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ABSTRACT 
Modern scientific experiments can generate hundreds of gigabytes 
to terabytes or even petabytes of data that may furthermore be 
maintained in large numbers of relatively small files. Frequently, 
this data must be disseminated to remote collaborators or 
computational centers for data analysis. Moving this data with 
high performance and strong robustness and providing a simple 
interface for users are challenging tasks. We present a data 
transfer framework comprising a high-performance data transfer 
library based on GridFTP, a data scheduler, and a graphical user 
interface that allows users to transfer their data easily, reliably, 
and securely. This system incorporates automatic tuning 
mechanisms to select at runtime the number of concurrent threads 
to be used for transfers. Also included are restart mechanisms 
capable of dealing with client, network, and server failures. 
Experimental results indicate that our data transfer system can 
significantly improve data transfer performance and can recover 
well from failures.  

Categories and Subject Descriptors 
C.2.4  [Distributed Systems]: Distributed Applications 

General Terms 
Algorithms, Performance, Design. 

Keywords 
Data transfer, GridFTP, Data scheduling, Concurrent, Error 
recovery 

1. INTRODUCTION 
Modern scientific experiments and facilities, such as CERN [1], 

LIGO [2], the Advanced Photon Source [3], and the Spallation 
Neutron Source [4] can generate multiple gigabytes to terabytes 
of data every day. Frequently, this data must be disseminated to 
remote collaborators or advanced computational centers capable 
of running the complex CPU-intensive applications needed to 

analyze the data. Transferring large volumes of data on physical 
media such as removable disk drives is problematic. Physical 
media can be lost or irreparably damaged in transit. Moreover, 
collaborations often require access to the most current data from 
multiple sites around the world. Shipping data on physical media 
introduces a time lag and makes it difficult to ensure that all 
collaborators have the most recent results.  

The Internet provides a convenient connection between 
remotely located collaborators to work on common datasets. 
However, transferring the large volumes of data generated by a 
facility or experiment over the Internet has its own set of 
challenges. In particular, low bandwidth and unreliable 
connections can make it difficult to move data rapidly and 
reliably. 

The GridFTP [5][6] protocol extends standard FTP [7] for high-
performance operation, providing improved performance 
compared to standard FTP. GridFTP is widely used for wide-area 
data transfer. For example, the high energy physics community 
bases its entire tiered data movement infrastructure for the Large 
Hadron Collider computing Grid on GridFTP; and the Laser 
Interferometer Gravitational Wave Observatory routinely uses 
GridFTP to move one terabyte a day to each of eight remote sites. 

Even so, the configuration and tuning of a GridFTP toolset can 
be daunting to users. Errors and interruptions during data transfers 
are inevitable obstacles as well. Scientists desire a high-
performance, straightforward, user-friendly, and robust data 
transfer mechanism that can significantly improve their work 
efficiency.  

To meet this need, we have designed and implemented a data 
transfer framework based on GridFTP. 

This paper makes four contributions: (a) a data transfer 
framework architecture that addresses the requirements just listed; 
(b) an algorithm to autotune data transfer concurrency that can 
improve performance significantly; (c) two data scheduling 
algorithms; and (d) an error recovery algorithm that addresses 
both client-side  and server-side errors. 

The paper is organized as follows. In Section 2, we review 
some previous work. In Sections 3 and 4, we present the data 
transfer framework and introduce an application of our system as 
a case study. In Section 5, we present experiment results; and in 
Section 6, we conclude and outline future plans. 
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2. RELATED WORK 
Some large-scale science experiments or research projects have 

their own data management solution to meet their requirements. 
The PhEDEx [8][9] data transfer management system is used by 
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the CMS experiment at CERN. PhEDEx consists of a set of 
agents responsible for file replication, routing decisions, tape 
migrations, and so on. ATLAS DDM [26] is a file-based data 
management system operates on the worldwide LHC computing 
grid infrastructure (WLCG). It is capable of managing data on the 
order of petabytes. Moreover, DDM has a subscription 
mechanism which helps user easily get the latest version of data 
they are interested in. The caGrid [11] aims at building a Grid 
software infrastructure for multi-institutional data sharing and 
analysis for cancer research. It has two components related to data 
management. caGrid Transfer [12] is used for moving small 
amounts of data between a client and server. For moving huge 
amounts of data, caGrid developed BulkData Transfer [13] based 
on GridFTP. Since the focus of caGrid is not on moving huge 
volumes of data, these transfer mechanisms offer only basic data 
transfer functionality, whereas our framework provides flexible 
data-scheduling policies and error recovery mechanisms that deals 
with client, network, and server errors. 

