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Abstract—The transfer of big data is increasingly supported
by dedicated channels in high-performance networks. Transport
protocols play a critical role in maximizing the link utilization
of such high-speed connections. We propose a Transport Profile
Generator (TPG) to characterize and enhance the end-to-end
throughput performance of transport protocols. TPG automates
the tuning of various transport-related parameters including
socket options and protocol-specific configurations, and supports
multiple data streams and multiple NIC-to-NIC connections. To
instantiate the design of TPG, we use UDT as an example in
the implementation and conduct extensive experiments of big
data transfer over high-speed network channels to illustrate how
existing transport protocols benefit from TPG in optimizing their
performance.

Index Terms—Transport profiling, big data transfer, high-
performance networks.

I. INTRODUCTION

Extreme-scale e-Science applications are generating colos-

sal amounts of data, now frequently termed as “big data”,

which must be transferred over long distances for remote op-

erations. Such big data transfer requires stable and high-speed

connections, which are not readily available in traditional

shared IP networks such as the Internet. High-performance

networks (HPNs) featuring high bandwidth and advance reser-

vation have emerged to be a promising solution to support

these data- and network-intensive applications. In recent years,

significant progress has been made in various aspects including

the deployment of 100G networks with future 1Tbps capacity,

the increase in end-host capabilities with multiple cores and

buses, the improvement in large-capacity disk arrays, and the

use of parallel file systems such as Lustre [4] and GPFS [2].

For example, DOE ESnet and Advanced Networking Initia-

tives (ANI) network infrastructures [1] have recently been

upgraded to 100Gbps to meet the long-haul network demands

for such data transfers.

However, even if a dedicated channel is provisioned in

HPNs, the end-to-end data transfer performance still largely

depends on the transport protocol being used on the end hosts.

Along with the emergence and proliferation of HPNs, high-

performance transport protocols are being rapidly developed

and deployed, but maximizing their throughput performance

over complex high-speed connections is still challenging,

mainly because: i) their optimal operational zone is affected by

the configurations and dynamics of the network, the end hosts,

and the protocol itself, ii) their default parameter setting does

not always yield the best performance, and iii) application

users, who are domain experts, typically do not have the

necessary knowledge to choose which transport protocol to use

and which parameter value to set. Consequently, application

users have not seen the corresponding increase in transport

performance especially in terms of application-level through-

put despite the bandwidth upgrades in the backbones of HPNs.
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Fig. 1. UDT throughput measure-
ments over a back-to-back 10Gbps link
with different block sizes.

In many cases, for a given

transport protocol, choosing

an appropriate set of param-

eter values would result in a

significant performance im-

provement over default set-

tings. As a simple motivat-

ing example, we vary the

data block size of UDT [5]

running over a back-to-back

10Gbps link while using de-

fault values for the other pa-

rameters, and plot the cor-

responding instantaneous throughput measurements in Fig. 1,

which shows more than four times throughput improvement

on average. More improvements are expected if the other

parameters such as buffer and packet sizes are properly tuned.

There are several bandwidth estimation tools such as

iperf3 [3], which uses continuous data transfer to estimate

the available throughput along an end-to-end network path. It

provides users with various functions and options for tuning

TCP, UDP and SCTP. It does not incorporate UDT, a well-

adopted data transfer protocol in the HPN community, and

does not provide an option to run parallel data streams over

multiple NIC-to-NIC connections. A survey of bandwidth

estimation tools can be found in [8].

We propose a Transport Profile Generator (TPG) to charac-

terize and enhance the end-to-end throughput performance of

transport protocols in support of big data transfer over dedi-

cated channels. TPG provides end users with a light-weight

and easy-to-use toolkit for transport performance profiling.

