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Abstract—Data generated by experimental, simulation, and
observational science is growing exponentially. The resulting
datasets are often transported over wide-area networks for
storage, analysis, or visualization. Network bandwidth, which is
not increasing at the same rate as dataset sizes, is becoming a
key obstacle to data-driven sciences.

In this paper, we focus on how bandwidth allocation can be
controlled at the level of a protocol such as GridFTP, in view
of goals such as maintaining certain priorities or performing
scheduling with specified objectives. In particular, we explore
how GridFTP transfer performance can be controlled by using
parallelism and concurrency. We find that concurrency turns out
to be a more powerful control knob than is parallelism. For a
source where most bandwidth is consumed by transfers to a
small number of other destinations, we build a model for each
destination’s achieved throughput in terms of its concurrency
and total concurrency (over GridFTP transfers) to other major
destinations. We then enhance this model by including an
indicator of the time-varying external load, using multiple ways
to measure this external load.

We study the effectiveness of the proposed models in con-
trolling the bandwidth allocation. After evaluating the numerous
combinations of models and methods of measuring external load,
we narrow in on the four best-performing ones, based on both
their validation results and their applicability. After extensive
testing of these four approaches, we find that they can obtain
desired bandwidth allocations with a mean(median) error rate of
19.8%(13.8%), with 38% of the errors in our benchmark tests
being less than 10% and 54% of them being less than 15%.

Keywords-wide-area data transfer; GridFTP; modeling data
transfer

I. INTRODUCTION

The amount of data generated by experimental, simulation,
and observational science is growing exponentially. Climate
data is projected to exceed hundreds of exabytes by 2020 [5].
Major climate sites (e.g., LLNL, ORNL) will host huge
datasets, and several key sites spread across the world (UK,
Germany, Australia, Japan, etc.) will distribute this data to
climate researchers [5]. Cosmology projects are capturing
huge amounts of observational data. For example, the Dark
Energy Survey, designed to probe the origin of the accelerating
universe and help uncover the nature of dark energy by
measuring the 14-billion-year history of cosmic expansion
with high precision, captures terabytes per night. The Square
Kilometer Array, another cosmology project, will generate an

exabyte every 13 days when it becomes operational. Many
other fields, such as genome sequencing, geosciences, and
materials science, are also generating more and more data.

While researchers may seek to analyze and store data in
place, datasets must frequently be transported over wide-
area networks—for example, from generation sites to remote
facilities for storage, analysis, or visualization. Data move-
ment bandwidths (including disk speeds, NIC bandwidths, and
wide-area bandwidths) are not increasing at the same rate as
are dataset sizes, and this situation is becoming a major con-
straint for data-driven sciences. File transfer is the dominant
data transfer mode today and is expected to remain so in the
future. GridFTP is widely used by the scientific communities
to move files, with thousands of GridFTP servers deployed
worldwide currently moving more than 1 PB per day. Clearly,
it is important not only to understand the characteristics of
these transfers but also to be able to control and optimize
them.

In this paper, we focus on the problem of bandwidth
allocation at the level of a protocol such as GridFTP. Although
the bandwidth allocation problem has been extensively studied
as a (theoretical) routing problem [8], [14], [25], [13], [18],
wide-area transfer protocols today (and in the conceivable
future) do not have any control over routers. Only limited
work has been done in controlling bandwidth at the level of
such a protocol. Managed GridFTP effort [7] included Globus
Fork (GFork), a user-configurable super-server daemon similar
to xinetd [22], which enables sharing of state across client
connections and could effectively throttle the transfer rates for
GridFTP client requests to prevent system meltdown. While
the focus of the earlier work was on protecting the GridFTP
resources from any unintentional or intentional misuse, here
we focus on modeling the GridFTP throughput and using
the models to control bandwidth allocation to various transfer
requests.

Controlling bandwidth allocation for large-scale wide-area
data transfers can be desirable for many reasons. First, it may
be important to prioritize certain transfers over others. For
example, consider a user who uses one of the XSEDE (a
project for advanced cyberinfrastructure and digital services,
funded by the National Science Foundation) [23] resources
for a simulation and another XSEDE resource for analysis of
the data. The transfer of data needs to be completed prior
to the availability of the second computing resource to the



user; otherwise, cycles may be wasted. Second, given a site
that is an endpoint for a large number of transfers, it will be
desirable to schedule the transfers to meet certain objectives,
such as minimizing the average wait time. Performing such
scheduling will require some control over the resource (i.e.,
the bandwidth).

In controlling the bandwidth allocation, we first explore
how the performance of individual GridFTP transfers can be
controlled by varying the degree of parallelism (number of
sockets used for a single transfer) and concurrency (number of
transfers that are allowed to proceed at once). We find that con-
currency is a more powerful control knob than is parallelism
for data transfer rates. Next, we consider an end-point (source)
whose available bandwidth for transfers is consumed by a
small set of other endpoints (destinations). This is often the
case in practice, since only certain major resources have large
bandwidths, and similarly users performing large-scale science
are more inclined to keep data transfers within these major
resources. For controlling bandwidth allocation within these
resources, we build a model for each destination’s achieved
throughput in terms of its concurrency and an indicator of the
known source load. We then enhance this model by including
an indicator of the time-varying external load. We propose
several distinct ways to characterize and compute this external
load.