Sinnott et al. [10] discuss how to manage hundreds of 
thousands of files produced by the nanoCMOS project. They 
compared the Storage Resource Broker (SRB) and Andrew File 
System (AFS) in terms of architecture, performance, and security. 
To facilitate the discovery, access, and use of electronics 
simulation data, they also propose a metadata management 
architecture. This architecture uses the SRB or AFS for data 
movement but does not consider error recovery and data 
scheduling. The work focuses on data sizes of a few gigabytes; 
however, we are interested in data sizes of hundreds of gigabytes 
or more. 

Stork [14][15] is a data scheduler specialized for data 
placement and data movement. It is able to queue, schedule, 
monitor, and manage data placement activities, with data 
placement jobs executed according to a specified policy. Stork 
supports multiple data transfer protocols and can decide which 
protocol to use at runtime. It also implements basic error recovery 
mechanism. However, it cannot recover from client failures, 
whereas our system can.  

Ali and Lauria [16] describe asynchronous primitives for 
remote I/O in Grid environments. The authors implemented a 
system, named SEMPLAR, based on the Storage Resource Broker. 
In addition to asynchronous primitives, multithreaded transfer and 
on-the-fly data compression are used to improve performance 
further. We also use asynchronous I/O and multithreaded transfers 
in our data transfer framework; in addition, however, our thread 
pool is able to tune dynamically at runtime to improve 
performance. 

RFT (Reliable Transfer Service) [19] is a component of the 
Globus Toolkit. Implemented as a set of web services, RFT 
performs third-party transfers using GridFTP with basic reliable 
mechanisms. Data transfer state is recorded in a database; when a 
transfer fails, it can be restarted automatically by using the 
persistent data. However, our system supports not only third-party 
transfers but also client-server transfers. Moreover, RFT is 
heavyweight, relying on a database for error recovery, whereas 
we use a simpler and more lightweight file-based approach. In 
addition, RFT does not support data transfer scheduling, whereas 
our system supports a flexible data transfer scheduling scheme.  

gLite File Transfer Service [27] provides reliable file 
movement in gLite grid middleware. It uses a third party copy 
(e.g., gsiftp) to perform the actual data movement. The transfers 
managed by FTS are all asynchronous. A web service interface is 

exposed to users. FTS has a data scheduler component as well; 
besides the global policy, each VO can apply their own data 
scheduling policies. 

Vazhkudai [21] studied data replica selection, data transfer 
performance prediction, and parallel download of datasets from 
multiple servers in a data Grid environment based on Globus. 
Vazhkudai’s work aims to improve data transfer performance by 
making full use of data replicas. Our work is complementary to 
his work. We focus on how to transfer data with high performance 
and robustness in an environment without replicas, since data 
produced by an experiment must be moved from a scientific 
facility to a researcher’s home institute;  

Using multiple streams for a data transfer can improve 
throughput significantly. Several researchers have sought to 
compute the optimal number of streams for a data transfer. 
Hacker et al. [22] give the relationship among throughput, number 
of streams, packet loss rate, and round-trip time; however, their 
results are valid only for uncongested networks. Lu et al. [23] and 
Yildirim et al. [24] extend the model to both uncongested and 
congested networks and present formulas for predicting the 
optimal number of streams. All these studies aim to optimize a 
single, large transfer. In contrast, we propose an effective method 
for tuning the throughput of multiple concurrent transfers of small 
files. 

3. DATA TRANSFER FRAMEWORK 

 

Figure 1: Architecture of the data transfer framework 

Figure 1 shows the architecture of our data transfer framework. 
We use GridFTP for data movement because of its high 
performance and wide acceptance in the scientific community. 

