
A Data Transfer Framework for Large-Scale
Science Experiments

Wantao Liu1,5, Brian Tieman3, Rajkumar Kettimuthu4,5, Ian Foster2,4,5
 1School of Computer Science and Engineering, Beihang University, Beijing, China

 2Department of Computer Science, The University of Chicago, Chicago, IL
 3Advanced Photon Source, Argonne National Laboratory, Argonne, IL
 4Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL
 5Computation Institute, The University of Chicago, Chicago, IL

liuwt@act.buaa.edu.cn, tieman@aps.anl.gov, kettimut@mcs.anl.gov, foster@mcs.anl.gov

ABSTRACT
Modern scientific experiments can generate hundreds of gigabytes
to terabytes or even petabytes of data that may furthermore be
maintained in large numbers of relatively small files. Frequently,
this data must be disseminated to remote collaborators or
computational centers for data analysis. Moving this data with
high performance and strong robustness and providing a simple
interface for users are challenging tasks. We present a data
transfer framework comprising a high-performance data transfer
library based on GridFTP, a data scheduler, and a graphical user
interface that allows users to transfer their data easily, reliably,
and securely. This system incorporates automatic tuning
mechanisms to select at runtime the number of concurrent threads
to be used for transfers. Also included are restart mechanisms
capable of dealing with client, network, and server failures.
Experimental results indicate that our data transfer system can
significantly improve data transfer performance and can recover
well from failures.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed Applications

General Terms
Algorithms, Performance, Design.

Keywords
Data transfer, GridFTP, Data scheduling, Concurrent, Error
recovery

1. INTRODUCTION
Modern scientific experiments and facilities, such as CERN [1],

LIGO [2], the Advanced Photon Source [3], and the Spallation
Neutron Source [4] can generate multiple gigabytes to terabytes
of data every day. Frequently, this data must be disseminated to
remote collaborators or advanced computational centers capable
of running the complex CPU-intensive applications needed to

analyze the data. Transferring large volumes of data on physical
media such as removable disk drives is problematic. Physical
media can be lost or irreparably damaged in transit. Moreover,
collaborations often require access to the most current data from
multiple sites around the world. Shipping data on physical media
introduces a time lag and makes it difficult to ensure that all
collaborators have the most recent results.

The Internet provides a convenient connection between
remotely located collaborators to work on common datasets.
However, transferring the large volumes of data generated by a
facility or experiment over the Internet has its own set of
challenges. In particular, low bandwidth and unreliable
connections can make it difficult to move data rapidly and
reliably.

The GridFTP [5][6] protocol extends standard FTP [7] for high-
performance operation, providing improved performance
compared to standard FTP. GridFTP is widely used for wide-area
data transfer. For example, the high energy physics community
bases its entire tiered data movement infrastructure for the Large
Hadron Collider computing Grid on GridFTP; and the Laser
Interferometer Gravitational Wave Observatory routinely uses
GridFTP to move one terabyte a day to each of eight remote sites.

Even so, the configuration and tuning of a GridFTP toolset can
be daunting to users. Errors and interruptions during data transfers
are inevitable obstacles as well. Scientists desire a high-
performance, straightforward, user-friendly, and robust data
transfer mechanism that can significantly improve their work
efficiency.

To meet this need, we have designed and implemented a data
transfer framework based on GridFTP.

This paper makes four contributions: (a) a data transfer
framework architecture that addresses the requirements just listed;
(b) an algorithm to autotune data transfer concurrency that can
improve performance significantly; (c) two data scheduling
algorithms; and (d) an error recovery algorithm that addresses
both client-side and server-side errors.

The paper is organized as follows. In Section 2, we review
some previous work. In Sections 3 and 4, we present the data
transfer framework and introduce an application of our system as
a case study. In Section 5, we present experiment results; and in
Section 6, we conclude and outline future plans.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DIDC’10, June 22, 2010, Chicago, IL, USA.
Copyright 2010 ACM

2. RELATED WORK
Some large-scale science experiments or research projects have

their own data management solution to meet their requirements.
The PhEDEx [8][9] data transfer management system is used by

mailto:kettimut@mcs.anl.gov

the CMS experiment at CERN. PhEDEx consists of a set of
agents responsible for file replication, routing decisions, tape
migrations, and so on. ATLAS DDM [26] is a file-based data
management system operates on the worldwide LHC computing
grid infrastructure (WLCG). It is capable of managing data on the
order of petabytes. Moreover, DDM has a subscription
mechanism which helps user easily get the latest version of data
they are interested in. The caGrid [11] aims at building a Grid
software infrastructure for multi-institutional data sharing and
analysis for cancer research. It has two components related to data
management. caGrid Transfer [12] is used for moving small
amounts of data between a client and server. For moving huge
amounts of data, caGrid developed BulkData Transfer [13] based
on GridFTP. Since the focus of caGrid is not on moving huge
volumes of data, these transfer mechanisms offer only basic data
transfer functionality, whereas our framework provides flexible
data-scheduling policies and error recovery mechanisms that deals
with client, network, and server errors.