Focusing on transfers within the five sites that are part of
the XSEDE project, we study the effectiveness of the proposed
models in controlling the bandwidth allocation. One of the
best-performing models achieved a 15.6% mean error rate and
a 10.4% median error during testing; 63% of the time this
model’s errors were below 15%, and 49% of the time they
were below 10%.

A key strength of our approach is that we control bandwidth
allocations on the client side using existing GridFTP options.
No changes to the GridFTP protocol or to the deployed
GridFTP servers are required. The alternative approach of
changing the GridFTP protocol and getting many GridFTP im-
plementors and sites to update their GridFTP implementations
is a complex and time-consuming process. Our solution can
be easily deployed on a system such as Globus Transfer [3],
a GridFTP client that is being offered as a service to users.

The rest of this paper is organized as follows. In Sec-
tion II, we provide background on GridFTP and describe
the motivation for this study. Section III describes the key
performance optimization techniques in GridFTP—parallelism
and concurrency—and discusses the experiments to charac-
terize them. In Section IV, we describe the different models
we have built to predict the end-to-end throughput, and we
discuss how we measure and capture the time-varying load in
our experiments. Experimental results to evaluate the mod-
els’ effectiveness in controlling the throughput for various
destinations are presented in Section V. We discuss related
work in Section VI, talk about deployment considerations in
Section VII, and conclude in Section VIII.

II. BACKGROUND AND MOTIVATION

This section reviews key details of GridFTP. GridFTP [2],
[1] extends the legacy File Transfer Protocol (FTP) [21]
to enable secure, reliable, and fast transport of bulk data.
The GridFTP protocol has been implemented by Globus [12]

and others and is widely used by scientific communities for
bulk data movement. Globus Transfer [11], [3] is a centrally
managed and hosted service for orchestrating data transfer
tasks that involve file movement or synchronization between
GridFTP servers. Globus greatly simplifies configuration and
management for users, providing simple Web 2.0 interfaces
and automating transfer management tasks.

The following are some of the use cases of GridFTP
transfers:
• Transfer the output of a big simulation at one computing

facility to another computing facility for analysis.
• Move the data generated at an experimental facility (such

as DOE light sources, LHC) to a computing facility for
analysis.

• Replicate simulation, experimental, or analysis data at
various locations for distribution to users.

• Move data from a compute or experimental facility to a
compute cluster at a user’s home institution, desktop, or
laptop, or even to a cloud provider, for further analysis.

Globus GridFTP servers support usage statistics collection.
At the end of each transfer, GridFTP servers send the following
information as a UDP packet to a usage collector run by
Globus: transfer type (store or retrieve), size in bytes, start time
of the transfer, transfer duration, IP address of the GridFTP
server, number of parallel TCP streams, TCP buffer size, and
block size.

To understand some of the trends associated with wide-
area data transfers, we looked at the GridFTP usage logs
for a 24-hour period for the top 10 sites that transferred the
most number of bytes in that period. Results from three sites,
namely, the first, fifth, and tenth most heavily loaded sites, are
shown in Figures 1 and 2. The time axis is based on Chicago
local time, but the GridFTP servers for which the usage is
plotted could be in a different time zone. The transfer patterns
show a large variability—sometimes there are no transfers, and
sometimes there are many concurrent transfers. This situation
is not surprising considering the typical activity pattern of
most system administrators and end users. This points to the
fact that the overall load can vary substantially over time.
Furthermore, closer examination of these trends show that
while there is a substantial variation over the 24-hour period,
there is more stability over a shorter period. More specifically,
in Figure 3, we show the variance over the entire 24-hour
period, the four disjoint 6-hour periods, the 24 disjoint 1-hour
periods, and each disjoint 15-minute period. We can see that
the variance drops significantly for shorter durations. Thus,
one can measure the performance of data transfers at a certain
time and get a good indicator of the load for the immediate
future.

III. PARALLELISM AND CONCURRENCY

Parallelism and concurrency are two key performance
optimization mechanisms for GridFTP transfers. Parallelism
involves the use of multiple socket connections to transfer
chunks of a file in parallel from a single-source GridFTP
server process to a single-destination GridFTP server process.
Concurrency is the use of multiple GridFTP server processes
at the source and destination. In the most common use of
concurrency, each GridFTP server process transfers a different
file. However, since GridFTP supports partial file transfers
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Fig. 1: Number of concurrent transfers over a 24-hour period
for the most heavily used GridFTP server
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Fig. 2: Number of concurrent transfers over a 24-hour period
for the 5th and 10th most loaded GridFTP servers
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Fig. 3: Load variance over a 24-hour period for the 5th most
loaded GridFTP server
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Fig. 5: Concurrency vs parallelism. Source: NERSC; Destina-
tion: Ranger

(transfer “X” bytes of data from offset “Y”), it is also possible,
in principle, to have each of several GridFTP server processes
transfer different portions of the same file. Figure 4 shows the
difference between parallelism and concurrency in GridFTP.

