Effective Selection of Partition Sizes for
Moldable Scheduling of Parallel Jobs*

Srividya Srinivasan, Vijay Subramani, Rajkumar Kettimuthu, Praveen
Holenarsipur, and P. Sadayappan

Ohio State University, Columbus, OH, USA

{srinivas ,subraman,kettimut,holenars, saday}@cis .ohio-state.edu

Abstract. Although the current practice in parallel job scheduling re-
quires jobs to specify a particular number of requested processors, most
parallel jobs are moldable, i.e. the required number of processors is flexi-
ble. This paper addresses the issue of effective selection of processor par-
tition size for moldable jobs. The proposed scheduling strategy is shown
to provide significant benefits over a rigid scheduling model and is also
considerably better than a previously proposed approach to moldable
job scheduling.

1 Introduction

The issue of effective scheduling of parallel jobs on space-shared parallel systems
has been the subject of several recent research studies [4], [12], [14], [21]. Most
of the research to date on this topic has focused on the scheduling of rigid jobs,
i.e. jobs for which the number of required processors is fixed. This matches the
practice at all supercomputer centers to our knowledge: users specify a specific
single value for the number of processors required by a job. However, most paral-
lel applications are moldable [10], i.e. they can be executed on different numbers
of processors. If the machine were empty, the fastest turnaround time for a par-
ticular job would be obtained by specifying as large a number of processors as
possible. But on a machine with heavy load, specifying fewer processors may ac-
tually provide a faster turnaround time than specifying the maximum number of
processors. Although a run with more processors is likely to take less time than
on fewer processors, the waiting time in the queue may be much longer. It would
be desirable to have an intelligent scheduler determine the number of processors
to allocate to different jobs, without forcing the user to specify a single specific
value.

Several studies have considered job scheduling for the case of malleable jobs,
where the number of processors for a job can be varied dynamically [1], [2],
[3], [15], [16], [17]. In this paper, we consider the scheduling under a moldable
job model. Recently Walfredo Cirne [5], [6], [7] evaluated the effectiveness of
moldable job scheduling. Using synthetic job traces, he showed improvement in
turnaround times of jobs under a moldable scheduling model, when compared

* Supported in part by a grant from Sandia National Laboratories.

to a standard conservative backfilling scheme [14], [22]. A greedy strategy was
employed at job submission time for selecting the processor partition size for
each job - among a set of possible choices identified for each job (using ran-
dom variables characterizing the job’s scalability), the one that gave the earliest
estimated completion time was chosen.

Using a subset of a one-year job trace from the Cornell Theory Center [9], we
evaluated the effectiveness of a greedy partition selection strategy for moldable
job scheduling. Instead of restricting the range of processor choices for each job
by use of statistical distributions (as done in Cirne’s experiments), we allowed
each job a range of choices from one processor to the total number of processors
in the system. We found the performance improvement provided by moldable
scheduling over standard non-moldable job scheduling to be considerably lower
than that reported by Cirne. The results of the experiments highlighted the im-
portance of careful selection of the processor partition size for each job. A greedy
selection strategy over a wide range of choices for partition size was problematic
- most jobs tended to choose very wide partitions, resulting in deterioration of
performance for small jobs.

Using the insights from the initial experiments, we develop a more effec-
tive strategy for selection of partition size for moldable job scheduling. We
show that the proposed scheme provides considerable overall improvement in
job turnaround time of large jobs, without significantly impeding small jobs.

This paper is organized as follows. In Section 2, we provide some background
information pertinent to this paper. Section 3 evaluates the previously proposed
greedy submit-time moldable scheduling approach. A new approach to selection
of processor partition size is presented and evaluated in Section 4. An enhance-
ment to this approach is proposed and evaluated in Section 5 and we provide
conclusions in Section 6.