TPG automates the tuning of various transport-related system

configurations and protocol-specific parameters for optimal

performance, and supports multiple data streams and multiple

NIC-to-NIC connections. To instantiate the design of TPG, we

use UDT as an example in the implementation and conduct

extensive experiments of big data transfer to illustrate how

existing transport protocols benefit from TPG in optimizing

their performance.
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Fig. 2. Transport performance-related components.

The rest of the paper is organized as follows. Section II

analyzes various performance-related factors and defines the

transport profile. Sections III and IV present the TPG design

and experimental results, respectively. Section V concludes our

work.

II. TRANSPORT PROFILING

A. Performance-related Components

The end-to-end data transfer is a complex process that

involves both network and end-host components. Fig. 2 shows

various software/hardware entities together with their param-

eter settings that may affect the end-to-end transport perfor-

mance in a typical data send/receive process using UDT as an

example. Any of these entities could become the bottleneck

and hence limit the throughput performance of data transfer.

Among these entities, some can be accessed and controlled by

the application, such as packet size, block size1, socket buffer

size, jumbo frame size, number of data transfer streams; while

the others are mainly determined by the hardware configu-

rations and network infrastructures, such as CPU frequency,

memory size, memory bandwidth, bus speed, disk I/O speed,

path MTU size, round trip time (RTT), and link bandwidth. In

this work, we focus on those entities directly accessible and

controllable by the user or application.

B. Transport Profile

A transport profile TPt(〈hs, hr〉, l, v) is a control-response

plot illustrating how a set v of control parameters affect

1In our design, TPG calls tpg send()/tpg recv() to send/receive a data
block, which may in turn call the underlying transport protocol APIs several
times to completely deliver an entire data block. Here, we use the term “block
size” to denote the size specified in tpg send()/tpg recv(), and “packet
size” to denote the size of a transfer unit in the transport protocol.

the transport performance (mainly throughput) of a transport

protocol t over a network connection or link l between a sender

hs and a receiver hr. Such profiles indicate the qualitative

behavior of each component involved in the data transfer

process and provide useful information for maximizing the

transport performance.

The transport profile of a given protocol t is obtained by

varying 〈hs, hr〉, l, and v to exhaust the combination of param-

eter settings over different network connections and collecting

the corresponding throughput measurements. During a specific

profiling process, 〈hs, hr〉 and l are given, and v is set by

default or specified with values within an appropriate range.

III. DESIGN OF TRANSPORT PROFILE GENERATOR

A. Overview

Transport Profile Generator (TPG) consists of a pair of

sender and receiver. The sender (client or source node) gener-

ates and delivers a certain amount of test data to the receiver

(server or destination node) via a specific data transfer protocol

being profiled. The sender also informs the receiver of the

initialization and termination of a data transfer process (one-

time profiling) through an independent TCP-based control

channel. The client drives the entire profiling process and

terminates after a one-time profiling, while the server is always

reset for the next cycle of profiling. This way, user-specific

profiling strategies can be automatically applied by repeatedly

running the client with different parameter settings.

The control flowcharts of TPG client and server are shown

in Fig. 3(a) and Fig. 3(b), respectively. A typical TPG profiling

process carries out the following steps:

1) The server starts listening on the control channel;

2) The client parses the user input (if any), initializes a

profile, and then connects to the server through the control

channel;

3) The server accepts the connection request if it is free,

and then sends back the state “CTRL CHAN EST” within

the control packet to inform the client that the control

channel has been established;

4) Upon the receival of “CTRL CHAN EST”, the client sends

“HANDSHAKE” to the server requesting control parameter

exchange;

5) Upon the receival of “HANDSHAKE”, the server sends

“HANDSHAKE” back to the client as an acknowledgement;

6) Upon the receival of “HANDSHAKE”, the client and server

exchange control parameters;

7) The client sends “CREATE STREAMS” to the server re-

questing data stream creation;

8) Upon the receival of “CREATE STREAMS”, the server

listens on each protocol-specific data channel and then

sends the same state back as an acknowledgement;