Independent transfer requests to a GridFTP server normally
lead to concurrent transfers, one for each request. The in-
dependent transfer requests could come from different users
or from the same user. Even for a single transfer request, a
GridFTP client can initiate concurrent transfers of multiple
files, in the case of a directory transfer or multifile transfer
request, or when performing concurrent transfers of chunks
of a file, in the case of a single file transfer request. The
latter scenario is similar to the use of parallelism except that
concurrency involves multiple processes whereas parallelism
involves multiple connections. We experimented with both
concurrency and parallelism in order to understand how each
one affects the performance of transfers.

Most large-scale data transfers can be expected to be be-
tween supercomputing facilities, since they are the ones with
the ability to both store and process large amounts of data.
For example, the usage statistics on data transfers in a recent
XSEDE quarterly report [24] indicate that about 75% of the
data transferred are between big compute facilities. Thus, the
experiments we report in this paper are from a data transfer
node (DTN) [10] at Stampede or Ranger, supercomputers at
Texas Advanced Computing Center (TACC), or from a DTN
at the National Energy Research Scientific Computing Center
(NERSC), to one or more DTNs at Blacklight, a compute
cluster at the Pittsburgh Supercomputing Center; Yellowstone,
a supercomputer at the National Center for Atmospheric
Research (NCAR); Kraken, a supercomputer at the University
of Tennessee; and Gordon, a compute cluster at the San Diego
Supercomputer Center (SDSC). These DTNs are dedicated
for data transfer purposes. Since 10 Gbps wide-area network
(WAN) connectivity is the norm at the big supercomputing
facilities, we wanted the source DTN to have a 10 Gbps
connectivity and also deliver aggregate disk-to-disk throughput
as close to 10 Gbps as possible. The DTNs at Ranger and
NERSC were able to deliver an aggregate throughput as high
as 8 Gbps for disk-to-disk wide-area transfers, and the DTN
at Stampede was able to deliver higher than 9 Gbps. We also



wanted to use a mix of DTNs with varying capabilities in
terms of achievable throughput as destinations for the data
transfers in our experiments. Yellowstone and Gordon were
able to achieve a maximum throughput of around 5 Gbps
for one-to-one transfers from Stampede. Blacklight achieved
around 4 Gbps, and Mason and Kraken achieved around 2.5
Gbps. Unless otherwise noted, the experiment results reported
are an average of at least five runs.

For concurrency experiments, in order to maintain the
concurrency constant throughout a run, all transfers were timed
to run for 90 seconds. File sizes used were at least 30 GB (big
enough that even the most powerful destinations used in the
experiments will take more than 90 seconds to transfer this
file). As soon as all the transfers were started by an automated
script, a procedure for tracking the number of concurrent
transfers began to run. This procedure periodically checked
whether exactly the intended number of concurrent transfers
was running during the entire 90 seconds. It also checked each
destination’s log for errors; if it found any errors, it killed all
transfers and exited from the script.

We show the results of a subset of the parallelism and
concurrency experiments in Figures 5 and 6. Figure 5 com-
pares the effect of parallelism and concurrency on throughput,
whereas Figure 6 shows the effect of both parallelism and
concurrency on throughput.
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Fig. 6: Impact of concurrency and parallelism on throughput
– Ranger to Blacklight

A key observation from our results is that concurrency turns
out to be a more powerful control knob than is parallelism
for increasing the throughput, as we can clearly observe from
Figure 5. Moreover, we can see from Figure 6 that the through-
put achieved for concurrency (cc) of x and parallelism (p)
of y is greater than the throughput achieved for concurrency
of y and parallelism of x (for any x greater than y). For
example, the average throughput for cc = 8 and p = 1 is
>2.2 Gbps, whereas the average throughput for p = 8 and
cc = 1 is <600 Mbps. The likely reason for this behavior
is as follows. As far as the network interface controller
and the wide-area connections are concerned, parallelism and
concurrency work in the same way. But there is an important
distinction within the source or the destination. The multiple
processes used when concurrency is increased seem to help
get better I/O performance. We note that GridFTP uses the

asynchronous event model, and use of parallelism implies
additional asynchronous reads from the disk. However, it does
not create multiple threads to read from the disk, a limitation
that is resolved with the use of concurrency. We also note that
concurrency does increase the net load on the server because
of these processes, and it could imply a negative impact on the
performance of other transfer jobs executing at these servers.

IV. MODELING AND ADAPTING DESTINATION
THROUGHPUTS

In this section we present the model formulation, describe
the different models we have developed, and discuss how to
capture the time-varying load in our experiments.

A. Problem Formulation
Our objective is to control the allocation of bandwidth

available for transfer(s) from a source to the destination(s).
As we have already established, concurrency is a powerful
knob for controlling bandwidth allocation.

We consider a situation where one endpoint is heavily
loaded and most of its bandwidth is consumed by transfers
occurring to or from a small number of other sites. Our
example of such a situation involves the Stampede system,
with associated transfers to or from other nodes that are part
of the XSEDE project (Blacklight, Gordon, Kraken, Mason,
and Yellowstone). This example is important to optimize for,
because Stampede serves as a major data repository and
computational resource, and data that is either generated or
archived needs to be transferred to other sites, stressing the
available bandwidth. The example is also realistic in that most
of the associated bandwidth is consumed by transfers to a
small number of other sites. The reason is twofold: (1) only
a small number of sites have the large bandwidth at their
end, and thus transfers to or from them are the only ones
that can consume a substantial fraction of bandwidth at an
endpoint like Stampede; and (2) only a small number of sites
have computational resources to store and analyze large-scale
data. While one can expect a number of concurrent transfers
to numerous other sites, they are likely to involve smaller
files and/or will each consume only a very small amount of
bandwidth.