2 Background and Workload Characterization

Scheduling of parallel jobs is usually viewed in terms of a 2D chart with time
along one axis and the number of processors along the other axis. Each job
can be thought of as a rectangle whose width is the user estimated run time
and height is the number of processors requested. The simplest way to schedule
jobs is to use the First-Come-First-Served (FCFS) policy. This approach suffers
from low system utilization. Backfilling [13], [14], [22] was proposed to improve
system utilization and has been implemented in several production schedulers
[11]. Backfilling works by identifying “holes” in the 2D chart and moving forward
smaller jobs that fit those holes. There are two common variants to backfilling -
conservative and aggressive (EASY)[14], [18]. In conservative backfill, every job
is given a reservation when it enters the system. A smaller job is moved forward
in the queue as long as it does not delay any previously queued job. In aggressive
backfilling, only the job at the head of the queue has a reservation. A small job
is allowed to leap forward as long as it does not delay the job at the head of the
queue.

A job is said to be moldable if it can run on multiple processor request sizes
[10]. If the user requests a large number of processors, the execution time of a
job may be lower, but it may have to wait for a long time in the queue before
all needed processors are available. If the user requests a smaller number of
processors, the wait time may be lower but the run time will be higher. There
is a need to balance these two factors since the job turnaround time, which is
of primary interest to the user is the sum of the job wait time and the job run
time. Since the scheduler has the snapshot of the current processor allocation, if
the task of deciding the job request size is left to the scheduler, the performance
could potentially be better than if the decision is made by the user at submit
time.

2.1 Workload Characterization

We use trace based simulation to evaluate the various schemes using the CTC
workload log from Feitelson’s archive [9]. Any analysis that is based on the
aggregate turnaround time of the system as a whole does not provide insights
in to the variability within different job categories. Therefore in our discussion
we classify the jobs in to various categories based on their weight (i.e processor
seconds needed) and analyze the average turnaround time for each category.
Since job logs from supercomputer centers only include a single specific number
for each job’s processor requirement, an important issue in evaluating moldable
scheduling approaches is that of job scalability. It is necessary to estimate each
job’s run-time for different possible processor partition sizes. The user estimated
execution time and the actual execution time for the original processor request
can be determined from the trace file. We use the Downey model [8] to generate
the execution times for new processor request sizes. We assume that the ratio
of the user estimated run time with the actual execution time remains the same
as the processor request size changes. Cirne [5], [6], [7] used Downey’s model of
job scalability, with statistical distributions for model parameters.

3 Submit-time Greedy Selection of Partition Size

We first evaluate the approach to moldable scheduling that has been previously
proposed [5]. In this scheme, every job is allowed a range of processor choices,
from one processor to the total number of processors in the system. Among these
partition sizes, the one that results in the best turnaround time for the job is
chosen. The decision of which choice of processor count to allocate is made at the
time of job submission - and hence once a choice is made, the job is made rigid
and is no longer moldable(Submit-time moldability). Under this scheme, many of
the jobs can be expected to choose very wide partition sizes, because of the local
greedy nature of the strategy. Consider the arrival of jobs one after the other.
For the first arriving job, the widest partition size will give the least turnaround
time and hence it chooses a partition size that is equal to the total number
of processors in the system. As a result, the next arriving job also chooses a

partition size equal to the total number of processors in the system (as it results
in the least turnaround time) and so on.

We first evaluated the submit-time greedy strategy under an assumption
of perfect scalability of all jobs (i.e. ¢ = 0 for the Downey model). Table 1
shows the resulting distribution of partition sizes for the jobs in the system.
We observe that a majority of the jobs tend to choose very wide partition sizes.
Fig. 1 shows the percentage change in the average turnaround time for the greedy
scheme with respect to the standard conservative backfilling scheme.The overall
average turnaround time improves in comparison to conservative backfilling.
This is because, under the greedy scheme, jobs choose wide partition sizes and
hence execute one after the other as opposed to choosing narrow partition sizes
and executing in parallel. But the average turnaround time for the small jobs
deteriorates to a large extent because these jobs find very few “holes” in the
schedule to backfill under the greedy scheme.

As o is increased (i.e. jobs are less scalable), the performance of the scheme
can be expected to deteriorate. This is because there is a resource usage penalty
for using wide partition sizes - the total number of processor-seconds needed for
a job increases as more processors are used. When job scalability is not perfect, a
load-sensitive partition size selection strategy is called for. If there is a single job
in the system, it might be appropriate for it to utilize all available processors.
However, when there are several queued jobs, wide partition choices for each
of the jobs is wasteful of resources; instead narrower choices would be more
efficient. Fig. 2 shows performance data for o = 1, and performance has indeed
deteriorated. Performance deteriorates further as o is increased, but we omit the
data for space reasons.