9) Upon the receival of the acknowledgement, the client

connects to the server on each data channel by calling

the protocol-specific “connect()” function and the server

accepts the connection by calling the corresponding

“accept()” function;
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10) The client sends “PROFILING START” to the server, and

then the server acknowledges;

11) Upon the receival of the acknowledgement, the

client/server starts sending/receiving data blocks;

12) Once a one-time profiling is completed, the client sends

“PROFILING END”, and the server responds with an ac-

knowledgement;

13) The client and server exchange results by sending and ac-

knowledging “EXCHANGE PROFILE”, and then the client

exits while the server cleans up and waits for next profil-

ing by sending and acknowledging the state “TPG DONE”.

During the above process, whenever an error or failure

occurs, the client/server sends an error message through the

control channel before it exits or aborts.

B. Support of Multiple Data Streams and Multiple NIC-to-NIC

Connections

TPG uses one TCP-based control channel and supports

multiple protocol-specific data channels, as shown in Fig. 4.

The control channel is created at the starting stage of a

profiling to exchange the control information between TPG

client and server. TPG creates a separate working thread to

perform independent profiling over each data channel. The

data streams over different data channels can be bound to

the default IP address or different ones (if multiple NICs

are equipped). TPG maps each data stream to a pair of

source-destination IP addresses to support multiple NIC-to-

NIC connection-based profiling.

TPG features a flexible structure for an easy extension to

new protocols, where a transport protocol is defined by its

callback functions with a set of tunable control parameters.

IV. IMPLEMENTATION AND EXPERIMENTAL RESULTS

A. TPG Implementation

TPG is implemented in C/C++ on Linux platform. To

instantiate the design of TPG, we include UDT as an example

in the implementation. TPG is able to adjust the following

parameters that may affect the UDT throughput performance:

• −s: run as a TPG server;

• −c: run as a TPG client;

• −t: select UDT for profiling (default is TCP);

• −l: set the data block size;

• −P: set the number of data streams;

• −w: set TCP socket buffer size;

• −f: set UDT send buffer size;

• −F: set UDP send buffer size (UDT socket option);

• −r: set UDT receive buffer size;

• −R: set UDP receive buffer size (UDT socket option);

• −M: set UDT socket option UDT MSS [5];

• −m: set multiple NIC-to-NIC connections;

• −a: set CPU affinity;

• −B: set the bandwidth used by one UDT connection;
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B. Experimental Results on a Local Back-to-back Connection

1) Configuration: We set up a local network testbed by

back-to-back connecting two Dell workstations. The average

round-trip time (RTT) between these two hosts through a

direct 10Gbps link is around 0.04 milliseconds, resulting in a

Bandwidth-Delay Product (BDP) of 50KB. The Internet con-

nection between them has a RTT of around 0.25 milliseconds,

and a bandwidth of around 95Mbps, resulting in a BDP of

around 3KB. Both of the client (dragon.cs.memphis.edu)

and the server (rabbit.cs.memphis.edu) are equipped with

a 2.93 GHz Intel Core(TM) 2 Duo E7500 CPU, 2.9 GB

RAM, and Fedora 17 Linux Operating System updated

with 3.9.10-100.fc17.i686 kernel. The system’s default (i.e.

net.core.rmem default and net.core.wmem default) and

maximum (i.e. net.core.rmem max and net.core.wmem max)

memory space allowed for the UDP socket buffer size is

configured to be 32MB and 64MB, respectively.
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Fig. 5. Average throughput vs. packet
size (pkts): 1 data stream, 120 seconds
of transfer. Different curves correspond
to different UDT/UDP send/receive buffer
sizes.

