A Dynamic Scheduling Approach for Coordinated Wide-Area Data
Transfersusing GridFTP *

Gaurav Khanng Umit Catalyurek, Tahsin Kur¢, Rajkumar Kettimuthg,
P. Sadayappan Joel Saltz

! Department of Computer Science and Engineering, The Olai Stniversity
2Department of Biomedical Informatics, The Ohio State Ursitg
3 Mathematics and Computer Science Division, Argonne Nalibaboratory

Abstract the US where it is processed and then multi-cast onto
many domestic US tier-2 sites. As another example,
Many scientific applications need to stage large vol- consider a multi-institutional study which collects and
umes of files from one set of machines to another setanalyzes biomedical image data, obtained from high-
of machines in a wide-area network. Efficient execu- resolution scanners to develop animal models of phe-
tion of such data transfers needs to take into account notype characteristics in disease progression. Hundreds
the heterogeneous nature of the environment and dy-or thousands of images can be obtained from a subject
namic availability of shared resources. This paper pro- and there can be hundreds of subjects in a study. These
poses an algorithm that dynamically schedules a batch images may be collected and stored at multiple sites. Re-
of data transfer requests with the goal of minimizing the searchers wishing to carry out an analysis using images
overall transfer time. The proposed algorithm performs from a large population of subjects will query image
simultaneous transfer of chunks of files from multiple datasets at multiple sites. The image files extracted as a
file replicas, if the replicas exist. Adaptive replica se- resultof the query will then either be downloaded to a lo-
lection is employed to transfer different chunks of the cal system or be transferred to computational machines
same file by taking dynamically changing network band- distributed in the environment for processing. These
widths into account. We utilize GridFTP as the underly- scenarios involve transfer of large volumes of files from
ing mechanism for data transfers. The algorithm makes the storage sites to the computational sites. Address-
use of information from past GridFTP transfers to esti- ing this problem requires efficient coordination of data
mate network bandwidths and resource availability. The movementacross multiple source sites, destination sites,
efficiency of the algorithm is evaluated on a wide-area and intermediate locations over the wide-area network.
testbed. In this work, we seek efficient algorithms to sched-
ule and execute the transfer of a set of files distributed
across multiple machines to another set of machines in
a wide-area environment. The objective is to minimize
the total execution time of a batch of file transfer re-
guests. A destination machine receives a subset of the
Grid computing technologies have enabled scientistsfiles. The subsets of files assigned to different destina-
to generate, store, and share data distributed across multion machines may overlap, i.e., a file may be mapped to
tiple sites. Data analysis in a Grid setting involves use multiple destination machines. Figure 1(a) illustrates an
of distributed collections of storage and computational example of the problem. Files labeled 5} are stored
systems and transfer of large volumes of data in a wide- on distributed storage repositories. A subset of files are
area network. An example is the LHC [1] experiment at to be transferred to disks on a distributed set of compute
CERN. The data which is generated by a CMS experi- nodes, denoted byi, over a wide-area network. Fig-
ment at LHC needs to be transferred to a Tier-1 site in ure 1(b) shows that two different sources of a fifd
“Thi . ) . can be used simultaneously to transfer disjoint chunks
is research was supported in part by the National Science

Foundation under Grants #CCF-0342615, #CNS-0403342 ang#c  Of the file, thereby increasing the throughput. The figure
0643969. shows that once a replica df1 is created on the node

1 Introduction




N1/, then the nodéV1’ and the storage reposito3 relies upon is based on incentives. In this work, the
can simultaneously transfer the file to the nade. goal is to minimize the total transfer time in a collab-
We present a network flow based mixed integer pro- orative setting where the global objective of minimizing
gramming (IP) formulation of the scheduling problem. the time is more important than each site’s local ben-
The resulting solution is a lower bound on transfer time efits. Bullet [11], Chainsaw [12] and Splitstream [5]
under idealistic conditions of resource availability and are examples of systems designed for high-bandwidth
performance. We then propose a dynamic schedulingdata dissemination, motivated by applications like real-
heuristic which employs network bandwidth informa- time multimedia streaming. However, all these systems
tion obtained from past GridFTP transfers to adapt its target data distribution from a single source to a large
scheduling decisions, thereby, accounting for the re- number of receivers, that is, multicast. In our work, we
source availability fluctuations in the wide-area environ- target the scheduling problem in a very generic context
ment. The algorithm also employs adaptive replica se- which involves coordinated data movement across mul-
lection, if files are replicated in the environment during tiple sources, destinations and intermediate sites.
previous transfers. It performs simultaneous transfer of ~ Stork [10] is a specialized scheduler for data place-
portions of files from multiple replicas to maximize data ment activities on the Grid. The scheduler allows check-
transfer bandwidth. We have developed an implemen- pointing and monitoring of data transfers as well as
tation of our algorithm using GridFTP [4] as the under- use of DAG schedulers to encapsulate dependencies be-
lying transport protocol for data transfers. We experi- tween computation and data movement. In this paper,
mentally evaluate the algorithm on a wide-area network we focus on modeling the heterogeneity and the dynam-
testbed consisting of clusters located at geographicallyics of a wide-area environment to perform efficient col-
disparate locations. The results show that the algorithmlective file transfer scheduling. Swany et al. [14] ex-
can take advantage of multiple replicas and concurrentploits the "logistical effect” which essentially means im-

data transfers. proving performance by dividing a connection into a se-
ries of shorter, better performing connections. Giersch
2 Reated Work et al. [6] have addressed the problem of scheduling a