Table 1. Distribution of jobs based on partition sizes

Partition Size/Non-Moldable|Greedy Moldable

1 2223 1169

2 394 174
3-4 655 212
5-8 494 55
9-16 617 0
17-32 327 0
33-64 172 51
65-128 72 36
129-256 34 70

>256 12 3233

4 Load-sensitive Selection of Partition Size

The greedy scheme is not preferable because most of the jobs choose wide parti-
tion sizes and as a result, the turnaround times of the small jobs deteriorates to

Greedy Submit-time Moldable vs Non-Moldable
(Sigma=0)

o0] HHHD

T gt te

% change
Turnaround time

I\ P & & o & g »
R PP SIS ,gv{lv\/,ﬁb\:&i-@@
CON A
Job Categories

Fig.1. Category-wise comparison of the performance of the greedy submit-time mold-
able scheme vs non-moldable scheduling with conservative backfilling. Although the greedy
scheme improves the overall turnaround time, it degrades the average turnaround time of
the small jobs to a large extent

Greedy Submit-time Moldable vs Non-Moldable
(Sigma=1)
g
5 1000
5 800 -
gw 600 -
= £ 400 - O Greedy
o= 200 |_|
g 0 S
<
S -200
L
S S S aF o & gb ot o &
2SS W ¢
© % & P Q)gl— 7
Job Categories

Fig. 2. Performance of the greedy scheme vs non-moldable conservative backfilling. As o
is increased the performance of the greedy scheme further deteriorates

a large extent. Thus no job should be allowed to use up all the processors in the
system. Hence we impose a limit of 90% on the maximum number of processors
that can be allocated to a single job. This means that no job will be allowed
to expand to more than 90% of the total number of processors in the system.
Using such a limit alone is not sufficient - although it would improve backfill-
ing opportunities for the small jobs, it would be indiscriminate in allocating the
available set of processors to jobs and hence could result in most of the jobs
expanding to occupy 90% of the processors in the system. Instead, it is desirable
that the available set of processors be allocated to the waiting jobs based on load
considerations. For example, consider the case where there are four jobs with rel-
ative resource requirements of one, four, eight, and twelve. Clearly it would be
beneficial to allocate more processors to the heaviest job (i.e. the one with the
largest resource requirement) and fewer processors to the lightest job. However,
it would not be desirable to allocate most or all processors to the heaviest job
and have the others wait. On the other hand, when there is only a single heavy
job in the system, we should allow it a wider partition limit. A suitable strategy
might be to determine a “fair-share” processor-count for each job, based on the
fractional resource requirement of this job compared to the total requirements
of all pending jobs. Thus the maximum allowable partition size (called the fair
share limit) should be different for different jobs and it should depend upon what
fraction of the total weight of the jobs currently in the system (both idle and
running) a job constitutes. The fair share limit for a job is defined as follows :

Fair Share Limit of a Job = (Total Processors in the System) * Weight of
the Job/Sum of the Weights of all Jobs Currently in the System.

Since the above limit may be overly restrictive, a stretch factor of 2 was
used. i.e the maximum allowable processor limit for a job was set to twice its
fair share limit. Thus for each job, a range of choices for partition sizes, from one
to twice its fair share limit is tested and the one which gives the best expected
turnaround time is chosen.

Fig. 3 shows the percentage change in the average turnaround time for the
greedy and the fair share scheme with respect to non-moldable conservative back-
fill scheduling. We observe that the fair share scheme results in a 50% decrease in
the overall average turnaround time compared to conservative backfilling. Most
of the job categories improve significantly, with only a slight deterioration for
the small jobs. Comparing the greedy scheme with the fair share scheme, the fair
share scheme improves the overall average turnaround time and the turnaround
time for all the jobs except the very large jobs (whose weight is greater than
128,000 seconds). Fig. 4 shows performance data for o=1. The relative improve-
ments achieved by the proposed scheme compared to the greedy scheme increases
with increasing o.