Sinnott et al. [10] discuss how to manage hundreds of
thousands of files produced by the nanoCMOS project. They
compared the Storage Resource Broker (SRB) and Andrew File
System (AFS) in terms of architecture, performance, and security.
To facilitate the discovery, access, and use of electronics
simulation data, they also propose a metadata management
architecture. This architecture uses the SRB or AFS for data
movement but does not consider error recovery and data
scheduling. The work focuses on data sizes of a few gigabytes;
however, we are interested in data sizes of hundreds of gigabytes
or more.

Stork [14][15] is a data scheduler specialized for data
placement and data movement. It is able to queue, schedule,
monitor, and manage data placement activities, with data
placement jobs executed according to a specified policy. Stork
supports multiple data transfer protocols and can decide which
protocol to use at runtime. It also implements basic error recovery
mechanism. However, it cannot recover from client failures,
whereas our system can.

Ali and Lauria [16] describe asynchronous primitives for
remote I/O in Grid environments. The authors implemented a
system, named SEMPLAR, based on the Storage Resource Broker.
In addition to asynchronous primitives, multithreaded transfer and
on-the-fly data compression are used to improve performance
further. We also use asynchronous I/O and multithreaded transfers
in our data transfer framework; in addition, however, our thread
pool is able to tune dynamically at runtime to improve
performance.

RFT (Reliable Transfer Service) [19] is a component of the
Globus Toolkit. Implemented as a set of web services, RFT
performs third-party transfers using GridFTP with basic reliable
mechanisms. Data transfer state is recorded in a database; when a
transfer fails, it can be restarted automatically by using the
persistent data. However, our system supports not only third-party
transfers but also client-server transfers. Moreover, RFT is
heavyweight, relying on a database for error recovery, whereas
we use a simpler and more lightweight file-based approach. In
addition, RFT does not support data transfer scheduling, whereas
our system supports a flexible data transfer scheduling scheme.

gLite File Transfer Service [27] provides reliable file
movement in gLite grid middleware. It uses a third party copy
(e.g., gsiftp) to perform the actual data movement. The transfers
managed by FTS are all asynchronous. A web service interface is

exposed to users. FTS has a data scheduler component as well;
besides the global policy, each VO can apply their own data
scheduling policies.

Vazhkudai [21] studied data replica selection, data transfer
performance prediction, and parallel download of datasets from
multiple servers in a data Grid environment based on Globus.
Vazhkudai’s work aims to improve data transfer performance by
making full use of data replicas. Our work is complementary to
his work. We focus on how to transfer data with high performance
and robustness in an environment without replicas, since data
produced by an experiment must be moved from a scientific
facility to a researcher’s home institute;

Using multiple streams for a data transfer can improve
throughput significantly. Several researchers have sought to
compute the optimal number of streams for a data transfer.
Hacker et al. [22] give the relationship among throughput, number
of streams, packet loss rate, and round-trip time; however, their
results are valid only for uncongested networks. Lu et al. [23] and
Yildirim et al. [24] extend the model to both uncongested and
congested networks and present formulas for predicting the
optimal number of streams. All these studies aim to optimize a
single, large transfer. In contrast, we propose an effective method
for tuning the throughput of multiple concurrent transfers of small
files.

3. DATA TRANSFER FRAMEWORK

Figure 1: Architecture of the data transfer framework

Figure 1 shows the architecture of our data transfer framework.
We use GridFTP for data movement because of its high
performance and wide acceptance in the scientific community.

GridFTP GUI provides users a convenient tool for data
movement based on a graphical interface. The data scheduler
accepts jobs and dispatches them to the data transfer library
according to a specified scheduling policy. The data transfer
library hides the complexity and heterogeneity of underlying data
transfer protocol. It provides a data transfer thread pool and
supports error recovery. It can interact with diverse data transfer
protocols, although currently we support only GridFTP using
CoG jglobus. The CoG jglobus [17] library includes a pure Java
GridFTP client API; it can be used to build applications that
communicate with GridFTP servers.

In the sections that follow, we describe the various components
of this architecture.