collection of tasks sharing files onto heterogeneous clus-
ters. Their work focused mainly on task mapping and
they proposed extensions to the MinMin heuristic [7] to
lower the scheduling cost. In our past work, we looked
at the problem of scheduling a batch of data-intensive
transfer, striped transfers from a set of hosts to anothertaSkS [9]'. We have also myesngated sched'ulmg of file
transfers in data center environments where in the sched-

set of hosts and patrtial file transfers. In this work, our ler h ltimat ntrol I81. In this work. we are taraet-
contribution is a new dynamic scheduling scheme to uler nas uitimate contro [8]- S Work, we are targe

collectively schedule a batch of file transfer requests. Ing dynamic heterogeneous wide-area environments like
Our approach performs adaptive replica selection and si-G”ds'
multaneous transfer of a file from multiple replicas. In )
this paper, we have applied our approach in conjunction 3 Network Flow Formulation
with GridFTP, that is, the scheduling algorithm employs
GridFTP as the file transfer protocol. In this section, we propose a mixed integer program-
BitTorrent [13] is an incentive-based file sharing sys- ming (IP) formulation of our target problem. The for-
tem which employs a tit-for-tat strategy where in the mulation is based on the maximization of network flows
peers which contribute more data at faster rates get pref-from sources to sinks. The wide-area environment is
erential treatment for downloads. In BitTorrent, a source represented by a grapi = (V, E), referred to here as
peer can upload data to upto 5 other peers simultane-the platform graph In this graph,V is the set of ma-
ously, the chosen peers being the ones which providechines andE represents the network edges. A network
the highest upload rates to the source peer. In addition,edge is the wide-area connection between two machines.
it also incorporates the concept of optimistic unchoking The weight of the edge is a measure of the achievable
where in periodically, a source peer chooses a randomlybandwidth between the two machines. The set of two
selected peer from the set of requesting ones and startsuples R = {< fy,vq >} represents that filg, needs
uploading to it. This allows a site to discover peers that to be transferred to the destination nogde The set of
possess the data of interest and that may be able to uptwo tuplesD = {< f,,vs >} denotes that filef, is
load to it at higher rates regardless of the site’s upload present on the source nodg. Multiple replicas of a
rate. However, the key principle on which BitTorrent file may exist and each replica is represented by a two

GridFTP [4] is a widely used protocol which enables
secure, reliable and high performance data movement.
It facilitates efficient data transfer between end-systems
by employing techniques like multiple TCP streams per



Compute Cluster C1 Data Transfer from remote storage

Processors Distributed Storage

/\ Repositories D
CaEE !
- of File F1
© b -
E&‘&l’éﬁﬂﬁi

Disks \
D1 of File F1
3 F12
\—/ F13

Compute Cluster C2 N1 Chunks of File F1

(a) (b)
Figure 1. (a) The wide-area data staging problem, (b) Simultaneoaigeusf multiple replicas of File F1

Chunks
of File F1

Processors

Data Transfer from remote

tupleinD. We only consider destination nodes as intermediate

The optimization problem solves for a set of vari- nodes for other transfers. Therefore, an edge from a
ables Flow;;e , where Flow;j, is the rate (bandwidth) nodew; to a nodev; can have a non-zero flow for a
at which file f, is transferred through the link between file f,, only if the nodev; belongs to the destination
the nodesy; andv; . node set for the filef, .

Let InFlow; be the rate at which the fil¢, enters
the nodev; along the incoming edges.

(\V/Z,Z € V)(VJ, (7';.]) € E)(V& < f€7vj >¢ R)

(VO)(Vi,i € V)InFlowe = Y Flowsie (1) Flow; =0  (6)

(V3,(7,0)€E) A feasible solution should not have flow cycles for

For each file f;, the flow on each outgoing edge e€ach file f;. In other words, for each filg,, for all cy-
which emanates from the node cannot exceed the in-  cles in the graplz comprising only a subset of destina-
flow at which the filef, enters the node; . This neces- tion nodes for the filef,, the flow for the file on atleast
sarily holds true for all the nodes except the source nodeone of the edges belonging to the cycle should be equal
set for the file f,. to zero. LetCycles, be the set of all the cycles in the

graphG consisting only of a subset of destination nodes
of the file f, . Each element of the séfycles, is a set

(VO) (Vi) (Vi,i € V —{k| < fo,vx >€ D}) of edges which constitute that cycle.

Flow;jy < InFlowy (2)

The total inflow rate of all the files entering a node (v¢)(vC, C € Cycles,)(3(i, 5), (i, 5) € C)Flowe =0
v; should not exceed the bandwidth capacity at the node (7)
v;, VCap(i). Similarly, the total outflow rate on all out- The finish timeFinishTimey, of a transfer request

ghoing nges should not exceed the bandwidth capacity aor a file f, to its destinationy;, is computed as follows.
the nodev; .