GridFTP GUI provides users a convenient tool for data 
movement based on a graphical interface. The data scheduler 
accepts jobs and dispatches them to the data transfer library 
according to a specified scheduling policy. The data transfer 
library hides the complexity and heterogeneity of underlying data 
transfer protocol. It provides a data transfer thread pool and 
supports error recovery. It can interact with diverse data transfer 
protocols, although currently we support only GridFTP using 
CoG jglobus. The CoG jglobus [17] library includes a pure Java 
GridFTP client API; it can be used to build applications that 
communicate with GridFTP servers. 

In the sections that follow, we describe the various components 
of this architecture. 

3.1 Data Transfer Library 
The data transfer library (DTL) provides a simple API for 

asynchronous, fault-tolerant, high-performance data transfers. It 
accepts transfer requests from the upper layer application and 



We use an adaptive scheme to tune the transfer thread pool size 
automatically. In the following text, we refer to a transfer source 
and destination as an “endpoint pair.” We introduce a data 
structure, THREAD_POOL_MAP, that for each endpoint pair 
records the best-known number of transfer threads. When a new 
DR is initiated, DTL looks up THREAD_POOL_MAP. If an 
entry corresponding to the endpoint pair of this DR is found, the 
pool size is set to the recorded value; otherwise, it is set to an 
initial size (the default is eight). 

manages the data movement. The DTL is designed to be modular 
and extensible: diverse data transfer protocols can be easily 
incorporated into DTL as plugins. Currently, DTL supports only 
GridFTP. Other data transfer protocol plugins will be 
implemented in the future. DTL is not tightly coupled to the data 
transfer framework presented here; it is generic enough to be used 
separately. 

Asynchronous data transfer is an efficient way to improve 
application performance. For example, it allows disk I/O to be 
overlapped with network I/O, improving resource utilization and 
reducing application runtime.  

 

DTL uses thread and queue mechanisms to implement 
asynchronous data transfers. Transfer requests are categorized as 
either file requests (FRs) or directory requests (DRs), and we 
maintain two queues: one for file transfer requests (FQs) and one 
for directory transfer requests (DQs). A single directory transfer 
request results in a number of file transfer requests. A single 
thread processes the directory transfer requests in the directory 
queue and populates the file transfer queue. Each file transfer 
request is assigned a unique identifier. Each queue has a tunable, 
maximum-length threshold; if this threshold is exceeded, a 
request to add transfers blocks until there is enough space in the 
queue. In order to make full use of network bandwidth, a thread 
pool is created to process requests in the file transfer queue. By 
default, the initial size of the thread pool is set to four. If FQ is 
empty, the corresponding processing threads are suspended until a 
new request is received.  

Figure 2 depicts the interaction between the thread pool and 
queues in DTL. The directory request-processing thread acquires 
a DR, communicates with the specified source machine (a remote 
GridFTP server or the machine where DTL is running) of the 
request to determine the names of all regular files within the 
specified directory, constructs an FR for each file, and adds the 
new FR into FQ. The file transfer request process thread in the 
pool repeatedly gets an FR from FQ and performs the actual data 
transfer. After the transfer completes, the thread starts serving 
another request from the queue. 

Figure 2: Thread pool and queues in DTL 

The automatic tuning process periodically calculates the 
instantaneous throughput for each directory request. An average 
throughput is derived from five instantaneous throughput values. 
The thread pool expands (by default, adding four threads) if the 
current average throughput is larger than the preceding average 
throughput by some factor (the default is 1.3). If the current 
average throughput is smaller than the previous average 
throughput by some factor (default is 0.7), two situations are 
considered. If the current number of threads is larger than the 
previous number of threads, we regard the throughput 
deterioration as caused by congestion due to too many transfer 
threads, and we shrink the thread pool; redundant threads are 
killed after they finish their work. Otherwise, the throughput 
decrease is attributed to lack of transfer threads; hence, new 
threads are spawned and put into the pool. This process runs at a 
fixed interval to tune the thread pool size dynamically during 
runtime. When the directory transfer request completes, 
THREAD_POOL_MAP is updated with the current thread 
number. Our experiments show that this automatic tuning scheme 
can significantly improve data transfer throughput. Figure 3 
describes this procedure in pseudocode. 