3.1 Data Transfer Library
The data transfer library (DTL) provides a simple API for

asynchronous, fault-tolerant, high-performance data transfers. It
accepts transfer requests from the upper layer application and

We use an adaptive scheme to tune the transfer thread pool size
automatically. In the following text, we refer to a transfer source
and destination as an “endpoint pair.” We introduce a data
structure, THREAD_POOL_MAP, that for each endpoint pair
records the best-known number of transfer threads. When a new
DR is initiated, DTL looks up THREAD_POOL_MAP. If an
entry corresponding to the endpoint pair of this DR is found, the
pool size is set to the recorded value; otherwise, it is set to an
initial size (the default is eight).

manages the data movement. The DTL is designed to be modular
and extensible: diverse data transfer protocols can be easily
incorporated into DTL as plugins. Currently, DTL supports only
GridFTP. Other data transfer protocol plugins will be
implemented in the future. DTL is not tightly coupled to the data
transfer framework presented here; it is generic enough to be used
separately.

Asynchronous data transfer is an efficient way to improve
application performance. For example, it allows disk I/O to be
overlapped with network I/O, improving resource utilization and
reducing application runtime.

DTL uses thread and queue mechanisms to implement
asynchronous data transfers. Transfer requests are categorized as
either file requests (FRs) or directory requests (DRs), and we
maintain two queues: one for file transfer requests (FQs) and one
for directory transfer requests (DQs). A single directory transfer
request results in a number of file transfer requests. A single
thread processes the directory transfer requests in the directory
queue and populates the file transfer queue. Each file transfer
request is assigned a unique identifier. Each queue has a tunable,
maximum-length threshold; if this threshold is exceeded, a
request to add transfers blocks until there is enough space in the
queue. In order to make full use of network bandwidth, a thread
pool is created to process requests in the file transfer queue. By
default, the initial size of the thread pool is set to four. If FQ is
empty, the corresponding processing threads are suspended until a
new request is received.

Figure 2 depicts the interaction between the thread pool and
queues in DTL. The directory request-processing thread acquires
a DR, communicates with the specified source machine (a remote
GridFTP server or the machine where DTL is running) of the
request to determine the names of all regular files within the
specified directory, constructs an FR for each file, and adds the
new FR into FQ. The file transfer request process thread in the
pool repeatedly gets an FR from FQ and performs the actual data
transfer. After the transfer completes, the thread starts serving
another request from the queue.

Figure 2: Thread pool and queues in DTL

The automatic tuning process periodically calculates the
instantaneous throughput for each directory request. An average
throughput is derived from five instantaneous throughput values.
The thread pool expands (by default, adding four threads) if the
current average throughput is larger than the preceding average
throughput by some factor (the default is 1.3). If the current
average throughput is smaller than the previous average
throughput by some factor (default is 0.7), two situations are
considered. If the current number of threads is larger than the
previous number of threads, we regard the throughput
deterioration as caused by congestion due to too many transfer
threads, and we shrink the thread pool; redundant threads are
killed after they finish their work. Otherwise, the throughput
decrease is attributed to lack of transfer threads; hence, new
threads are spawned and put into the pool. This process runs at a
fixed interval to tune the thread pool size dynamically during
runtime. When the directory transfer request completes,
THREAD_POOL_MAP is updated with the current thread
number. Our experiments show that this automatic tuning scheme
can significantly improve data transfer throughput. Figure 3
describes this procedure in pseudocode.

After adding a request to the corresponding queue, the invoker
(the application invokes DTL directly or uses DTL through data
scheduler) returns immediately and continues running other tasks
without waiting for the data transfer to finish. To notify the
invoker of the updated transfer status and statistics information of
the request, we implemented a notification mechanism. When the
transfer status changes, DTL generates a notification message and
sends it to the invoker. A notification message consists of the
names of the files being moved, amount of bytes transferred in
this request, number of successful requests, number of failed
requests, and number of remaining requests. In order to mitigate
the burden of receiving many notification messages, DTL also
supports a summary notification message for both directory
requests and file requests. A summary notification includes the
same information as the notification message described above
except that it does not have the names of the files being moved.
Such messages are delivered at a regular interval. Our experience
indicates that the summary notification mechanism is more useful
for scientists to move scientific dataset.

The DTL program is designed to run on a client computer,
which is more susceptible to unexpected errors such as machine
reboot, power failure, or accidental shutdown of the program by a
user. In addition, data transfers initiated by DTL may fail for
various reasons, including disk failure and network outage. If a
failure occurs while transferring a directory with a large number
of files, it is not feasible to identify and retransfer the missing
files manually. Thus, we implement in DTL a basic fault-
tolerance mechanism that can handle client failures, server
failures, and network failures.

Determining the size of the thread pool is a challenging
problem. Because the optimal value is affected by several factors
and may change dynamically at runtime, automatic tuning is
desired for optimal performance.