. ; FileSize(?)
(Viyi € V)Y InFlow, < VCap(i)  (3) FinishTimen = =m0 = ®)

¥ Note that the finish time is computed based on the

total incoming flow to the destination node for the
(Vi,i€ V) Y Flowyy <VCap(i) (4)  file f,. We cannot use the total outgoing flow from the
(¥5)(¥0) sources of thef, to compute the finish time since there
are possibly multiple destinations for each file and there-
fore outgoing flow from a source node for a particular
file is not necessarily the aggregate flow for a particular
file-destination pair.
The objective is to minimize the total transfer time
(Vi,i € V)(V4, (i,4) € E) Z Flow;je < ECap(ij) Makespan = maxyg i, FinishTimey,. Note the ob-
(ve) jective function is a non-linear function which means
(5) that the problem is non-linear optimization problem with

The aggregate flow rate for all the files through the
edgee between the nodes; andv; should not exceed
the bandwidth capacit¥Cap(ij) of the edgee.



linear constraints. We represent the objective func- R = {< f,,vqs >}, the setoftupled = {< fr,vs >},
tion in an alternate way which makes the problem a our objective is then to compute a schedule that will min-
linear optimization problem. We define a function imize the total file transfertime. The schedule comprises

NormalizedRategy, for each file transfer request. of a set of four tuples< Vi, vg,ce,t >. Here, ¢, is a
chunk of file f, to be transferredy, is the destination
NormalizedRatey, — InFlowyy ) machine,V; is the set of source machines, from which
FileSize(?) portions of the chunk:, will be transferred, and is the

time at which the transfer of the chunk will start.

Replica selection depends upon a number of fac-
tors like network bandwidths, round-trip times, and file
sizes. Moreover, in a wide-area network, the network
bandwidth may fluctuate considerably. In order to han-

With the new formulation, the objective becomes
the maximization ofMin Rate, which is the minimum
value of NormalizedRateg, over all file transfer re-
guests. The solution to this optimization problem will
provide, for each file transfer request, the flow rates dl ; P

. . e dynamic network characteristics, our approach car-
which the request should employ for each edge in the y bp

h Th f i then b d to find the tot Irie:s out replica selection “at the level of chunks” in an
grapn. These flow rates can then be used to ind the to aadaptive manner. We should note that as files are staged
transfer time,Makespan. This value of total transfer

time acts as a lower bound under idealistic conditions of to their_respective destination nodes, these nodes_can act
S as replica sources for other requests of the same file. We
resource availability and perforr_nan_ce. employ dynamic information obtained on the fly from
The ﬂ.OW based IP formulatlop inherently assumes previously executed file transfers to drive our schedul-
that all file transfers take place in parallel and simul-

N file t f th link share bandwidth ing and replica selection decisions.
aneous Miie transters on the same link share banawidin. =, 5 qertg support adaptive replica selection at chunk
From a theoretical standpoint, serializing transfers on a lev

resource, or simultaneous execution with resource shar el and concurrent use of multiple replicas, we rede-
. . X fine the request seR and the data structur®. We
ing, results in the same makespan. In practice, how-

o define the modified request s&' as the set of three
ever, because of limited resources on nodes and th

. . . . . I , I = ) ’ - = ’
high cost of congestion on lossy wide-area links, whlcheTUpfs J]j; v {><€fe ]g‘}’ ngnget?:gesfhg{;;eﬁéecgs >to

leads to a continuous loop between TCP slow-start andbe transferred to the node, starting at the offset
congestion-avoidance phases, the solution obtained bycw requestof fset(f, d). This means that a sub-
the IP cannot be achieved for large batches with thou- et_of the f_ile ¥, is élready present at the node,
sands of requests. Moreover, the scheduling overheacﬁp to an offsetcur_request of fset(f,d). The value
of a mixed Integer programming approach may be un- of cur_request_of fset(¢,d) will change with time as
acceptable, especially for large workloads and sy:stemmore and more chunks of filg, get written onto node
configurations. Therefore, in this paper, we employ the The initial values of cur_request_of fset(f, d)
solution obtained by the IP as a lower bound on the total are set to 0. since the trans%er of a_file will s:tart at
transfer time and use it as a yardstick to compare against :

our proposed dynamic scheduling heuristics which we offset 0. - Similarly, D is redefined asD’ = {<
discuss in detail in Section 4. fo,v5, last-byte-of fset(l,s) > | < fe,vs >€ D},

representing that the filg, is currently present on the
nodew; up to the offset valuéast_byte of fset(?,s).

4 Dynamic Scheduling Algorithms Here, v, can be one of the original source nodes of the
file, or a destination node, to which the file has already
been partially transferred. In the casgis a destination
node, the value ofast_byte_of fset(¢, s) will change
over time as more and more chunks become available
on v,. The final value oflast_byte_of fset(¢,s) will

be the size of the filesize(fr).

In our approach, scheduling is done per chunk ba-
sis. Chunk is a portion of the file being staged to a des-
tination machine. Transfer of chunks for a file can be
inter-leaved with transfer of chunks for other files. Our
scheduling approaches are iterative, employ adaptive
replica selection, and use of multiple sources for simul-
taneously transferring multiple pieces of the same file, 4-1 ~Global Dynamic Scheduling Algo-

i.e., non-overlapping portions of a chunéyb-chunks rithm

can be retrieved simultaneously from multiple file repli-

cas. In awide-area environment, the network is oftenthe  This scheduling scheme proceeds in steps and in
bottleneck. A good choice of replicas along with con- each step it selects a pending file transfer request
current transfer of data can be expected to yield good f,, v4, cur_request_of fset(¢,d) > from R’ and com-
performance. Thus, given a graggh, the set of tuples  putes a schedule for the request. A request is considered



pending if the file associated with the request has not Algorithm 1 Global Dynamic Scheduling Heuristic

been completely transferred to its corresponding desti- |nput: Platform G = (V,E) and a setR = {<

nation and no other chunk of this file is being transferred

fe,va > | file f, is requested by destinatian }

to the same destination. The schedule for a requestcon- 1. p/ — {< fo,v4,0 > | < fo,vq >€ R} { start

sists of a four tuple with the following elements: (1) the
set of replica locationsl(;) to be accessed to retrieve

the data, (2) the size of the chunk'funkSize) which

will be scheduled for transfer at the current scheduling

be used for each connection.