5 Schedule-time Moldability and Aggressive Backfilling

In this section, we attempt to enhance performance by modifying the scheduling
strategy in two ways:

Fair Share Scheme - Submit Time - Conservative

(Sigma=0)
o 400
" £ 300
gg 200 - O Greedy
5 % 100 - B Submit Time - Conservative
X E 0+
£ -100
S S N gh g ob o g g o oF &
APl S DS NE G R
9 O ,-b’], &l— 7 (@)

Job Categorieé’

Fig. 3. Performance of the load-sensitive submit-time moldable conservative backfilling
scheme. There is a 50% decrease in the overall average turnaround time compared to
conservative backfilling. Compared to the greedy scheme the average turnaround time of
all categories except the very large jobs improves

Fair Share Scheme - Submit Time - Conservative (Sigma=1)

1000

800 -

600 -

@ Greedy
m Submit Time - Conservative

400 -

200 +

0 -—vJ:LW
200 §® s b s g o e e g S
& . , G 7 ” ! s
A M O o
N AV K

% change : Turnaround
time

Job Categories

Fig.4. Performance of the load-sensitive submit-time moldable conservative backfilling
scheme. The relative improvement achieved by this scheme compared to the greedy scheme
increases with increasing o

— Instead of freezing the partition size choice for each job at job submission
time, defer it till actual job start time (Schedule-time moldability).
— Instead of using conservative backfilling, use aggressive backfilling

There is a fundamental trade-off between conservative and aggressive back-
filling. Conservative backfilling provides reservations to all jobs at submission
time, while aggressive backfilling has only one reservation at any time. Thus the
aggressive scheme has much more backfilling. However, job categories that have
difficulty backfilling (such as very wide jobs) suffer from the lack of reservations.
Overall, whether conservative or aggressive backfill is better, depends on the mix
of the jobs since some some jobs (Short Wide) consistently do better with con-
servative backfill while others (Long Narrow) do better with aggressive backfill
[19], [20].

However, when we consider a moldable job scheduling model, the disadvan-
tage of aggressive backfilling disappears! This is because, there are no longer jobs
that are forced to be “short and wide” - they can mold themselves to be “long
and narrow” instead if that gets them quicker completion. This prompts the
development of a schedule-time-moldable aggressive backfilling strategy, that we
evaluate next.

Fair Share Scheme - Schedule Time - Aggressive (Sigma=0)

O Submit Time - Conservative
W Schedule Time - Aggressive

% change : Turnaround
time

Job Categories

Fig.5. Performance of the load-sensitive schedule-time-moldable aggressive backfilling
scheme. This scheme clearly outperforms standard conservative backfilling and submit-
time-moldable conservative backfilling

Fig. 5 shows the performance of the fair share scheme using aggressive backfill
and schedule time moldability. We observe that this scheme clearly outperforms
both the non-moldable conservative backfilling scheme and the fair-share scheme
using conservative backfill and submit time moldability. The overall average
turnaround time improves by almost 70% compared to conservative backfilling.
Also, the turnaround times of all job categories improve under the fair share
based schedule time moldable aggressive backfilling strategy compared to the
other two schemes. Fig. 6 shows performance for c=1. The performance of the
moldable schemes deteriorates compared to =0 because the runtime for a job

Fair Share - Schedule Time - Aggressive (Sigma=1)

@ Submit Time - Consenvative

W Schedule Time - Aggressive

% change : Turnaround
time

- S & N
N W
- L I\ (K2 (1.2 (2 NN S\
PSS SN R Al
S S

Job Categories

Fig. 6. Performance of the load-sensitive schedule-time-moldable aggressive backfilling
scheme when jobs are less scalable

on a wider partition is higher with o=1 than with 0=0. However the performance
is still considerably better than the non-moldable case and the greedy scheme
for moldable scheduling.

6 Conclusion

In this paper we addressed the issue of effective selection of processor partition
size for moldable jobs. The proposed scheduling strategies were shown to provide
significant benefits over a rigid scheduling model and were also considerably
better than a previously proposed approach to moldable job scheduling.

References

1. S. V. Anastasiadis and K. C. Sevcik. Parallel Application Scheduling on Networks
of Workstations. Journal of Parallel and Distributed Computing, 43(2):109-124,
1997.

2. O. Arndt, B. Freisleben, T. Kielmann, and F. Thilo. A Comparative Study of
Online Scheduling Algorithms for Networks of Workstations. Cluster Computing,
3(2):95-112, 2000.