For the errors that DTL can discover, such as a server crash or
network outage, DTL retries several times at a user-specified
interval. If all attempts fail, DTL writes the request to an error log
file (error.log).

while (true)
 if(a new DR starts to be served)
 get endpoint pair from transfer request
 if (endpoint pair in THREAD_POOL_MAP)
 pool_size=get from THREAD_POOL_MAP
 else
 pool_size=default_pool_size
 end if
 thread pool size = pool_size
 prev_Throughput = 0
 prev_Threads=pool_size
 current_Threads=pool_size
 else
 for (i=1; i<=sampling_times;i=i+1)
 B1=bytes has been transferred at instant t1
 sleep for default_interval time
 B2=bytes has been transferred at instant t2
 ins_Throughputi=(B2-B1)/(t2-t1)
 end for
 AVG_Throughput=∑ins_Throughputi/sampling_times
 if(AVG_Throughput>expand_factor*prev_Throughput)
 prev_Throughput=AVG_Throughput
 prev_Threads=current_Threads
 expand thread pool size for the endpoint pair
 else
 if(AVG_Throughput<shrink_factor*prev_Throughput)
 if(prev_Threads>current_Threads)
 prev_Throughput=AVG_Throughput
 prev_Threads=current_Threads
 expand thread pool size for endpoint pair
 else
 shrink thread pool size for endpoint pair
 end if
 end if
 end if
 if (end of the DR reached)
 update THREAD_POOL_MAP with current_Threads
 end if
 end if
 sleep for a while

end while

Figure 3: Tuning procedure for thread pool size

In contrast, DTL typically cannot detect or respond to client
(DTL) failures. To permit recovery from such situations, we use a
lightweight checkpoint-based error recovery mechanism. For each
DR (including all nested subdirectories), four files are created for
error recovery:

filecounts.log: records the number of files in the DR and
includes a pointer (referred as “last file transferred pointer” in the
following text) to the file transfer request that has the largest ID in
all requests currently being processed;

filenames.log: records the source and destination of each file
transfer request;

dircounts.log: records the total number of directories in the DR
and how many have been processed;

dirnames.log: records the source and destination of each
directory in the DR.

When DTL receives a DR, it writes the source and destination
into dirnames.log and increases the total number of directories in
dircounts.log by one. When subdirectories are retrieved and the
corresponding DRs are constructed, dircounts.log and

dirnames.log are updated in the same way. Filenames.log and the
total number of files in filecounts.log are updated when a
directory request is processed, and corresponding file transfer
requests are constructed for files in the directory. After each
directory transfer is completed, the processed directory number in
dircounts.log is increased by one. The transfer thread updates the
“last file transferred” pointer in filecounts.log right after it gets a
file transfer request from FQ, and a checkpoint file is created for
each file request at the same time. The name of the checkpoint file
is the unique identifier (ID) of the file transfer request, There is no
content in the checkpoint file; it is used only to record which files
are being moved currently. When a transfer completes, the
transfer thread deletes the checkpoint file.

Error recovery happens after DTL completes initialization. The
error recovery procedure comprises four steps. First, a file transfer
request is constructed for each error.log entry; second, a file
transfer request is built for each check point file; third, the
“last file transferred” pointer is obtained from filecounts.log, and
a file transfer request is constructed for each filenames.log entry
from the pointer until the end of the file; fourth, DTL gets DRs
from dircounts.log and dirnames.log similarly. Figure 4 presents
the pseudocode of the error recovery procedure.

for each entry in error.log
 construct a file transfer request
 put the file transfer request into FQ
end for
for each check point file
 get transferID of the check point file
 get corresponding entry from filenames.log
 construct file transfer request
 put the file transfer request into FQ
end for
p_value = the pointer value from filecounts.log
t_value=total number of files from filecounts.log
if(p_value < t_value)
 for each transferID in (p_value, t_value]
 get corresponding entry from filenames.log
 construct file transfer request
 put the file transfer request into FQ
 end for
end if
f_num = number of completed directories
t_num = total number of directories to transfer
if(f _num<t_num)
 for each dirID in (f_num, t_num]
 get corresponding entry from dirnames.log
 construct directory transfer request
 put the directory transfer request into DQ
 end for

end if

Figure 4: Error recovery procedure

3.2 Data Scheduler
The data scheduler is responsible for ordering transfer requests

according to a given scheduling policy and for putting requests
into the DTL directory queue for actual data transfer. We
designed three data scheduling policies to cater to the
requirements of various scientific experiments.

The simplest policy, FCFS, adds file requests to the end of the
file queue. In the case of a directory request, the data scheduler
adds it to the end of the directory queue and recursively
communicates with the GridFTP server to identify all nested
subdirectories. Then, for each subdirectory, a directory request is
constructed and appended to the directory queue. DTL is

responsible for expanding files under each subdirectory into the
file queue and moving them.