In our current implementation, we employ GridFTP
as the underlying transfer mechanism. Each source node

runs a GridFTP server. Each destination node uses the 8:

GridFTP client side API to retrieve the portions of the

file. Since a destination node can become a replica 9:

source for a file, a GridFTP server runs on each des-

tination node as well. After the schedule for a chunk 10:

has been computed, the scheduler sends the schedule in-

formation to the corresponding destination node. The 11:
destination node starts the retrieval of the chunk from 12:

the source nodes. The scheduler moves on to the next
pending file transfer request and repeats the whole pro-

cess. The overall scheduling scheme is illustrated in Al- 13:

gorithm 1.

14:

At step 7, the replica selection method denoted as 1%
SelectReplicas is invoked to select replicas for the 16

transfer request; the algorithm for replica selection is de
scribed in the next section. The output from this method

transfer of each file from offset}0
2. D' =A{< fy,vs,size(fo) > | < fo,vs >€ D}
3: HostBw; = the host bandwidth at node

4: whilethere are pending requests, i.&/,# () do
instant, (3) the portions of the selected chunk to be ob- .

tained from each source, and (4) the TCP buffer sizesto ¢.

if Jvg such thatHost Bwg > € then
for each requestr=
< fe,vq,cur_request_of fset(¢,d) >€ R’
do
< Vs, ChunkSize,
TCPBufSize, SubChunkSize >
SelectReplicas(G,D’,r)
Compute the expected finish time to transfer
the chunk of file f, to destinationu, .
Choose the request with the minimum ex-
pected finish time
Schedule the transfer of the chunk of the file
from replica noded/; to the nodey,.
R — R —{r}
Update the expected available host bandwidth
(HostBw;) at the source and destination
nodes.
for every completed
< Vs, vq,co,t > do
Update the available network bandwidths be-
tween sourcesy; € V) and node (4)
if endOf fset(ce) < size(fe) then
R — R
< fe,vq,last_byte_of fset(endOf fset(ce),d) >
}

chunk transfer

makes up the schedule for the request. The next step

(step 8) is to compute the expected minimum comple-

tion time for transferring a chunk of the requested file. 4.1.1 Replica Selection

The transfer completion time is computed as follows.

We first divide the aggregate chunk of si¢dunkSize The replica selection algorithm (Algorithm 2) proceeds
into sub-chunks which will be fetched from each replica. as follows. For each replica locatian , we record the
The size of the sub-chunks are chosen to be in the saméandwidth obtained through past GridFTP transfers to
ratio as that of the bottleneck bandwidths between eachfind the network bandwidths and end-to-end latencies
source host and the destination. The transfer completionfrom the locationv, to the destinationv;. To perform
time is then simply the maximum of the times taken to replica selection, we apply a two phase heuristic. Each
send each sub-chunk from a source to the destination.phase involves applying a filtering condition to choose a
At step 9, following the well-known MinMin [7] algo-  subset of replica sources of the file to fetch the data. The
rithm, among all the pending requests, the file transfer first filtering condition is based on the file size and its re-
request with the minimum expected completion time is lation to the slow start phase of TCP. The second filtering
chosen to be scheduled on the set of resources whichcondition is based on the expected available bandwidth
yield its minimum completion time. The overall process at the sources and destination of files as well as the ex-
repeats until all the file transfers have been scheduled.pected available bandwidth in the network. The output
The replication selection step, the determination of the of the second filtering condition is a subset of replicas to
chunk size, and dynamic bandwidth prediction are pre- be used for transferring the file. The TCP buffer size and
sented in detail in the following sections. the size of the portion of the chunk to be fetched from



each replica are also computed.

Algorithm 2 Replica Selection Algorithm

Input: A pending requesk fy,vq,0f f >

1:
2:

R

for Each existing replica,; of the file f, do
Compute the bandwidth delay produBtD P, =
NetBw, q x RTT; 4 for the link between hosts
vs anduvy.
if size(fe) > C x BDPs then
add the replicav, to the tentative replica set
T.

S
: for each replicav, € T in decreasing order of

available bandwidth values tq; do

sources should be chosen in a manner so that the aggre-
gate in flow rate of packets matches the available band-
width at the destination host. We use a greedy algorithm
for selecting sources. For each replica location, a bottle-
neck bandwidth is computed as the minimum of the ex-
pected network bandwidth and the available bandwidth
at the destination. We order the replica sources of the se-
lected subset of replicas in non-increasing order of avail-
able bandwidth values to the destination nage and
choose them one by one until we saturate the bandwidth
of the destination host.

If no replica is selected at the end of this phase, the
best replica is chosen for the file and added to thd/’set

6: Add the replicav, to the final replica seV, (step 11). The best replica is simply the replica which

7. Update the destinatiofl ost Bw, to account for yields the least completion time for the transfer and is
the transfer between, andvg (if NetBWs q > chosen by taking into account the bandwidths from each
HostBw, the transfer bandwidth between, replica location.
and vy will be HostBwg)

8: if HostBwg < € then 412 Chunk Size

9: break

10: if V; = () then The size of a chunk is decided statically. For a file trans-

11:  pick the sourcevs € T, with highest bandwidth  fer request, it is the maximum of a pre-determined frac-
and setV, « {vs} tion of the file size and a threshold value. The motiva-

12: Compute  ChunkSize, TCPBufSize, tion behind this is the slow start and congestion control

13:

SubChunkSize per replica, usingV, and vy
and available network bandwidth

return < Vi, ChunkSize,

TCPBufSize, SubChunkSize >

TCP is a window-controlled transport protocol and

mechanism of TCP. If the size of the chunk on a cer-
tain network edge is less than the BDP, the transfer of
the chunk will finish in the slow-start phase, thereby not
permitting use of the maximum achievable bandwidth.
The threshold value for a given file transfer request is
computed as a pre-determined multiple of the sum of

the performance Of aTCP Connection iS dependent Onthe BDPs between each source replica and the destina-
the Bandwidth-Delay producBDP). The BDP of a
network path is defined as the product of bandwiBtin
of the path and the round-trip tim&7"7". TCP has an

tion node.