After adding a request to the corresponding queue, the invoker 
(the application invokes DTL directly or uses DTL through data 
scheduler) returns immediately and continues running other tasks 
without waiting for the data transfer to finish. To notify the 
invoker of the updated transfer status and statistics information of 
the request, we implemented a notification mechanism. When the 
transfer status changes, DTL generates a notification message and 
sends it to the invoker. A notification message consists of the 
names of the files being moved, amount of bytes transferred in 
this request, number of successful requests, number of failed 
requests, and number of remaining requests. In order to mitigate 
the burden of receiving many notification messages, DTL also 
supports a summary notification message for both directory 
requests and file requests. A summary notification includes the 
same information as the notification message described above 
except that it does not have the names of the files being moved. 
Such messages are delivered at a regular interval. Our experience 
indicates that the summary notification mechanism is more useful 
for scientists to move scientific dataset.  

The DTL program is designed to run on a client computer, 
which is more susceptible to unexpected errors such as machine 
reboot, power failure, or accidental shutdown of the program by a 
user. In addition, data transfers initiated by DTL may fail for 
various reasons, including disk failure and network outage. If a 
failure occurs while transferring a directory with a large number 
of files, it is not feasible to identify and retransfer the missing 
files manually. Thus, we implement in DTL a basic fault-
tolerance mechanism that can handle client failures, server 
failures, and network failures. 

Determining the size of the thread pool is a challenging 
problem. Because the optimal value is affected by several factors 
and may change dynamically at runtime, automatic tuning is 
desired for optimal performance.  



For the errors that DTL can discover, such as a server crash or 
network outage, DTL retries several times at a user-specified 
interval. If all attempts fail, DTL writes the request to an error log 
file (error.log). 

 

while (true) 
   if(a new DR starts to be served)     
      get endpoint pair from transfer request 
      if (endpoint pair in THREAD_POOL_MAP)        
         pool_size=get from THREAD_POOL_MAP 
      else 
         pool_size=default_pool_size 
      end if 
      thread pool size = pool_size 
      prev_Throughput = 0 
      prev_Threads=pool_size 
      current_Threads=pool_size 
   else 
      for (i=1; i<=sampling_times;i=i+1) 
         B1=bytes has been transferred at instant t1 
         sleep for default_interval time 
         B2=bytes has been transferred at instant t2 
         ins_Throughputi=(B2-B1)/(t2-t1) 
      end for 
      AVG_Throughput=∑ins_Throughputi/sampling_times     
      if(AVG_Throughput>expand_factor*prev_Throughput)          
         prev_Throughput=AVG_Throughput 
         prev_Threads=current_Threads 
         expand thread pool size for the endpoint pair  
      else  
         if(AVG_Throughput<shrink_factor*prev_Throughput)           
           if(prev_Threads>current_Threads)            
               prev_Throughput=AVG_Throughput 
               prev_Threads=current_Threads 
               expand thread pool size for endpoint pair  
           else 
              shrink thread pool size for endpoint pair   
           end if 
         end if 
      end if 
      if (end of the DR reached)        
       update THREAD_POOL_MAP with current_Threads                       
      end if 
   end if 
   sleep for a while 

end while 

Figure 3: Tuning procedure for thread pool size 

In contrast, DTL typically cannot detect or respond to client 
(DTL) failures. To permit recovery from such situations, we use a 
lightweight checkpoint-based error recovery mechanism. For each 
DR (including all nested subdirectories), four files are created for 
error recovery:  

filecounts.log: records the number of files in the DR and 
includes a pointer (referred as “last file transferred pointer” in the 
following text) to the file transfer request that has the largest ID in 
all requests currently being processed; 

filenames.log: records the source and destination of each file 
transfer request; 

dircounts.log: records the total number of directories in the DR 
and how many have been processed; 

dirnames.log: records the source and destination of each 
directory in the DR. 

When DTL receives a DR, it writes the source and destination 
into dirnames.log and increases the total number of directories in 
dircounts.log by one. When subdirectories are retrieved and the 
corresponding DRs are constructed, dircounts.log and 

dirnames.log are updated in the same way. Filenames.log and the 
total number of files in filecounts.log are updated when a 
directory request is processed, and corresponding file transfer 
requests are constructed for files in the directory. After each 
directory transfer is completed, the processed directory number in 
dircounts.log is increased by one. The transfer thread updates the 
“last file transferred” pointer in filecounts.log right after it gets a 
file transfer request from FQ, and a checkpoint file is created for 
each file request at the same time. The name of the checkpoint file 
is the unique identifier (ID) of the file transfer request, There is no 
content in the checkpoint file; it is used only to record which files 
are being moved currently. When a transfer completes, the 
transfer thread deletes the checkpoint file.  