Data generated by scientific experiments may have dependency
relationships, and users might want to move one dataset before
another. To this end, we designed a dependency-aware scheduling
policy, DAS. In this policy, a user-specified dependency
relationship is passed to the data scheduler with a DR. DAS
behaves in the same way as FCFS except that the subdirectories
returned by the GridFTP server are put into the directory queue
according to the order specified by user in the dependency
relationship. If only a subset of the subdirectories is named in the
dependency relationship specification, the remaining
subdirectories are put into the directory queue in the order they
are returned from the GridFTP server.

Data Scheduler

Dir requests
queues

File requests
queues

Transfer request

Thread
Pool

Thread
Pool

Thread
Pool

Expand directory request to
corresponding file requests

Transfer threads get
requests from queue

DTL DTL DTL

Assign different pairs of
endpoints to different queues

Figure 5: Multiple-Pair Transfer Scheduling

The third policy addresses scenarios in which data must be
moved to different remote locations over different network links.
Processing these transfer requests concurrently makes full use of
the network links and can improve aggregate performance
significantly. Thus, we designed the Multiple-Pair Transfer
Scheduling (MPTS) policy, which, as illustrated in Figure 5,
creates a DTL instance for each endpoint pair; hence, multiple
endpoint pairs are served concurrently. In order to avoid
exhausting the resources of the machine where the data movement
system runs, at most only five concurrent DTL instances are
allowed. If there are more than five endpoint pairs, those are
appended to these DTL instances and processed sequentially.
MPTS can be combined with DAS, in which case each endpoint
pair has its own dependency relationship.

3.3 GridFTP GUI
The fourth component simplifies DTL usage by providing a

graphical user interface. GridFTP GUI is a cross-platform
GridFTP client tool based on Java web start technology [18] and
can be accessed in a single click. Users can always get the most
recent version of the application without any manual installation.
Figure 6 is a screen snapshot of GridFTP GUI.

GridFTP GUI allows users to transfer files using drag-and-drop
operations. Many scientific datasets are organized into a
hierarchical directory structure. The total number of files under
the top directory is typically large. However, the number of files
in each nested subdirectory is moderate. The data scheduler and
DTL handle the task of efficient data movement. GridFTP GUI is
responsible for displaying the transfer status clearly and
methodically. Users require well-organized information so that

they can easily view and track the status of a transfer.
Accordingly, we show transfer information for directories. For the
directory that is being actively transferred, we list all files under
that directory and show the status of each file. When all the files
in the directory are transferred, the directory’s status is updated to
“Finished,” and the files under that directory are removed from
the display.

Figure 6: GridFTP GUI screen snapshot

Data produced by large-scale scientific experiments commonly
is transferred among different organizations or countries, each
having individual policies and trust certificates issued by distinct
accredited authorities. Hence, establishing trust relationships is a
big challenge.

The International Grid Trust Federation (IGTF) [20] is an
organization that federates policy management authorities all over
the world, with the goal of enhancing establishment of cross-
domain trust relationships between Grid participants. The
distribution provided by IGTF contains root certificates,
certificate revocation list locations, contact information, and
signing of policies. Users can download this distribution and
install it to conduct cross-domain communication.

When GridFTP GUI starts up, it contacts the IGTF website and,
if there is any update, downloads the latest distribution and
installs it in the trusted certificates directory. This procedure
ensures that the GUI trusts the certificates issued by the certificate
authorities that are part of IGTF. This feature simplifies the
establishment of cross-domain trust relationships with other Grid
entities.

For more detailed information regarding GridFTP GUI, please
refer to [25].

4. CASE STUDY
The Advanced Photon Source (APS) [3] at Argonne National

Laboratory provides the Western Hemisphere’s most brilliant x-
ray beams for research. More than 5,000 scientists worldwide
perform scientific experiments at the APS annually. Such
experiments span all scientific disciplines, for example,
improving vaccines against rotavirus, increasing operational
efficiencies of aircraft turbine blades, and characterizing newly
discovered superconducting materials. The efficient dissemination

of data acquired at the APS to remote scientific collaborators is of
great concern. In this section, we describe how the tomography
beamline at APS is making use of DTL.

Listener l = new DefaultListener();
DataTransferExecutor executor
 = new GridFTPTransferExecutor(
 Constants.DEFAULT_THREADS_NUM,
 l, "logfile");
executor.setSchedulePolicy(Constants.FCFS);
Transfer t1 = new DirTransfer(
 "gsiftp://clutch.aps.anl.gov:2811/data/tomo/",
 "gsiftp://qb1.loni.org:51000/work/tomo/ ");
 executor.addTransfer(t1);

Figure 7: Tomo Script code snippet

Figure 8: Tomo Script code snippet, screen snapshot

Developers at the APS have integrated the data scheduler and
DTL into the Tomo Script program used to automate tomography
experiments at the APS. Figures 7 and 8 show a code snippet and
screen snapshot of Tomo Script. From the code snippet, we can
see that the simple API implemented by our data transfer
framework made this integration straightforward. Application
developers create a DefaultListener instance for receiving
notification messanges and a DataTransferExecutor instance (the
implementation class of DTL) for data movement, then specify
the data scheduling policy they want. Finally, they create a
Transfer object with source and destination address and put it into
the transfer queue. The instance of DataTransferExecutor will
conduct the actual data transfer.