4.1.3 Dynamic Bandwidth Prediction

initial slow start phase where in it gradually increases
the send window size. If the TCP buffer size equals the The bandwidth to access data from a file replica is an im-
BDP, the connection will be able to saturate the path, portant factor in replica selection. Replicas with higher
achieving the maximum possible throughput. However, access bandwidth are expected to give better perfor-
if the amount of data to be transferred is lower than the mance. The key issue is to determine an accurate mea-
BDP, the observed bandwidth will be smaller than the sure of expected bandwidth from a replica. We employ
maximum achievable bandwidth. Hence, if the file size bandwidth information obtained from previous GridFTP
is smaller than a pre-determined multiple 8D P (step transfers to predict the future access bandwidths. For
3 in the algorithm), the replica is tentatively not consid- each file transfer that has finished so far, we track and
ered for selection. Otherwise, the replica is added to the save the information about the achieved bandwidth be-
list of tentatively selected replicag, . The outputofthis  tween the source-destination pair into a circular queue.
phase yields a subset of replicas. We employ simple mean-based predictors to estimate
In the second phase, the subset of repli@as,is fur- the value of the bandwidth in the next interval. In future,
ther pruned based on the network bandwidth betweenwe plan to employ more sophisticated techniques [16]
each replica and the destination host and the bandwidthfor more accurate bandwidth predictions.
available at the destination hosts. Employing too many In addition, we employ a dynamic bandwidth scal-
replica sources in parallel may overwhelm the destina- ing mechanism which works in a control feedback loop
tion host in which case each TCP connection may lose as follows. If the observed bandwidth between a given
packets and hurt performance. Therefore, the replicasource-destination pair is able to meet a certain percent-



age of the expected bandwidth value ft successive | | BMI [ CSE | ORNL [ ANL |

transfers using the source-destination pair, the expected BMI 880 | 880 100 4
network bandwidth for the next file transfer between the CSE 880 | 880 120 4
two nodes is scaled up by a pre-determined constant, ORNL | 100 | 120 900 | 10
BW_SCALE. The new value of expected bandwidth ANL 4 4| 300] 700

is then used to calculate the TCP buffer size for the file

transfer between the two nodes. However, If the ob-  Table 1. Link bandwidths (Mbps) between
served bandwidth between a given source-destination a pair of nodes located at different sites.
pair is lower than a certain fraction of the expected
bandwidth value forV successive transfers that use the
source-destination pair, the expected network bandwidth
for the next file transfer between those two nodes is
scaled down byBW _SCALE.

5 Experimental Results

We compare our dynamic scheduling approaches
4.2 Local Dynamic Scheduling Algo- against the optimistic lower bounds we obtained via IP
rithm formulation and a baseline strategy, referred to here as
Nai ve Schedul i ng. In the baseline strategy, each
The global dynamic scheduler presented in Sec- destination node picks a randomly chosen replica source
tion 4.1 coordinates all the data-transfers between mul-for retrieving a file instead of employing dynamic band-
tiple sources and destinations. In this section, we de-width information or multiple replicas.
scribe a simplified variant of the global dynamic sched-
uler, which only uses local information in each destina- 5,1 Experimental Setup
tion node. The key idea here is that clients act indepen-
dently and there is no master which coordinates multi-
site file transfers. Each client (destination node) makes
requests for files it needs one by one irrespective of what
other clients are doing. For each file transfer, a client
employs dynamic bandwidth information obtained from
past file transfers and uses multiple replicas to optimize
the transfer time of each file transfer. In other words,
the local sch_eduler employs (_)ptimizations to minimize the file it needs along with the start and end off-
the transfer time .Of each file in much the Same Way as g1 - This is followed by a series of asynchronous
the global dynamic scheduler. The difference is that the lobus_ftp_client_registerread() calls which are
scheduling decisions is made by each destination node’. - 'P- -9 S

independently. The scheduling strategy is illustrated in used to transfer data from the source.
Algo?ithm 3 Y- g ay The experiments were carried out across 4 clusters

that are located at geographically distributed sites. The
first site, the BMI cluster, is a memory/storage cluster at
the Department of Biomedical Informatics at the Ohio
State University. The cluster consists of 64 nodes with
an aggregate 0.5 TBytes of physical memory and 48TB
of disk storage. The second site, the CSE cluster, is a
64 node cluster located at the Department of Computer
Science and Engineering at the Ohio State University.
Each node of the cluster is equipped with two 3.6 GHz

We employ GridFTP [4] as the file transfer pro-
tocol. GridFTP exposes a set of API calls [2] for
setting the TCP buffer sizes and for obtaining por-
tions of a file from a source. In our implementa-
tion, a master scheduler sends control information to
clients (destination hosts). Each destination host calls
globus_ftp_client_partial _get() to inform a source of

Algorithm 3 Local Dynamic Scheduling Heuristic

Input: Platform G = (V,E) and a setR = {<
fe,va > | file f, is requested by destinatiar }
1. On each destination nodg independentlylo
2: for each file request< f,,v4 > in non-decreasing
file size ordedo
3:  for each chunk of file f, do

4 < Vi, ChunkSize, , Intel processors and 2 GBytes main memory. The other
TCPBufSize, S“b(’:h"mkswe = two sites belong to the Teragrid [15] network. One of
SelectReplicas(G, D', 7) them is the ORNL NSTG cluster which consists of 28

5 Schedule concurrent transfer of the chunk of 5| hrocessor 3.06 GHz Intel Xeon nodes. The other

file f, from replica noded/; to nodev, .