Error recovery happens after DTL completes initialization. The 
error recovery procedure comprises four steps. First, a file transfer 
request is constructed for each error.log entry; second, a file 
transfer request is built for each check point file; third, the  
“last file transferred” pointer is obtained from filecounts.log, and 
a file transfer request is constructed for each filenames.log entry 
from the pointer until the end of the file; fourth, DTL gets DRs 
from dircounts.log and dirnames.log similarly. Figure 4 presents 
the pseudocode of the error recovery procedure. 

for each entry in error.log 
   construct a file transfer request 
   put the file transfer request into FQ 
end for 
for each check point file 
   get transferID of the check point file 
   get corresponding entry from filenames.log 
   construct file transfer request 
   put the file transfer request into FQ 
end for 
p_value = the pointer value from filecounts.log 
t_value=total number of files from filecounts.log 
if(p_value < t_value) 
   for each transferID in (p_value, t_value] 
      get corresponding entry from filenames.log 
      construct file transfer request 
      put the file transfer request into FQ    
   end for 
end if 
f_num = number of completed directories  
t_num = total number of directories to transfer 
if(f _num<t_num) 
   for each dirID in (f_num, t_num]    
      get corresponding entry from dirnames.log 
      construct directory transfer request 
      put the directory transfer request into DQ    
   end for 

end if 

Figure 4: Error recovery procedure 

3.2 Data Scheduler 
The data scheduler is responsible for ordering transfer requests 

according to a given scheduling policy and for putting requests 
into the DTL directory queue for actual data transfer. We 
designed three data scheduling policies to cater to the 
requirements of various scientific experiments.  

The simplest policy, FCFS, adds file requests to the end of the 
file queue. In the case of a directory request, the data scheduler 
adds it to the end of the directory queue and recursively 
communicates with the GridFTP server to identify all nested 
subdirectories. Then, for each subdirectory, a directory request is 
constructed and appended to the directory queue. DTL is 



responsible for expanding files under each subdirectory into the 
file queue and moving them. 

Data generated by scientific experiments may have dependency 
relationships, and users might want to move one dataset before 
another. To this end, we designed a dependency-aware scheduling 
policy, DAS. In this policy, a user-specified dependency 
relationship is passed to the data scheduler with a DR. DAS 
behaves in the same way as FCFS except that the subdirectories 
returned by the GridFTP server are put into the directory queue 
according to the order specified by user in the dependency 
relationship. If only a subset of the subdirectories is named in the 
dependency relationship specification, the remaining 
subdirectories are put into the directory queue in the order they 
are returned from the GridFTP server. 

Data Scheduler

Dir requests 
queues

File requests 
queues

Transfer request

Thread 
Pool

Thread 
Pool

Thread 
Pool

Expand directory request to 
corresponding file requests

Transfer threads get 
requests from queue

DTL DTL DTL

Assign  different pairs of 
endpoints to different queues

 

Figure 5: Multiple-Pair Transfer Scheduling 

The third policy addresses scenarios in which data must be 
moved to different remote locations over different network links. 
Processing these transfer requests concurrently makes full use of 
the network links and can improve aggregate performance 
significantly. Thus, we designed the Multiple-Pair Transfer 
Scheduling (MPTS) policy, which, as illustrated in Figure 5, 
creates a DTL instance for each endpoint pair; hence, multiple 
endpoint pairs are served concurrently. In order to avoid 
exhausting the resources of the machine where the data movement 
system runs, at most only five concurrent DTL instances are 
allowed. If there are more than five endpoint pairs, those are 
appended to these DTL instances and processed sequentially. 
MPTS can be combined with DAS, in which case each endpoint 
pair has its own dependency relationship. 

3.3 GridFTP GUI 
The fourth component simplifies DTL usage by providing a 

graphical user interface. GridFTP GUI is a cross-platform 
GridFTP client tool based on Java web start technology [18] and 
can be accessed in a single click. Users can always get the most 
recent version of the application without any manual installation.    
Figure 6 is a screen snapshot of GridFTP GUI. 