In such a scenario, our goal is to develop a simple model for
GridFTP transfer throughput based on a small number of im-
portant parameters. Particularly, it appears that the bandwidth
available for transfers between the heavily loaded end-point A
and one of its key destinations B will depend on the following
factors:
• The total number of ongoing transfers (concurrency) be-

tween the endpoint A and all its major transfer endpoints,
such as the five other resources that are part of the
XSEDE project in the case of Stampede. The larger the
number of ongoing transfers, the further the bandwidth
available to B is going to be split, since the outgoing
bandwidth from A is the major constraint.

• The total number of ongoing transfers (concurrency)
between the endpoint A and the endpoint B. We can
expect that the higher the concurrency to the endpoint B,
the higher the bandwidth to B will be.

• All other load in the system—which can include transfers
to other sites (with less bandwidth); other activity on the



endpoints, such as disk accesses; and other load on the
wide-area network, for example, transfers to and from
various other end-points in the entire network.

For simplicity, we refer to the first item as the source con-
currency and the second item as the destination concurrency,
although transfers can occur in either direction. The last item
is referred to as external load in our discussion. The first
two items are known to the GridFTP or a similar service;
furthermore, we are assuming that both can be controlled
(varied) by the service. In comparison, the last item, external
load, cannot be controlled and is also hard to measure.

B. Using Source and Destination Concurrency to Predict
Throughputs

Our first step was to see whether models that consider only
source and destination concurrency for controlling the desti-
nation bandwidth are adequate. We initially focused on linear
models that relate destination throughput to destination con-
currency and source concurrency. Recall that a linear model
between several input variables (or features) X1, X2,. . . , Xk

and a target variable Y is

Y
′
= a1X1 + a2X2 + . . .+ akXk + b,

where Y
′

is the prediction of the observed value of Y for the
corresponding values of Xi.

Specifically, we trained the following two linear models:
1. destination throughput (DT ) as the target variable and
destination concurrency (DC) and source concurrency (SC)
as input variables.

DT = a1 ×DC + a2 × SC + b1 (1)

2. Destination throughput (DT ) as the target variable and
the ratio between the destination concurrency and the source
concurrency (DC/SC) as a basis function.

DT = a3 ×
DC

SC
+ b2 (2)

To create training and validation sets, we performed load
variation experiments to characterize the performance of a
destination in terms of the source and destination concurrency.
In these experiments, we start with a baseline case (a case
in which all of the destinations have the same concurrency),
we continue by increasing destination concurrency for a des-
tination by 1, we run the baseline case again, we increase
destination concurrency for the next destination by 1, we run
the baseline again, and so on. Parallelism was held constant at
eight streams for all destinations and for the entire experiment.
A separate model was built for each destination, since each
destination has different characteristics.

We used three-fifths of the data from our experiments for
training and two-fifths of the data for validation. In other
words, for each experiment, for each destination, a fraction
of the data from that destination went to training and the
rest to validation. After a model is built by using the training
data, it will not fit the training data perfectly. The resulting
error rate is called the training error. The model is then
validated by using the validation data; the resulting error
rate is called the validation error. The coefficients of the
models are calculated by using the regularized least squares

TABLE I: Training and validation errors (in percentages) for
log and non-log models without external load.

Destination Nonlog Model Log Model
Training
Error

Validation
Error

Training
Error

Validation
Error

Blacklight 17.26 17.36 14.04 14.79
Gordon 11.99 9.69 8.78 9.57
Kraken 17.31 16.60 16.20 15.75
Mason 15.53 13.56 14.94 13.24
Yellowstone 12.02 13.68 8.97 10.57

method [6]. The regularizer, λ, was sampled from {0, 100}
on a logarithmic scale (47 regularizers total, sampled more
sparsely as the value of λ increases). From these potential
models, we picked one that produced minλ(TE+V E), where
TE and V E are the training and validation errors, respectively.

The training and validation errors were comparable to each
other and higher than 15% in almost all cases. We therefore
considered other models. Particularly, our hypothesis was
that some of the nonlinear dependencies (such as throughput
saturation) between the terms could be captured through a
model in the form of

Y
′
= Xa1

1 × Xa2
2 × . . .× Xak

k × 2b. (3)

After experimentation with a number of models, the fol-
lowing turned out to be effective. (Unless otherwise noted,
the term “log” in the rest of the paper refers to “log base
2.”) Again, using DT , DC, and SC to denote destination
throughput, destination concurrency, and source concurrency,
we have

log(DT ) = a4 × log(SC) + a5 × log(DC) + b3. (4)

Note that solving Equation 4 for DT will yield an expres-
sion in the form of Equation 3:

DT = SCa4 ×DCa5 × 2b3 . (5)

To show the effectiveness of this model, we present training
and validation errors for the model captured through Equa-
tion 4, and we compare this model with the model captured
through Equation 1 (best among the non-log models) in
Table I. We can see that the log-based model is clearly better:
the training and validation errors went down in every single
case and up to 27%. Still the relative error rate is around 15%
in many cases.