6: When transfer completes, update the available
bandwidths between sources (¢ V;) and the
destination nodex(;)

one is the UC/ANL IA-32 Linux cluster which consists
of 96 dual-processor Intel Xeon nodes. Table 1 shows
the bandwidths in Mbps(Megabits per second) between
pair of nodes from different sites.

For evaluation, we compared the performance of the




various scheduling schemes under a varying set of sce-The results also show that tE®S is able to consistently
narios covering different file replica distributions, file- outperform the other two approaches. In the other two
to-destination mappings and chunk sizes. For the ex-schemes, clients act independently and make requests
perimental workloads, we employed three different file for files without any coordination. Each file needs to
sizes corresponding to the files to be transferred. Thebe sent to multiple different destinations, leading to in-
sizes were 10MB, 50MB and 500MB respectively. In creased end-point contention due to multiple simultane-
each workload, the fraction of the total number of filesto ous requests for the same file. Therefore, the perfor-
be transferred for each file size was decided based on thenance improvement in these schemes due to increased
distribution of these three file sizes in the GridFTP traces replication is offset by the endpoint contention caused
obtained from Globus metrics for a recent 12-month pe- due to uncoordinated local scheduling. In terms of the
riod [3]. The fraction of the number of files of each type average response tim&DS performs the best.GDS
is 0.5, 0.35 and 0.15 respectively for the 10MB, 50MB schedules the requests with the minimum expected com-
and 500MB files. pletion time first. On the other hand, DS andNai ve

We measure the performance in terms of two metrics, Schedul i ng, since multiple clients act independently
namely, the average throughput which is the ratio of the of each other, requests with higher expected completion
total data transferred to the total execution time, and thetimes can possibly execute before requests with lower
average response time over all the requests in the work-expected completion times, thus increasing the overall

load. response time.
Figure 3 shows the relative performance of the vari-
5.2 Performance Evaluation ous scheduling schemes with increasing degree of repli-

cation. However, in this case, the initial replication is

Figure 2 shows the relative performance of the Global handled differently. The replicas were initially placed
Dynamic Scheduling@DS), Local Dynamic Scheduling only on the CSE nodes. The degree of replication is then
(LDS) and Nai ve Schedul i ng schemes on work- increased by placing more file replicas on the ORNL
loads with increasing degree of replication. This ex- @nd ANL nodes respectively. This experiment was con-
periment was conducted across the 4 sites (BMI-ORNL- ducted by employing the same system configuration em-
ANL-CSE) in a (4-3-2-3) configuration. The numbersin Ployed in the experiment corresponding to Figure 2. The
the parentheses refer to the number Of nodes emp|0yednput request set consisted of 1500 ﬁle-trans-fers. The re-
at each site, respectively. The input request set consistecdults show that as the number of replicas increase, the
of 300 files, the size of each of which is one of the three average throughput does not show a significant increase,
aforementioned values. In addition, the request set con-as expected. More and more replicas were placed on
sisted of multiple destination node mappings for each nodes with low link bandwidths to the destination, re-
file. In this experiment, all the requests in the input set sulting in no significant performance improvement.
had their destination as one of the nodes ofthe BMI clus-  Figure 4(a) shows the the relative performance of the
ter. The degree of replication here refers to the averagevarious scheduling schemes on workloads with increas-
number of file replicas present in the environment. Ini- ing number of clients (destination hosts). This exper-
tially, the replicas were placed only on the ORNL nodes iment was conducted across the 4 sites (BMI-ORNL-
(average number of initial replicas being 1 or 2). Then, CSE-ANL) in a (10-3-3-2) configuration. The numbers
the degree of replication is increased by placing more in the parentheses are the number of hodes employed
file replicas on the ANL and CSE nodes. For the casesat BMI, ORNL, CSE, and ANL, respectively. During
where the average number of replicas is one or two, all the experiment, the number of nodes on the BMI clus-
the file transfers employ either the ORNL cluster (ini- ter was varied from 4 to 10. Each request in the input
tial replicas) or the BMI cluster (as files are created on set was destined to one of the BMI nodes. The num-
the BMI nodes, they themselves can act as file replicas).ber of requests in the input set varied from 300 for the 4
The node-to-node bandwidth from an ORNL node to BMI nodes to around 600 file transfers for the 10 BMI
a BMI node is around 100Mbps. However, the band- nodes. Again, the request set consisted of multiple desti-
width for a send from an CSE node to a BMI node is nation node mappings for each file. The degree of repli-
around 880Mbps. Therefore, as the degree of replica-cation in these experiments refers to the average num-
tion increases, the average throughput shows a signifi-ber of file replicas initially present. The average number
cant performance improvement for tlé®S scheduler.  of initial file replicas was set to 5. The figure shows
This is because, as replicas are placed on the CSE clusthat as the number of clients increase, the throughputin-
ter, the algorithm makes an intelligent choice of choos- creases. This is because, as file replicas are created on
ing the CSE replicas more often than the other replicas. BMI nodes, these replicas also act as sources for other