GridFTP GUI allows users to transfer files using drag-and-drop 
operations. Many scientific datasets are organized into a 
hierarchical directory structure. The total number of files under 
the top directory is typically large. However, the number of files 
in each nested subdirectory is moderate. The data scheduler and 
DTL handle the task of efficient data movement. GridFTP GUI is 
responsible for displaying the transfer status clearly and 
methodically. Users require well-organized information so that 

they can easily view and track the status of a transfer. 
Accordingly, we show transfer information for directories. For the 
directory that is being actively transferred, we list all files under 
that directory and show the status of each file. When all the files 
in the directory are transferred, the directory’s status is updated to 
“Finished,” and the files under that directory are removed from 
the display. 

 

Figure 6: GridFTP GUI screen snapshot 

Data produced by large-scale scientific experiments commonly 
is transferred among different organizations or countries, each 
having individual policies and trust certificates issued by distinct 
accredited authorities. Hence, establishing trust relationships is a 
big challenge. 

The International Grid Trust Federation (IGTF) [20] is an 
organization that federates policy management authorities all over 
the world, with the goal of enhancing establishment of cross-
domain trust relationships between Grid participants. The 
distribution provided by IGTF contains root certificates, 
certificate revocation list locations, contact information, and 
signing of policies. Users can download this distribution and 
install it to conduct cross-domain communication.  

When GridFTP GUI starts up, it contacts the IGTF website and, 
if there is any update, downloads the latest distribution and 
installs it in the trusted certificates directory. This procedure 
ensures that the GUI trusts the certificates issued by the certificate 
authorities that are part of IGTF. This feature simplifies the 
establishment of cross-domain trust relationships with other Grid 
entities. 

For more detailed information regarding GridFTP GUI, please 
refer to [25]. 

4. CASE STUDY 
The Advanced Photon Source (APS) [3] at Argonne National 

Laboratory provides the Western Hemisphere’s most brilliant x-
ray beams for research. More than 5,000 scientists worldwide 
perform scientific experiments at the APS annually. Such 
experiments span all scientific disciplines, for example, 
improving vaccines against rotavirus, increasing operational 
efficiencies of aircraft turbine blades, and characterizing newly 
discovered superconducting materials. The efficient dissemination 



of data acquired at the APS to remote scientific collaborators is of 
great concern. In this section, we describe how the tomography 
beamline at APS is making use of DTL. 

 

Listener l = new DefaultListener();   
DataTransferExecutor executor  
    = new GridFTPTransferExecutor( 
               Constants.DEFAULT_THREADS_NUM,  
               l, "logfile"); 
executor.setSchedulePolicy(Constants.FCFS); 
Transfer t1 = new DirTransfer( 
              "gsiftp://clutch.aps.anl.gov:2811/data/tomo/",  
              "gsiftp://qb1.loni.org:51000/work/tomo/ "); 
 executor.addTransfer(t1); 

Figure 7: Tomo Script code snippet 

 

Figure 8: Tomo Script code snippet, screen snapshot 

Developers at the APS have integrated the data scheduler and 
DTL into the Tomo Script program used to automate tomography 
experiments at the APS. Figures 7 and 8 show a code snippet and 
screen snapshot of Tomo Script. From the code snippet, we can 
see that the simple API implemented by our data transfer 
framework made this integration straightforward. Application 
developers create a DefaultListener instance for receiving 
notification messanges and a DataTransferExecutor instance (the 
implementation class of DTL) for data movement, then specify 
the data scheduling policy they want. Finally, they create a 
Transfer object with source and destination address and put it into 
the transfer queue. The instance of DataTransferExecutor will 
conduct the actual data transfer. 

Tomo Script can acquire data while unattended for a group of 
samples loaded into an automated sample changer. It also can 
load samples into the x-ray beam and control all the equipment 
necessary to acquire the approximately 12 GB of data acquired 
per sample. In one 24-hour period, the system is capable of 
running 96 samples and acquiring 1.1 TB of data. This data must 
be moved to an on-site computational cluster for processing 
before scientists can determine whether critical acquisition 

parameters are correct for acquiring high-quality data. Tomo 
Script thus relieves the scientist of the arduous task of finding the 
right dataset out of hundreds to move and monitoring the data 
movement for proper completion. Transfer failures are noted, and 
automatic recovery is attempted. If multiple transfer failures occur, 
the scientist is alerted so appropriate action can be taken.  
   The other beamline users at APS are evaluating the framework, 
including GridFTP GUI, to simplify their data transfer work. 