3. S. H. Chiang, R. K. Mansharamani, and M. K. Vernon. Use of Application
Characteristics and Limited Preemption for Run-to-Completion Parallel Processor
Scheduling Policies. In SIGMETRICS, pages 33—44, 1994.

4. S. H. Chiang and M. K. Vernon. Production Job Scheduling for Parallel Shared
Memory Systems. In Proceedings of the International Parallel and Distributed
Processing Symp, 2001.

5. W. Cirne. Using Moldability to Improve the Performance of Supercomputer Jobs.
Ph.D. Thesis. Computer Science and Engineering, University of California San
Diego, 2001.

6. W. Cirne. When the Herd is Smart: The Emergent Behavior of SA. In IEEE
Trans. Par. Distr. Systems, 2002.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

W. Cirne and F. Berman. Adaptive Selection of Partition Size for Supercomputer
Requests. In Workshop on Job Scheduling Strategies for Parallel Processing, pages
187-208, 2000.

A. B. Downey. A Model For Speedup of Parallel Programs. Technical Report
CSD-97-933. University of California at Berkeley, 1997.

D. G. Feitelson. Logs of real parallel workloads from production systems. http://
www.cs.huji.ac.il/labs/parallel /workload /logs.htm]l.

D. G. Feitelson, L. Rudolph, U. Schwiegelshohn, K. C. Sevcik, and P. Wong. Theory
and Practice in Parallel Job Scheduling. In Workshop on Job Scheduling Strategies
for Parallel Processing , pages 1-34.

D. Jackson, Q. Snell, and M. J. Clement. Core Algorithms of the Maui Scheduler.
In Wkshp. on Job Sched. Strategies for Parallel Processing, pages 87-102, 2001.
P. J. Keleher, D. Zotkin, and D. Perkovic. Attacking the Bottlenecks of Backfilling
Schedulers. Cluster Computing, 3(4):245-254, 2000.

D. Lifka. The ANL/IBM SP Scheduling System. In Workshop on Job Scheduling
Strategies for Parallel Processing, pages 295-303, 1995.

A. W. Mu’alem and D. G. Feitelson. Utilization, Predictability, Workloads, and
User Runtime Estimates in Scheduling the IBM SP2 with Backfilling. In IEEE
Trans. Par. Distr. Systems, volume 12, pages 529-543, 2001.

E. Rosti, E. Smirni, L. W. Dowdy, G. Serazzi, and B. M. Carlson. Robust Partition-
ing Policies of Multiprocessor Systems. Performance Evaluation, 19(2-3):141-165,
1994.

S. Setia and S. Tripathi. A Comparative Analysis of Static Processor Partitioning
Policies for Parallel Computers. In Proc. of the Intl. Wkshp. on Modeling and
Simulation of Computer and Telecomm. Syst. (MASCOTS), pages 283-286, 1993.
K. C. Sevcik. Application Scheduling and Processor Allocation in Multipro-
grammed Parallel Processing Systems. Performance Evaluation, 19(2-3):107-140,
1994.

J. Skovira, W. Chan, H. Zhou, and D. Lifka. The EASY - LoadLeveler API Project.
In Wkshp. on Job Sched. Strategies for Parallel Processing, pages 41-47, 1996.

S. Srinivasan, R. Kettimuthu, V. Subramani, and P. Sadayappan. Characterization
of Backfilling Strategies for Parallel Job Scheduling. In Proceedings of the ICPP-
2002 Workshops, pages 514-519, 2002.

S. Srinivasan, R. Kettimuthu, V. Subramani, and P. Sadayappan. Selective Reser-
vation Strategies for Backfill Job Scheduling. In Proceedings of the 8th Workshop
on Job Scheduling Strategies for Parallel Processing, 2002.

A. Streit. On Job Scheduling for HPC-Clusters and the dynP Scheduler. In Proc.
Intl. Conf. High Perf. Comp., pages 5867, 2001.

D. Talby and D. Feitelson. Supporting Priorities and Improving Utilization of
the IBM SP Scheduler Using Slack-Based Backfilling. In Proceedings of the 13th
International Parallel Processing Symposium, 1999.