C. Incorporating External Load in the Model

The discussion has shown that a log model can be better
than linear models, but it still has high errors. Thus, a model
based on just the source load and destination concurrency
clearly is too simplistic, and we need to characterize external
load and incorporate it in our model. This situation, however,
raises two questions: (1) How do we measure the external load
impacting the transfers at any given time? and (2) How do
we include the external load in our model(s)? Recall that we
view all factors outside the source concurrency and destination
concurrency as the external load, which can include network,
disk, and CPU activities outside the transfers within the major
resources we are modeling.



Our approach to factoring load in our model was as follows.
We had observed that transfer activities tend to be more stable
over a shorter duration of time but can vary significantly over
the entire day. Thus, we obtained training data on different
days and at different times of the day, and we had multiple
data points that involved the same destination and source
concurrency. The difference in the achieved throughput across
runs with the same source and destination concurrencies can
be attributed to the different external load.

Based on this reasoning, we considered the following three
different basis functions for the external load (EL). The first
function, EL1, was calculated as follows. First, for each
transfer t in the experimental data, we found all transfers in
both sets that had the same destination and source concurrency
as t. Next, we calculated the average throughput AT for this
subset of transfers. Then,

EL1 = T − AT, (6)

where T is the observed throughput of transfer t. Intuitively,
a negative external load (EL) helps account for a lower-
than-average observed throughput. The second basis function,
EL2, differs from EL1 in that instead of using the average
throughput AT of transfers with matching DC and SC, we
use the transfers’ maximum throughput, MT :

EL2 = T − MT (7)

Both functions are assuming that the external load has an
additive impact. In practice, however, the load could have a
multiplicative impact on the achieved throughput. To capture
this possibility, we introduce the third function, EL3, calcu-
lated as follows.

EL3 = T/MT (8)

To capture the measured load, we considered the following
models.

DT = a6 ×DC + a7 × SC + a8 × EL+ b4 (9)

DT = SCa9 ×DCa10 ×AEL{a11} × 2b5 (10)

Equations 9 and 10 represent a non-log model and a log
model, respectively, each with an external load feature. For
Equation 10, the AEL{a11} feature, or adjusted external load,
is defined as follows.

AEL{a11} =
{

ELa11 if EL > 0
|EL|(−a11) otherwise

(11)

This is done in order to avoid complex numbers in the
calculations. Note that Equation 10 has the added benefit that,
if necessary, it can model the sublinear growth of its features
more effectively than a non-log model can. Hence, Equation
10 has the potential of being more effective for modeling
saturation regions.

Table II shows the validation errors for both non-log and
log models with external load as one of the features. We
can see that these models are clearly better: validation errors
went down by up to 45%. Note that relative error rates for
all destinations are less than 10% with the log + EL3 model
and less than or equal to 15% for all the models. Note also

TABLE II: Validation errors (in percentages) for log and non-
log models with differing definitions of external load feature.
EL1, EL2, and EL3 are defined in Equations 6, 7, and 8.

Destination Non-Log Model Log Model
EL1 EL2 EL3 EL1 EL2 EL3

Blacklight 14.14 15.32 12.46 9.76 12.73 8.80
Gordon 5.31 9.08 8.31 6.73 8.73 7.70
Kraken 12.04 13.37 10.67 11.98 13.34 9.33
Mason 6.44 12.93 12.92 13.68 13.40 9.94
Yellowstone 9.21 11.41 10.22 8.11 9.41 8.23

that in almost all cases the EL2 method does not work as
well as the EL1 and EL3 methods. The likely reason is that
deviation from average is less subject to random variation than
is deviation from the maximum; moreover, load has more of
a multiplicative impact, as opposed to the additive impact.

D. Calculating External Load While Adapting Throughput

We have developed a model to express the throughput in
terms of destination concurrency, source concurrency, and
external load. As opposed to destination and source concur-
rency, which are known values, external load is unknown.
The method we have used for obtaining load values for
training models involves having multiple data points with the
same source and destination concurrency values. When we are
trying to adapt rate of transfers to one or more destinations,
we cannot expect to have recent transfers with all possible
combinations of source and destination concurrency values.
At the same time, we can expect to have available data from
transfers that have taken place recently. Similarly, we can
expect that the external load does not change substantially
over a few minutes.

Overall, we propose three ways to compute the external load
(EL) for a given transfer:
1. Previous Transfer (PT ) – uses the most recent previous
transfer’s EL (PEL), to compute EL for the current transfer
(CEL). This can be done by solving the destination’s model
for EL (e.g., EL = (DT−a6×DC−a7×SC−b4)/a8 for the
model represented by Equation 9) and plugging in the previous
transfer’s DCprev , SCprev, and observed throughput to obtain
PEL. CEL is then defined as PEL × DCcur/DCprev ,
where DCcur is the current transfer’s planned destination
concurrency.
2. Recent Transfer (RT ) – uses all the transfers in the past 30
minutes to the given destination to compute EL for the current
transfer. This involves computing EL for each transfer to the
given destination in the past 30 minutes, using destination and
source concurrency used and the observed throughput, finding
the average of these ELs, and using it as the EL for current
transfer.
3. Recent Transfers with Error Correction (RTEC) – use all
the transfers in the past 30 minutes to the given destination
with error correction based on historical data to compute
EL for the current transfer. For each transfer to the given
destination in the past 30 minutes, one does the following:
• Calculate the average error in the model for (historical)

datapoints with matching destination and source concur-
rency.