5. EXPERIMENTAL RESULTS 
In this section we first describe the experiment configuration 

and then present our results. 

5.1 Experiment Setup 
We measured the time taken to transfer data between 

computers at the APS and both Louisiana State University (LSU) 
and the Pittsburgh Supercomputing Center (PSC). The GridFTP 
server machine at the three sites had the following configuration. 
The APS node is equipped with four AMD 2.4 GHz dual-core 
CPUs, 8 GB memory, and a gigabit Ethernet (1000 Mb/s) 
interface. The LSU node has two 2.33 GHz quad-core Xeon 
processors, 8 GB memory, and a gigabit Ethernet interface. The 
PSC node is with two 1.66 GHz dual-core processors, 8 GB 
memory, and a gigabit Ethernet interface. All these machines 
were running Linux with TCP autotuning enabled and configured 
with at least a 4 MB maximum TCP buffer. The network link 
between APS and LSU and the link between APS and PSC both 
traverse the public Internet. The round-trip time between APS and 
PSC is 32 ms, and the round trip time between APS and LSU is 
33 ms. 

 
Table 1. Data size and file counts in the experimental data 

Subdirectory 
Name 

Subdirectory Size 
(GB) 

Number of Files

tray01 140 20,549 
tray02 103 22,376 
tray03 34 4,335 
tray04 97 19,828 
tray05 19 2,432 
tray06 166 24,368 

jason_sam02 35 3,624 
tomo_1024 12 3,733 
tomo_2048 58 5,103 

tomo_2048_test 35 2,918 
tomo_512 1.2 2,801 

   Total 696 112,093 

We measure the performance of our data transfer library and 
data scheduler when run from the command line (DS_DTL) and 
when run from GridFTP GUI. For comparison, we also measure 
the performance of globus-url-copy (abbreviated here as GUC), a 
widely used GridFTP command-line client that does not 
incorporate the adaptive threading strategies implemented in DTL. 
Since the kernel on all the machines had autotuning enabled, 
manual configuration of the TCP buffer size was not necessary. 
GridFTP from Globus Toolkit 4.2.1 is installed at all three sites. 
All reported values are the mean of five trials. 

Our experiments involved the movement of either a subset or 
all of a 696 GB dataset generated by a tomography experiment. 
This dataset comprises 97 samples and numerous files contained 



in 11 subdirectories, as summarized in Table 1. Note that the 
average file size is small (only 6.2 MB), a common situation 
when dealing with experimental data. 

5.2 Experimental Results 
We present in Figure 9 data transfer times for DS_DTL and 

GridFTP GUI (both using the FCFS scheduling policy) and for 
GUC, when moving the tray04 directory (97 GB, 19,828 files) 
from APS to LSU. The performance of GUC improves with 
increasing concurrency value up to 20 concurrent threads; beyond 
that, the performance starts to degrade. This situation implies that 
using a flat, high-concurrent value throughout the transfer need 
not necessarily result in better performance. In contrast, 
DS_DTL’s thread pool tuning procedure allows it to adjust 
dynamically the numbers of transfer threads used. As a result, it 
performs better than GUC. Moreover, when the concurrency 
value was increased beyond 16, intermittent failures occurred 
because of server load. GUC does not have robust failure-
handling mechanisms to recover from those failures automatically. 
Indeed, if we consider only a stable GUC configuration (c<16), 
DS_DTL and GridFTP GUI perform much better. DS_DTL 
achieves an end-to-end transfer rate of roughly 277 Mbit/s. 
Because of the overhead of GUI elements and some 
synchronization operations, GridFTP GUI performs moderately 
worse than DS_DTL and the fastest GUC configuration. The 
DS_DTL thread pool size varied from 8 to 26 during the transfer, 
without much variation from run to run. 

 

Figure 9: Time taken by DS_DTL, GridFTP GUI, and GUC 
to move 97 GB in 19,828 files from APS to LSU. The numbers 
in parentheses represent the number of concurrent transfer 

processes used for different GUC configurations. 