2) UDT Profiling

on Packet Size: The

throughput performance

can be improved by

using a larger packet

size to reduce the per-

packet overhead. For

example, many Gigabit

Ethernet NICs support

“jumbo” frames with a

packet size up to 9000
bytes or more. In the

protocol stack of modern

OS, the largest MTU

supported along the

network connection is automatically discovered and used [6],

[7]. UDT provides a socket option UDT MSS to configure the

packet size. The profiling results across different packet sizes

are plotted in Fig. 5, which shows that the UDT throughput

performance is improved by using larger packet sizes and

setting the UDT option UDT MSS to be the maximal allowable

MTU size along the path. In this experiment, both UDT and

UDP are configured with sufficient socket buffer space to

maintain the link speed.

3) UDT Profiling on Block Size: We plot the profiling

results on the block size in Fig. 6, where the x-axis uses a

multiplicity (n) of the payload size (pkts − 16) to represent

the block size. We observe that when the buffer size is limited,

increasing the block size does not bring too much throughput

gain, especially when the block size is comparable with the

buffer size. However, when there is sufficient buffer space,

increasing the data block size significantly improves the UDT

throughput performance, but the improvement becomes less

obvious as the data block size increases.

Particularly, in Fig. 6(a), when the buffer size is set to be

128KB, which is larger than the Bandwidth×RTT , the peak

throughput we observe is less 7Gbps over the 10Gbps link;

when the block size is further increased from 107471 bytes to
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Fig. 7. Average throughput vs. UDT/UDP send buffer size in subfigures (a)−
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block size (bs), 1 data stream, 120 seconds of transfer.

179119 bytes (i.e. n from 12 to 20, since ⌈107471/8956⌉= 12
and ⌈179119/8956⌉ = 20), the throughput drastically de-

creases. If we increase the buffer size to 0.5MB or 1.0MB,

UDT achieves the peak throughput around 8.5Gbps. If we

further increase the buffer size to 2MB or 4MB, the throughput

performance decreases slightly, as shown in Fig. 6(b). When

we continue to increase the buffer size from 8MB to 64MB,

the peak throughput further decreases, as shown in Fig. 6(c).

Our profiling results on the data block size show that a larger

block size generally leads to a better performance, however, an

appropriate buffer size is also necessary to ensure a satisfactory

throughput performance. In this test case, a buffer size of

0.5MB or 1.0MB seems to be appropriate.

4) UDT Profiling on Buffer Size: We plot the performance

measurements in response to various send/receive buffer sizes

in Fig. 7, where the x-axis takes the logarithm of the actual

send/receive buffer size (e.g. 7 = log2128 represents 128KB).

A rule of thumb for obtaining good transport performance is

that both the send buffer and the receive buffer should be no

less than Bandwidth×RTT (BDP), which is also true in our

experiments with UDT. In Fig. 7(a), Fig. 7(b), and Fig. 7(c), as

the send buffer size increases from 128KB (27KB) to 1024KB

(210KB), we observe a significant throughput improvement.

Afterwards, in the case of a small receive buffer size, e.g.

128K or 256K in Fig. 7(a), increasing the send buffer from

1.0MB (210KB) to 64MB (216KB) drastically decreases the

throughput. It is probably due to the fact that a larger send
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buffer results in a longer RTT and in turn a larger BDP [5],

which requires a larger receive buffer to maintain the transfer

speed. However, in the case of a large buffer size, e.g. from

1.0M to 64M, we observe that the throughput first decreases,

and then stabilizes around 6Gbps. As shown in Fig. 7(d),

Fig. 7(e), and Fig. 7(f), a larger receiver buffer also generally

leads to a better performance, but the improvement becomes

less obvious as the receive buffer increases. In the case of a

small send buffer (128KB and 256KB), increasing the receive

buffer does not have an obvious positive effect as shown in

Fig. 7(d). In the case of a large send buffer size, increasing the

receive buffer greatly improves the performance, as shown in

Fig. 7(e) and Fig. 7(f). The profiling results on the buffer size

show that to maintain a high UDT data transfer rate, a large

receive buffer is needed, and an appropriate send buffer is also

necessary. Since a larger send buffer may incur a longer RTT

and therefore may not yield the best performance, in this test

case, a send buffer of 0.5MB or 1.0MB turns out to perform

well, which is consistent with the results in Section IV-B3.
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5) UDT Profiling on Par-