• Adjust observed throughput based on the error as calcu-
lated above.



• Compute EL using destination and source concurrency
used and the adjusted observed throughput as computed
above.

We then find the average of these ELs and use it as the EL
for the current transfer.

As a next step, we generated new experimental data (with
Stampede as source and Gordon, Mason, Yellowstone, Black-
light, and Kraken as destinations) and used various already-
trained models in conjunction with these three methods of
estimating external load to evaluate their effectiveness. Note
that with different models, different methods for calculating
load during training runs, and different methods for estimating
the current load, we have a large number of combinations.
Table III shows results from a set of heuristics that gave the
best results. The cross-validation errors were uniformly low,
indicating that all these methods are effective. There is no
consistent trend between the three methods for estimating the
current load, but the differences in results are also small.

Table IV shows how the log models with EL1 look for
all the destinations. Mason’s data transfer node was weakest
among all the destinations used here, and it was able to achieve
a throughput close to its maximum achievable throughput even
with a low destination concurrency value. The low exponent
for DC in the model for Mason reflects this characteristic.
Gordon and Yellowstone are the strongest among all the
destinations. Thus, incremental gain per destination concur-
rency is high for them. At the same time, as the load on
the source increases, these destinations lose more throughput
as well because the relative loss of cycles at the source for
the powerful destinations is higher. Higher exponents for DC
and SC in the model capture this behavior. Blacklight and
Kraken have more intermediate strengths than do the other
nodes; but Kraken is more similar to Mason, and Blacklight
is more similar to Gordon. These results are also reflected in
the weights for DC and SC in their models. Even though
the exponents for AELs in the models shown in Table IV are
low, we note that AEL is still a significant component since
its value is an order of magnitude or more higher than DC
and SC.

In an additional effort to understand how each feature in
our models affects the error rate, we performed an ablation
study. We picked the following models for the study: log
with EL1 using RTEC (a relatively complex model), the
log model shown in Table I (because it is our best-performing
model without the EL feature), and three new models—one
using only DC to predict throughputs, one using only SC,
and an overly simplistic model that has no inputs and always
outputs the mean of the throughputs from the training set (we
use this as a baseline model). A comparison of the simple
models’ performance with the other, more complex models
helps put the errors in perspective. The findings from the
ablation study are as follows. The mean testing error for the
most complex model is 14.7%. This is a 12% improvement
compared with that of the log model without EL, an 18-20%
improvement compared with using the models with only SC
or DC, and a 47% improvement compared with the baseline
model. These results clearly show that the proposed models
with the external load feature are much more effective in
predicting the throughputs than are the other, less-complex
models.

TABLE III: Cross-validation errors (in percentages): compar-
ison of EL estimation methods for best-performing models
with external load (based on validation errors).

Destination Log Model w/ EL1 Log Model w/ EL3
PT RT RTEC PT RT RTEC

Blacklight 18.78 19.54 20.52 21.54 18.68 20.68
Gordon 12.51 9.14 9.65 13.36 9.18 10.06
Mason 16.77 13.31 14.07 18.48 18.64 20.70
Kraken 21.47 17.23 16.83 22.01 18.39 18.01
Yellowstone 12.24 12.40 12.66 12.38 12.29 12.46

TABLE IV: Log models with AEL1 as external load. DT
is throughput in Mbps. AEL1 is in Mbps and follows the
definition in Equation 11.

Destination Model

Blacklight DT = DC0.868×AEL1{0.028}×29.996/SC0.283

Gordon DT = DC0.823×AEL1{0.019}×213.221/SC0.877

Kraken DT = DC0.437×AEL1{0.031}×210.738/SC0.234

Mason DT = DC0.080×AEL1{0.038}×210.697/SC0.171

Yellowstone DT = DC0.788×AEL1{0.015}×212.884/SC0.724

V. APPLYING MODELS TO CONTROL TRANSFER
BANDWIDTHS

Recall that our goal was to be able to control the allocation
of bandwidth to different destinations when the source is
already saturated. To this end, we have developed models that
can relate source and destination concurrency levels to the
throughput obtained by each destination. Applying these mod-
els for a particular transfer also involves certain challenges,
and we now show how we approach the problem.

Earlier, we described three effective methods of estimating
external load for a new transfer, which means that now we have
efficient ways of calculating EL. Given a target throughput for
a destination, we would like to determine the DC that would
get us closest to the target. However, there is often more than
just one destination to transfer data to or from the source,
which means that SC is also unknown. To narrow the search
space, we can limit the maximum concurrency value for each
destination to a value such as 20, which is reasonable because
some of the destinations had a cap of 30 for all concurrent
transfers.