 

Figure 10: Data transfer time for DTL and GridFTP GUI 
when moving 696 GB in 112,093 files from APS to LSU 

Figure 10 presents results for DS_DTL and GridFTP GUI when 
moving the full dataset from APS to LSU. (GUC did not run to 
completion for these large datasets because of transient system 
failures such as file system errors and server load.) Again, we see 

that GridFTP GUI incurs a modest overhead relative to raw 
DS_DTL. 

 

 

Figure 11: Data transfer time of DS_DTL and GUC with 
client and server errors 

 

Figure 12: Transfer times for DS_DTL with MPTS, sequential 
DS_DTL transfers, and GUC 

Our second experiment tested DS_DTL’s error recovery 
capabilities. In this experiment, subdirectory tomo_2048 was 
moved from APS to LSU, with the FCFS scheduling policy. The 
retry interval was set to 30 seconds for DS_DTL, and the number 
of retries was set to five. The same parameters were set for GUC 
as well. We measured the response of both DS_DTL and GUC in 
the following scenario. Five minutes after transfer start, we 
rebooted the client computer, resulting in a 2-minute reboot 
process. Five minutes after the client computer reboot completed, 
we shut down the GridFTP server at LSU, restarting it one minute 
later. 

The results are shown in Figure 11. DS_DTL handled the errors 
well, restarting correctly after the client computer reboot and 
resuming the interrupted transfer due to the GridFTP server 
shutdown when the server restarted. We see that the total time for 
DS_DTL with errors is slightly longer than that of DS_DTL 
without error plus the three minutes consumed by restarts. We 
attribute this discrepancy to the facts that (a) after program restart, 
the thread pool is not immediately optimal and (b) files that were 
in transit when the error happened must be retransferred. 

In contrast, GUC restarted from scratch after the client machine 
reboot, wasting all effort performed prior to the reboot.  GUC also 
did not handle the server shutdown well: the retry option did not 
have any effect, and GUC terminated immediately at server 
shutdown. Thus the time taken by the last restart (Re_transfer2 in 
the graph) of GUC with errors equals the transfer time without 
any error. In other words, all previous effort was wasted.  



The last experiment evaluated the performance of the MPTS 
data scheduling policy. Two subdirectories were involved in this 
experiment: tomo_2048 was moved from APS to LSU, and 
jason_sam02 was moved from APS to PSC. We studied three 
scenarios: (a) DS_DTL when using MPTS to enable concurrent 
execution of the two subdirectory transfers; (b) sequential 
execution (FCFS scheduling policy is used here), again using 
DS_DTL, of first the LSU and then the PSU transfer; and (c) 
transfer using GUC. (GUC allows a user to request multiple 
transfers in one command, through the –f option, but the actual 
data movement is sequential.) 

The results are shown in Figure 12. The times taken to move 
tomo_2048 from APS to LSU and jason_sam02 from APS to PSC 
individually are shown as the two columns in the middle of the 
graph. We see that the number corresponding to MPTS is only 
slightly greater than the maximum of those two times (the transfer 
time from APS to LSU). The time needed for GUC is the sum of 
the two individual transfers using GUC. MPTS significantly 
improves transfer performance. 

6. CONCLUSION AND FUTURE WORK 
We have presented a data transfer framework designed to meet 

the data transfer requirements of scientific facilities, which often 
face the need to move large numbers of relatively small files 
reliably and rapidly to remote locations. Building on GridFTP, 
this system uses a combination of automatic concurrency 
adaptation and restart mechanisms to move large volumes of data 
with high performance and robustness. Alternative scheduling 
policies support the specification of dependencies between 
transfers and the use of multiple network paths. The system has 
been deployed successfully in the Advanced Photon Source at 
Argonne National Laboratory for the transfer of experimental data. 

Currently, GridFTP GUI cannot estimate the total and 
remaining transfer time of a request. We intend to add data 
transfer time estimation in the next release. We also plan to 
encapsulate this data transfer frramework in a Grid service with a 
standard interface, so that users can invoke these services from 
remote locations and conduct data transfers easily, without being 
aware of any updates to the service implementation or the data 
transfer framework. 
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