Increasing number of replicas

Increasing number of replicas
(ORNL-ANL-CSE)

(ORNL-ANL-CSE)

1 1600 2 200
o c
= 1200 { 2 150
5 —l 82
a 800 X @ 100 ]
£ s E
S 400 |:| . g% =0
° 5]
£ o+ 2 0
1 2 3 4 5 1 2 3 4 5

Number of initial replicas Number of initial replicas

| BeDS  mLDS ONaive | [@eps mips  onaive |

(@) (b)

Figure 2. Performance of all the algorithms with increasing numberepficas ( replicas added in the order ORNL-ANL-
CSE) in terms of the (a) Average throughput and (b) Averagpoese time.

Increasing number of replicas Increasing number of replicas
(CSE-ORNL-ANL) ( CSE-ORNL-ANL)
@ 2400 o 250
Qo c
S 1800 g%
5 & 150 A
3 1200 £
< o £ 100
S 600 g =
3 3 50 |
£ o z 04 . . .
1 2 3 4 5 1 2 3 4 5
Number of initial replicas Number of initial replicas
[EGDS  mLDS  ONaive | BGDS  ®LDS  ONaive
(a) (b)

Figure 3. Performance of all the algorithms with increasing numbereglicas ( replicas added in the order CSE-ORNL-
ANL) in terms of the (a) Average throughput and (b) Averaggpanse time.

Increasing number of clients Multiple sites (as destinations)
__ 2500 o 1600
] =
£ 2000 1 g 1200 1 —l
= 1500 s
2 2 800
5, 1000 4 B
= =
= ol ool
4 6 8 10 1 2 3 4 5
Number of clients Number of Initial replicas
OGDS BLDS ONaive ‘ OGDS ELDS ONaive
(a) (b)

Figure 4. (a) Performance in terms of throughput (Mbps) of all the &thens with increasing number of clients (b)

Performance in terms of throughput (Mbps) of all the aldoris for workloads where multiple sites act as clients as agll
sources.



requested transfers of the same file. Even though therequired portion of the file at the destinatiop has al-
aggregate amount of transferred data increases as theeady been written at node;. Once the file is com-
number of BMI clients increases, the aggregate band-pletely written at nodey,, it can act as a replica source
width increases by a greater factor, leading to increasedfor other file transfers. We relaxed this constraint to al-
throughput. Furthermore, the extent of performance im- low for chunk-level replica sources. That s, a file which
provement is maximum for th@€DS scheduler. As the  has not been completely written to a nagecan still act
number of clients increase, the effects of end-point con- as a source for other transfers of the same file. Figure 5
tention is expectedly higherGCDS makes a better job  shows the performance results as a function of decreas-
of accounting for contention by making efficient coordi- ing chunk size for all three algorithms by incorporating
nated scheduling decisions, whereas the other schemeshunk-level replica sources. Here, the x-axis denotes the
make client-side local decisions which cause a lot of fraction % Increasing the value of this param-
end-point contention. eter implies the file is transferred in smaller and smaller
chunks. The results show that the throughput increases
by employing smaller chunks up to a certain point, after
which it shows a decrease. The initial increase is due

Varying Chunk Size

2000

@ to the fact that as the chunk size decreases, the number
% 1500 - m = of possible replica sources for each file increases. Since
£ 1000 each file has multiple destinations, chunks of file being

g s .:I I Jl written to some destination nodes can act as sources for
T oo other destination nodes. However, as the chunk size de-

1 15 2 2.5 3

o , creases further, the latency and I/O overheads of trans-
File Size/Chunk Size

ferring the file in a greater number of chunks offset the
potential benefit due to an increased number of file repli-
cas.

[ meps  mibs  ONave |

Figure 5. Performance of all the algorithms with de-
creasing chunk size.
5.3 Scheduling overhead

Figure 4(b) shows the the relative performance ofthe |, ¢ system, the scheduler computes the schedule
various scheduling schemes on workloads with nodes;noymation for a chunk request and sends this informa-
belonging to different sites acting as destinations. This 451 1o the corresponding destination node. The desti-

experiment was conducted across the 4 sites (BMI- 400 node starts the retrieval of the chunk from the
ORNL-CSE-ANL) in a (4-3-3-2) configuration. The in- g4 ,rce nodes. The scheduler moves on to the next pend-
put request set consisted of around 450 file transfers, iy fije transfer request and repeats the whole process.
the Qestmauon nodes for each file transfer were evenlyTherefore, the scheduling performed by the centralized
distributed across the BMI, ORNL and CSE nodes. In a5ter and the file transfers between slave nodes occur
this case, initially, the replicas were placed only on the j, harajiel. The end-to-end execution time is defined as
ORNL nodes. Then, the degree of replication is in- yhe gjapsed time between the instant when the sched-
creased by placing more file replicas on the ANL and e accepts a batch of requests to the instant when all
CSE nodes. As is seen from the figure, as the nUM-yhe requests have been completed. The non-overlapped
ber of replicas is increased, the performance gap be-gcpeqyiing time is the difference between the end-to-end
tweenGDS and the other algorithms increases. An in- oyqction time and the total file transfer time. In other

crease in the number of replicas (with replicas peing words, the non-overlapped scheduling time is the per-
added to the CSE cluster) creates more opportunity for ¢qyed scheduling overhead. In our experiments, we ob-
faster transfers and more parallelisicDS andNai ve served that the non-overlapped scheduling time is neg-

Schedul i ng, however, experience a lot of end-point |i5ipie This is because, the schedule is generated itera-
contention, since each node can possible act as a sourcle,ve|y while the file transfers are taking place.

and a destination for multiple files simultaneously.