Tomo Script can acquire data while unattended for a group of
samples loaded into an automated sample changer. It also can
load samples into the x-ray beam and control all the equipment
necessary to acquire the approximately 12 GB of data acquired
per sample. In one 24-hour period, the system is capable of
running 96 samples and acquiring 1.1 TB of data. This data must
be moved to an on-site computational cluster for processing
before scientists can determine whether critical acquisition

parameters are correct for acquiring high-quality data. Tomo
Script thus relieves the scientist of the arduous task of finding the
right dataset out of hundreds to move and monitoring the data
movement for proper completion. Transfer failures are noted, and
automatic recovery is attempted. If multiple transfer failures occur,
the scientist is alerted so appropriate action can be taken.
 The other beamline users at APS are evaluating the framework,
including GridFTP GUI, to simplify their data transfer work.

5. EXPERIMENTAL RESULTS
In this section we first describe the experiment configuration

and then present our results.

5.1 Experiment Setup
We measured the time taken to transfer data between

computers at the APS and both Louisiana State University (LSU)
and the Pittsburgh Supercomputing Center (PSC). The GridFTP
server machine at the three sites had the following configuration.
The APS node is equipped with four AMD 2.4 GHz dual-core
CPUs, 8 GB memory, and a gigabit Ethernet (1000 Mb/s)
interface. The LSU node has two 2.33 GHz quad-core Xeon
processors, 8 GB memory, and a gigabit Ethernet interface. The
PSC node is with two 1.66 GHz dual-core processors, 8 GB
memory, and a gigabit Ethernet interface. All these machines
were running Linux with TCP autotuning enabled and configured
with at least a 4 MB maximum TCP buffer. The network link
between APS and LSU and the link between APS and PSC both
traverse the public Internet. The round-trip time between APS and
PSC is 32 ms, and the round trip time between APS and LSU is
33 ms.

Table 1. Data size and file counts in the experimental data

Subdirectory
Name

Subdirectory Size
(GB)

Number of Files

tray01 140 20,549
tray02 103 22,376
tray03 34 4,335
tray04 97 19,828
tray05 19 2,432
tray06 166 24,368

jason_sam02 35 3,624
tomo_1024 12 3,733
tomo_2048 58 5,103

tomo_2048_test 35 2,918
tomo_512 1.2 2,801

 Total 696 112,093

We measure the performance of our data transfer library and
data scheduler when run from the command line (DS_DTL) and
when run from GridFTP GUI. For comparison, we also measure
the performance of globus-url-copy (abbreviated here as GUC), a
widely used GridFTP command-line client that does not
incorporate the adaptive threading strategies implemented in DTL.
Since the kernel on all the machines had autotuning enabled,
manual configuration of the TCP buffer size was not necessary.
GridFTP from Globus Toolkit 4.2.1 is installed at all three sites.
All reported values are the mean of five trials.

Our experiments involved the movement of either a subset or
all of a 696 GB dataset generated by a tomography experiment.
This dataset comprises 97 samples and numerous files contained

in 11 subdirectories, as summarized in Table 1. Note that the
average file size is small (only 6.2 MB), a common situation
when dealing with experimental data.

5.2 Experimental Results
We present in Figure 9 data transfer times for DS_DTL and

GridFTP GUI (both using the FCFS scheduling policy) and for
GUC, when moving the tray04 directory (97 GB, 19,828 files)
from APS to LSU. The performance of GUC improves with
increasing concurrency value up to 20 concurrent threads; beyond
that, the performance starts to degrade. This situation implies that
using a flat, high-concurrent value throughout the transfer need
not necessarily result in better performance. In contrast,
DS_DTL’s thread pool tuning procedure allows it to adjust
dynamically the numbers of transfer threads used. As a result, it
performs better than GUC. Moreover, when the concurrency
value was increased beyond 16, intermittent failures occurred
because of server load. GUC does not have robust failure-
handling mechanisms to recover from those failures automatically.
Indeed, if we consider only a stable GUC configuration (c<16),
DS_DTL and GridFTP GUI perform much better. DS_DTL
achieves an end-to-end transfer rate of roughly 277 Mbit/s.
Because of the overhead of GUI elements and some
synchronization operations, GridFTP GUI performs moderately
worse than DS_DTL and the fastest GUC configuration. The
DS_DTL thread pool size varied from 8 to 26 during the transfer,
without much variation from run to run.