However, even a concurrency limit of 20 leads to a large
number of possible combinations of destination concurrencies
(20n, for n destinations). Rather than doing an exhaustive
search, we use an optimized method, shown in Algorithm 1.
If each destination has a concurrency between 1 and 20
(inclusive), the number of possible distinct source concurrency
values is 19×ND+1 (or SCmax−ND+1), where ND is
the number of destinations. Therefore, we compute ELs for all
destinations using their respective models, similarly compute
the DC value for each destination, and pick the permutation
that satisfies the following: (1) the sum of concurrency values
of the destinations does not deviate too much from the source
concurrency value, and (2) each destination’s error function,
defined as the difference between target destination through-
put (TDT ) and predicted destination throughput (PDT ), is
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Fig. 7: Results of a ratio experiment. Throughputs are shown in Mbps. Ratios are 4:5:6:8:9 for Kraken, Mason, Blacklight,
Gordon, and Yellowstone. (a) Concurrencies picked by Algorithm 1 were {1,3,3,1,1}. Model: log with EL1. Method: RTEC.
(b) Concurrencies picked by Algorithm 1 were {1,4,3,2,2}. Model: log with EL3. Method: RTEC. (c) Concurrencies picked by
Algorithm 1 were {1,1,3,1,1}. Model: log with EL1. Method: RT . (d) Concurrencies picked by Algorithm 1 were {1,4,3,1,1}.
Model: log with EL3. Method: RT .

minimized. This process is shown in Algorithm 1. Note that
although the PT method depends on the new transfer’s DC
for its external load estimate, one can still solve for and isolate
DC in the models.

Algorithm 1 Obtaining concurrency configurations for given
target throughputs using a narrowed search space

1: function GETCCS()
2: SCmax ← 100
3: δ is a user-defined variable
4: Ei ←∞, i ∈ {1, ND} . Error for each destination
5: for SC = n→ SCmax do
6: for i = 1→ n do
7: DCi ← a

√
TDTi

SCb×ELc×2d

8: DCi ← round(DCi) . Pr(DCi) 6∈ Z is high
9: PDTi ← DCai × SCb × ELc × 2d

10: end for
11: E′i ← |PDTi − TDTi|, i ∈ {1, ND}

12: if (E′i < Ei ∀ i) ∧ (|
ND∑
i=1

DCi − SC| < δ) then

13: CC ← [DC1 . . . DCn]
14: Ei ← E′i, ∀ i
15: end if
16: end for
17: return CC
18: end function

We performed two types of experiments: ratio experiments,
which allocate the available bandwidth at the source among
the destinations based on a predefined ratio, and factoring
experiments, where the goal is to increase the throughput of
a particular destination by a certain factor over the base rate
it is obtaining when the source is saturated.

For the ratio experiments, the goal is to achieve a specific
fraction of bandwidth for each destination. We experimented
with the ratios 2:1:2:3:3, 3:2:3:4:4, 4:5:6:8:9, and 5:4:5:8:9 for
Kraken, Mason, Blacklight, Gordon, and Yellowstone. These
combinations were picked based on the maximum throughputs
that can be independently achieved by these destinations in
various tests.

The factoring experiments represent the case when we
need to increase the bandwidth to one particular destination

because of certain priorities or scheduling needs. Specifically,
let us say that there is a base case (in our experiments,
each destination had a concurrency of 2 and parallelism of
8 to move data from the source.) We used the throughput
obtained by each destination in this experiment as the baseline,
and we want to increase the throughput for each destination
(separately) to 1.5 times (and 2 times) the baseline throughput.
Algorithm 1 was used to determine a concurrency value to
achieve such a target throughput. Note that for each of these
experiments, the search space is five times smaller than for the
ratio experiments because only one destination concurrency is
unknown at any time: that of the destination whose throughput
we are attempting to increase.

Figure 7 shows the results of the ratio experiment for the top
four models/methods (log EL1/EL3 models and RT /RTEC
methods) in terms of the cross validation error that was shown
earlier in Table III. We can see that all four model/method
combinations are effective in predicting the throughputs, al-
though log EL1 with RT is not as good as the other three.
Log EL1 with RTEC is the best among all four; errors
for four of the destinations were less than 5%, and for the
other destination it was 10.5%. RTEC method performs better
than RT , as expected, because RTEC uses both the most
recent transfers and the historical data (for error correction) to
calculate the external load. For the remaining experiments, we
show the results for only log EL1 with RTEC; the results of
the other three approaches were comparable to this approach.
Figure 8 shows the results of a factoring experiment where
we attempt to increase each destination’s throughput to 1.5
times (and then to 2 times) its baseline and try to predict the
other destinations’ throughputs as their concurrencies are held
constant. The figure shows the results for Gordon, Yellow-
stone, Blacklight, Kraken, and Mason. For all experiments,
Algorithm 1 (with reduced search space as mentioned in the
above paragraph) was used to obtain destination concurrencies.
The combined results of 1.5x and 2x factoring experiments
presented in Figure 8 can be summarized as follows: 83.6%
of the errors are below 15%, and 65.5% of them are below
10%. The ratio and factoring experiments were performed
three times, and the overall results (including all four ratio
combinations and the two factoring experiment multipliers)
are as follows for the log model with EL1 and RTEC: a
mean error of 15.6%, with 63% of the errors below 15% and
49% of them below 10%. Overall, we see that these models
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(a) Increasing Gordon’s baseline
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(d) Increasing Kraken’s baseline
throughput by 1.5x. Concurrency
picked by Algorithm 1 for Kraken
was 4.
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(f) Increasing Gordon’s baseline
throughput by 2x. Concurrency
picked by Algorithm 1 for Gordon
was 5.
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(g) Increasing Yellowstone’s base-
line throughput by 2x. Concurrency
picked by Algorithm 1 for Yellow-
stone was 4.
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(h) Increasing Blacklight’s base-
line throughput by 2x. Concurrency
picked by Algorithm 1 for Blacklight
was 4.
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(i) Increasing Kraken’s baseline
throughput by 2x. Concurrency
picked by Algorithm 1 for Kraken
was 10.
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Fig. 8: Results of a factoring experiment. Y-axis is throughput in Mbps. Attempting to increase each destination’s throughput
to 1.5 times and 2 times its baseline throughput. Other destinations’ concurrencies are kept constant as we attempt to predict
their throughputs. Model: log with EL1. Method: RTEC.