allel Streams: We vary the

number of parallel streams

and plot the corresponding

aggregate throughput perfor-

mance in Fig. 8. We ob-

serve that with two parallel

data streams, we achieve a

throughput of 8Gbps. How-

ever, a larger number of par-

allel streams may not neces-

sarily lead to a better perfor-

mance as shown in Fig. 8,

which is mainly due to the

significant overhead incurred by memory copying, context

switching, and multi-threaded implementation. However, on

the hosts with sufficient computing resources, running multi-

ple parallel streams would generally improve the throughput

performance, although the transport protocol itself may not

be able to fully utilize the link bandwidth. Determining an

optimal number of streams is not straightforward as it highly

depends on the specific configurations of the hosts.

6) Comparison of Default UDT and TPG-tuned UDT: To

illustrate how TPG improves the performance of UDT, we

run 10 sets of data transfer experiments using default UDT

and TPG-tuned UDT. The performance results are tabulated in

Table I and further plotted in Fig. 9 for a visual comparison.

Note that the italic numbers in Table I indicate that they are

UDT default values. We observe that the TPG-tuned UDT in

experiment 8 achieves a significant performance improvement

over any other parameter settings.

V. CONCLUSION AND FUTURE WORK

We proposed TPG, a transport profiling toolkit to char-

acterize and improve the performance of existing transport

protocols to support big data movement. We used UDT as an

example and conducted extensive experiments in real network

TABLE I
THROUGHPUT PERFORMANCE COMPARISON BETWEEN DEFAULT UDT

AND TPG-TUNED UDT.
Idx packet block UDT UDP UDT UDP Perf.

no. size (B) size (B) sndbuf (M) sndbuf (M) recvbuf (M) recvbuf (M) (Mbps)

1 1472 1455 10 1 10 1 450

2 1472 8955 10 1 10 1 1762

3 1472 65536 10 1 10 1 2487

4 1472 89559 10 1 10 1 2584

5 1472 89559 1 1 1 1 2810

6 1472 179119 1 1 1 1 2847

7 8972 89559 1 1 1 1 7216

8 8972 179119 1 1 1 1 8713

9 8972 179119 16 16 16 16 6300

10 8972 179119 32 32 32 32 6536

1 2 3 4 5 6 7 8 9 10
0

2000

4000

6000

8000

10000

Profiling experiment index

T
ra

n
s
p

o
rt

 P
e

rf
. 

(M
b

p
s
)

(a)

1 2 3 4 5 6 7 8 9 10
0

2.0

4.0

6.0

8.0

Profiling experiment index

O
b

s
e

rv
e

d
 R

T
T

 (
m

s
)

(b)

0 20 40 60 80 100 120
0

500

1000

1500

2000

2500

3000

3500

Timeline (seconds)

T
ra

n
s
p

o
rt

 P
e

rf
. 

(M
b

p
s
)

 

 

1
2

3

4

5

(c)

0 20 40 60 80 100120
0

2000

4000

6000

8000

10000

Timeline (seconds)

T
ra

n
s
p

o
rt

 P
e

rf
. 

(M
b

p
s
)

6

7
8

9 10

(d)

Fig. 9. Throughput performance comparison between default UDT and TPG-
tuned UDT: 120 seconds of transfer, 1 second sampling interval. (a) Average
throughput in each experiment; (b) Average RTT in each experiment; (c) In-
stantaneous throughput measurements in experiments 1 to 5; (d) Instantaneous
throughput measurements in experiments 6 to 10.

environments. TPG is useful to explore the optimal protocol

parameters and system configurations prior to the actual data

movement. It is of our interest to extend TPG with more

transport protocols and methods, and integrate it into existing

large data transfer tools such as XDD [9] .
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