Figure 9: Time taken by DS_DTL, GridFTP GUI, and GUC
to move 97 GB in 19,828 files from APS to LSU. The numbers
in parentheses represent the number of concurrent transfer

processes used for different GUC configurations.

Figure 10: Data transfer time for DTL and GridFTP GUI
when moving 696 GB in 112,093 files from APS to LSU

Figure 10 presents results for DS_DTL and GridFTP GUI when
moving the full dataset from APS to LSU. (GUC did not run to
completion for these large datasets because of transient system
failures such as file system errors and server load.) Again, we see

that GridFTP GUI incurs a modest overhead relative to raw
DS_DTL.

Figure 11: Data transfer time of DS_DTL and GUC with
client and server errors

Figure 12: Transfer times for DS_DTL with MPTS, sequential
DS_DTL transfers, and GUC

Our second experiment tested DS_DTL’s error recovery
capabilities. In this experiment, subdirectory tomo_2048 was
moved from APS to LSU, with the FCFS scheduling policy. The
retry interval was set to 30 seconds for DS_DTL, and the number
of retries was set to five. The same parameters were set for GUC
as well. We measured the response of both DS_DTL and GUC in
the following scenario. Five minutes after transfer start, we
rebooted the client computer, resulting in a 2-minute reboot
process. Five minutes after the client computer reboot completed,
we shut down the GridFTP server at LSU, restarting it one minute
later.

The results are shown in Figure 11. DS_DTL handled the errors
well, restarting correctly after the client computer reboot and
resuming the interrupted transfer due to the GridFTP server
shutdown when the server restarted. We see that the total time for
DS_DTL with errors is slightly longer than that of DS_DTL
without error plus the three minutes consumed by restarts. We
attribute this discrepancy to the facts that (a) after program restart,
the thread pool is not immediately optimal and (b) files that were
in transit when the error happened must be retransferred.

In contrast, GUC restarted from scratch after the client machine
reboot, wasting all effort performed prior to the reboot. GUC also
did not handle the server shutdown well: the retry option did not
have any effect, and GUC terminated immediately at server
shutdown. Thus the time taken by the last restart (Re_transfer2 in
the graph) of GUC with errors equals the transfer time without
any error. In other words, all previous effort was wasted.

The last experiment evaluated the performance of the MPTS
data scheduling policy. Two subdirectories were involved in this
experiment: tomo_2048 was moved from APS to LSU, and
jason_sam02 was moved from APS to PSC. We studied three
scenarios: (a) DS_DTL when using MPTS to enable concurrent
execution of the two subdirectory transfers; (b) sequential
execution (FCFS scheduling policy is used here), again using
DS_DTL, of first the LSU and then the PSU transfer; and (c)
transfer using GUC. (GUC allows a user to request multiple
transfers in one command, through the –f option, but the actual
data movement is sequential.)

The results are shown in Figure 12. The times taken to move
tomo_2048 from APS to LSU and jason_sam02 from APS to PSC
individually are shown as the two columns in the middle of the
graph. We see that the number corresponding to MPTS is only
slightly greater than the maximum of those two times (the transfer
time from APS to LSU). The time needed for GUC is the sum of
the two individual transfers using GUC. MPTS significantly
improves transfer performance.

6. CONCLUSION AND FUTURE WORK
We have presented a data transfer framework designed to meet

the data transfer requirements of scientific facilities, which often
face the need to move large numbers of relatively small files
reliably and rapidly to remote locations. Building on GridFTP,
this system uses a combination of automatic concurrency
adaptation and restart mechanisms to move large volumes of data
with high performance and robustness. Alternative scheduling
policies support the specification of dependencies between
transfers and the use of multiple network paths. The system has
been deployed successfully in the Advanced Photon Source at
Argonne National Laboratory for the transfer of experimental data.

Currently, GridFTP GUI cannot estimate the total and
remaining transfer time of a request. We intend to add data
transfer time estimation in the next release. We also plan to
encapsulate this data transfer frramework in a Grid service with a
standard interface, so that users can invoke these services from
remote locations and conduct data transfers easily, without being
aware of any updates to the service implementation or the data
transfer framework.

7. ACKNOWLEDGEMENTS
This work was supported in part by the U.S. Department of
Energy, under Contract DE-AC02-06CH11357.

8. REFERENCES
[1] CERN: http://www.cern.ch/.

[2] LIGO: http://www.ligo.caltech.edu/

[3] APS: http://www.aps.anl.gov/

[4] SNS: http://neutrons.ornl.gov/

[5] W. Allcock, “GridFTP: Protocol Extension to FTP for the
Grid,” Global Grid Forum GFD-R-P.020, 2003.