are effective in controlling bandwidth allocation.

VI. RELATED WORK

Several models have been proposed for predicting the be-
havior of parallel TCP streams and finding the optimal number
of streams [9], [17], [15], [19], [4]. Some of these models
(for example, [15]) work only for uncongested networks, and
these models were evaluated mostly by using simulations (i.e.,
not with real data transfer applications). Several studies [20],
[16], [26] have developed models to find the optimal number
of TCP streams to use for data transfer in the context of
GridFTP. Among these, Yildirim et al. [26] improves upon
the earlier models to find the optimal number of TCP streams
to use for a transfer with minimal history information and low
prediction overhead. Ohsaki and Imase [20] propose a model
based on fluid-flow approximation to find both the optimal
number of TCP streams and the optimal TCP buffer size to
use for a transfer. Since then, the autotuning mechanism in
Linux and other operating systems has improved significantly,

to the point that there is no need for any TCP buffer size
tuning in the application. The major difference between those
studies and our work is that they focus on optimal number of
streams to use to get the maximum throughput on the network.
In comparison, we attempt to model the GridFTP transfer
throughput based on the end-to-end performance behavior,
taking into account the load on the end-system, variabilities
in destinations’ capabilities, and the number of concurrent
transfers. Our emphasis has also been on concurrency, and
we have shown that it is a more powerful knob to control the
end-to-end throughput than are the parallel TCP streams.

Many studies on bandwidth allocation have been con-
ducted [8], [14], [25], [13], [18]. Kumar and Kleinberg [18]
propose an iterative algorithm for computing a max-min fair
set of allocations. Goel et al. [13] describe an algorithm
that approximates max-min fairness as well as optimizes the
throughput. These efforts have been at the level of router im-
plementation, whereas our focus has been on end-application-
level control.



VII. DISCUSSION

Three common GridFTP deployments exist:
• Standard (nonstriped) GridFTP server on one or more

DTNs with DNS round robin for load balancing (in case
of more than one DTN).

• Standard GridFTP server on one or more DTNs, associ-
ating all servers with a single logical endpoint on Globus
transfer [11], relying on Globus for load balancing.

• Striped GridFTP server [1], with one head node and
multiple data mover nodes, where each data mover is
responsible for moving a portion of a file.

Our current approach will work well in all three scenarios,
and it does not require any changes to the GridFTP protocol
or the GridFTP server code. An implementation of the pseu-
docode on page 8 on the GridFTP client would suffice. It can
be easily deployed on a system such as the Globus transfer
service, a GridFTP client that is being offered as a service to
users.

We note that models presented in this paper have been
trained using data obtained from experiments that were run on
production environments. Hence, all the participating nodes
(both for the experiments that produced the training data
and for the experiments that tested the models’ effectiveness)
simultaneously acted as both destinations and sources while
we ran our tests, because of some transfers that were not within
our control. The impact of those transfers on the throughput
for our transfers has been captured by using the external
load feature in our model. We also note that the models’
training overheads are low and that the models can be quickly
retrained, if needed.

VIII. CONCLUSIONS

This paper has focused on understanding performance is-
sues with large-scale wide-area transfers and on controlling
bandwidth allocation for large transfers at the level of a
file transfer protocol. Our emphasis has been on transfers
between several of the leadership-class machines at major
supercomputing centers or laboratories, since they have not
only high bandwidths between them but also a very high load.

After establishing that concurrency turns out to be a more
powerful control knob than is parallelism for data transfer
throughputs, we focused on developing models that can help
us control bandwidth allocation. We have shown that log
models that combine total source concurrency, destination
concurrency, and a measure of external load are effective.
Much of our focus has been on measuring and accounting for
the external load, and we have shown that methods that utilize
both recent and historical experimental data in estimating
external load prove to be robust.

Overall, this work has accomplished two goals. First, we
have developed models that capture how bandwidth is shared
across different destinations. Second, we have provided a
useful mechanism for controlling bandwidth allocation by
changing concurrency levels to one or more destinations.
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