NSF-funded Inter-
national Virtual Data Grid Laboratory. He co-founded and chairs
the Internet2 High Energy and Nuclear Physics Working Group, is
a member of the Internet2 Applications Strategy Council, and he

http://www.ncne.nlanr.net/training/techs/2002/0728/presentations/pptfiles/200207-wallace1.ppt
http://www.ncne.nlanr.net/training/techs/2002/0728/presentations/pptfiles/200207-wallace1.ppt
http://www.csm.ornl.gov/~dunigan/net100/wad.html
http://www.web100.org/
http://ncne.nlanr.net/training/techs/1999/991205/Talks/mathis_991205_Pushing_Up_Performance/sld003.htm
http://ncne.nlanr.net/training/techs/1999/991205/Talks/mathis_991205_Pushing_Up_Performance/sld003.htm
http://www.cis.ohio-state.edu/~kettimut
http://www.cis.ohio-state.edu/~kettimut


W. Allcock et al. / Future Generation Computer Systems 19 (2003) 983–997 997

chairs the Standing Committee on Inter-Regional Connectivity of
ICFA (the International Committee on Future Accelerators). He is
Chairman of the Board and Co-Founder of VRVS Global Corpo-
ration (2001), and has led the US part of the CMS Collaboration
(440 physicists at 40 US Institutions) as US CMS Collaboration
Board Chair since 1998.

S. Ravot is a Network Engineer at the
California Institute of Technology, Divi-
sion of Physics, Mathematics and As-
tronomy. He is currently based at CERN
(Geneva), where he is one of the engi-
neers responsible for the operation of the
CERN/US-HENP transatlantic network.
In the context of high-speed transatlantic
networks he has studied the behavior
of TCP over high-bandwidth/latency net-

works and he is involved in the DataTAG project. He holds a de-
gree in Communication Systems from the Swiss Federal Institute
of Technology (Lausanne).

T. Rimovsky is the Assistant Director—Network Engineering and
Research, at the National Center for Supercomputing Applications.
In this position, he is responsible for production, experimental and
research networking at NCSA. He serves on the MREN executive
committee and is on the technical teams for I-Wire TeraGrid
networking. He has been working in high-performance networking
since 1995.

C. Steenberg is a Software Engineer in
the High Energy Physics Department of
the California Institute of Technology,
where his research focuses on harnessing
the power of Grid and peer-to-peer tech-
nologies to empower the next generation
of data analysis and modeling tools. He
completed a MSc (1995) and PhD (1998)
in Physics at the Potchefstroom Univer-
sity in South Africa, on the topic of cos-

mic ray propagation in the solar system, and continued his re-
search at the Caltech Space Radiation Lab as part of the Voyager
program until 2000.

L. Winkler is Senior Network Engineer
at Argonne National Laboratory’s Math-
ematics and Computer Science Division.
She also serves as MREN Technical Di-
rector and is a member of the STAR-
TAP/StarLight engineering team. Her fo-
cus since 1995 has been in the area of
interconnectivity and interoperability of
wide-area research networks in support of
advanced scientific and engineering ap-

plications. She earned a BS in Computer Science from Purdue
University in 1980, and a MS in Management from Purdue Uni-
versity in 1983.


	Grid-enabled particle physics event analysis: experiences using a 10 Gb, high-latency network for a high-energy physics application
	Introduction
	Overview
	The fabric
	The network
	The DataGrid cluster
	The dusty cluster
	The Caltech cluster
	The wonderland clusters

	Software
	Root
	GridFTP
	geeViz

	Initial results and troubleshooting
	Initial striped GridFTP transfer results
	Problem localization
	Sender-side TCP operation
	Round trip time variance (RTTVAR)
	Linux implementation issue
	TCP additive increase/multiplicative decrease (AIMD) algorithm
	The work around daemon (WAD)


	Conclusions and future work
	Acknowledgements
	References