[6] W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, C.
Dumitrescu, I. Raicu, and I. Foster, “The Globus Striped
GridFTP Framework and Server,” SC’05, ACM Press, 2005

[7] J. Postel and J. Reynolds, “File Transfer Protocol,” IETF,
RFC 959, 1985

[8] PhEDEx: http://cmsweb.cern.ch/phedex/

[9] J. Rehn, T. Barrass, D. Bonacorsi, J. Hernandez, I.
Semoniouk, L. Tuura, and Y. Wu, “PhEDEx High-
Throughput Data Transfer Management System,” CHEP06,
Mumbai, India, 2006

[10] R. O. Sinnott, C. Bayliss, C. Davenhall, B. Harbulot, M.
Jones, C. Millar, G. Roy, S. Roy, G. Stewart, J. Watt, and A.
Aseno, “Secure, Performance-Oriented Data Management
for nanoCMOS Electronics,” eScience 2008

[11] caGrid: http://cagrid.org/display/cagridhome/Home

[12] caGrid Transfer: http://cagrid.org/display/transfer/Home

[13] caGrid Bulk Data Transfer:
http://cagrid.org/display/bdt/Home

[14] T. Kosar and M. Livny, “Stork: Making Data Placement a
First Class Citizen in the Grid,”24th International
Conference on Distributed Computing Systems (ICDCS
2004), Tokyo, Japan, March 2004.

[15] T. Kosar and M. Balman, “A New Paradigm: Data-Aware
Scheduling in Grid Computing,” Future Generation
Computer Systems, 25, no. 4, April 2009, pp. 406-413

[16] N. Ali and M. Lauria. “Improving the Performance of
Remote I/O Using asynchronous Primitives,” 15th IEEE
International Symposium on High Performance Distributed
Computing, 2006, pp. 218–228

[17] CoG jglobus:http://dev.globus.org/wiki/CoG_jglobus

[18] Java web start technology:
http://java.sun.com/javase/technologies/desktop/javawebstart
/index.jsp

[19] RFT:http://globus.org/toolkit/docs/latest-stable/data/rft/#rft

[20] IGTF, http://www.igtf.net/

[21] S. Vazhkudai, "Bulk Data Transfer Forecasts and
Implications to Grid Scheduling,” Ph.D. Dissertation, The
University of Mississippi, May 2003

[22] T. J. Hacker, B. D. Noble, and B. D. Atley. “The end-to-end
performance effects of parallel TCP Sockets on a Lossy
Wide Area Network,” IPDPS ’02, p. 314. IEEE, April 2002.

[23] D. Lu, Y. Qiao, P. A. Dinda, and F. E. Bustamante.
“Modeling and Taming Parallel TCP on the Wide Area
Network,” IPDPS ’05, p. 68.2. IEEE, April 2005.

[24] Esma Yildirim, Mehmet Balman, and Tevfik Kosar,
“Dynamically Tuning Level of Parallelism in Wide Area
Data Transfers,” International Workshop on Data-aware
Distributed Computing, pp. 39–48, June 2008.

[25] Wantao Liu, Rajkumar Kettimuthu, Brian Tieman, Ravi
Madduri, Bo Li and Ian Foster, “GridFTP GUI: An Easy and
Efficient Way to Transfer Data in Grid,” GridNets2009,
September 2009.

[26] Branco, M., Cameron, D., Gaidioz, B., Garonne, V., Koblitz,
B., Lassnig, M., Rocha, R., Salgado, P. and Wenaus, T.
“Managing ATLAS data on a petabyte-scale with DQ2,”
Journal of Physics: Conference Series, Volume 119, Issue 6,
pp. 062017 (2008).

[27] gLite File Transfer Service:
www.gridpp.ac.uk/wiki/GLite_File_Transfer_Service

http://www.aps.anl.gov/
http://cmsweb.cern.ch/phedex/
http://cagrid.org/display/cagridhome/Home
http://cagrid.org/display/transfer/Home
http://cagrid.org/display/bdt/Home
http://www.sciencedirect.com/science/journal/0167739X
http://www.sciencedirect.com/science/journal/0167739X
http://dev.globus.org/wiki/CoG_jglobus
http://java.sun.com/javase/technologies/desktop/javawebstart/index.jsp
http://java.sun.com/javase/technologies/desktop/javawebstart/index.jsp
http://www.igtf.net/
www.gridpp.ac.uk/wiki/GLite_File_Transfer_Service

	1. INTRODUCTION
	2. RELATED WORK
	3. DATA TRANSFER FRAMEWORK
	3.1 Data Transfer Library
	3.2 Data Scheduler
	3.3 GridFTP GUI

	4. CASE STUDY
	5. EXPERIMENTAL RESULTS
	5.1 Experiment Setup
	5.2 Experimental Results

	6. CONCLUSION AND FUTURE WORK
	7. ACKNOWLEDGEMENTS
	8. REFERENCES