In the experimental results shown so far, the replica
selection algorithm only chose fully-written files as
replica sources for getting portions of files. In other
words, a file which is in the process of being written Tables 2 and 3 show the comparison of the lower
to a destination node,; cannot act as a source for the bounds obtained from the IP formulation in Section 3
transfer of the same file to another nodge, evenifthe  with the experimental values obtained by employing the

Lower-bound Comparisons

10



N CSE-ORNL-ANL (Single dest.) ORNL-ANL-CSE (Single dest.)
Lower bound| GDS | % Increase| Lower bound| GDS [ % Increase

1 148.6 201.4 36 250 289.3 16

2 142.6 1935 36 163.2 195.9 20

3 134.6 191.6 42 125.4 165.65 32

4 134.6 183.4 36 114.2 149.7 31

5 134.6 157.8 17 79.4 125.12 58

Table 2. Comparison (in terms of transfer time(secs)) between Idveeinds and> DS scheduling algorithm for single-
destination workloads. Herd represents the average number of initial file replicas.

N CSE-ORNL-ANL ( Multiple dest.) ORNL-ANL-CSE (Multiple dest.)
Lower bound] GDS [ % Increase| Lower bound] GDS | % Increase

1 347.6 611.6 76 508.8 783.44 54

2 323.5 591.5 83 295.3 580.4 96

3 322.6 585.08 81 196.3 387.7 97

4 307.6 515.8 68 116.5 252.3 117

5 307.6 508.01 65 81.5 165.33 103

Table 3. Comparison (in terms of transfer time(secs)) between ldvweemds and>DS scheduling algorithm for multi-
destination workloads. Herd represents the average number of initial file replicas.

G DS scheduling algorithm for single-destination work-  instant, which means that only a single source would be
loads and multiple-destination workloads. A single- used to transfer the chunk. The IP formulation is obliv-

destination workload, here, refers to a workload where ious to this since it is based on static flow concepts and
each file has a single destination. A multi-destination does notincorporate the notion of time. Therefore, it re-
workload, on the other hand, is one in which each file sults in an overestimation of the achievable throughput
is transferred to multiple destination nodes. The multi- and a lower transfer time. Note that since the GridFTP
destination workloads employed here are the same as theervers do not have the capability to route the incoming
ones which have been used for the results shown in Fig-data to a different GridFTP server, we do not allow this

ures 2 and 3. The lower bounds have been computed byin the IP formulation as well. Using a GridFTP server as

employing peak values of bandwidth on the various net- an intermediate node without storing the data on to the
work links. The results show that th&é DS scheduling disk is non-trivial and require changes/additions to the
algorithm results in between 16-58% increase in execu- GridFTP code and is a part of our future work.

tion time compared to the lower bound for the single-

destination workloads and between 54-117% increases 5 Discussion

for the multiple-destination workloads. The difference

between the lower bound and th@DS is attributed

to the fact that observable network bandwidth over the . In this §ect|on, we provide |n.S|ghtls into the scenar-
wide-area can show fluctuations over time. Also, be- 10S Where in our proposed algorithm is expected to pro-

cause of the slow-start mechanism of TCP, some file VIde significant performance improvements as well as
transfers cannot observe the achievable network band-those cases 'where it is expected to_ give litle perfor-
width. The difference between the lower bound and Mance benefits. In general, the algorithm is expected to
GDS is higher in the multi-destination case as com- provide greater benefits with increasing degree of data

pared to the single-destination case. The IP formulation "€Plication. With a very low degree of replication, the

can yield solutions which employ multiple destinations propose_d algorithm is rest_rl_cted n |_t'_5 choice of multi-
1. Vs, ..0s_y Of a file to send flow to another destina- ple replicas, thereby not giving significant performance

tion v,. However, the formulation does not capture if MProvements. Moreover, the algorithm is expected to
the soUrces;l Vs, .01 have the required chunks of perform well for multi-destination workloads. This is
files or not at a given instant. In the worst case, all the P€Cause, the algorithm, can dynamically take into ac-

sources might have the same chunks of file at a givencoum the existence of new replicas as some of the files
are transferred to their respective destination nodes, and

11



employ those replicas for subsequent file transfers.

6 Conclusions

This paper proposes a dynamic scheduling algorithm

which schedules a set of data transfer requests made by a[g]
batch of data-intensive tasks in a wide-area environment

like the Grid. It also proposes a network flow based in-
teger programming formulation of the scheduling prob-
lem, which is used to find a lower bound on the transfer
time under idealistic conditions of resource availability
and performance. The proposed dynamic scheduling al-

gorithm is adaptive in that it accounts for network band- [

width fluctuations in the wide-area environment. The
algorithm incorporates simultaneous transfer of disjoint
chunks of the same file from different replica sources

to a destination node, thereby increasing the aggregatgi1]

bandwidth. Adaptive replica selection is used for trans-
ferring different chunks of the same file by taking dy-
namic network information into account. We employ
GridFTP for data transfers and utilize information from

past GridFTP transfers to perform predictive bandwidth [12]

estimations. We have shown the effectiveness of our

scheme through experimental evaluations on a wide-area

testbed.

References

[1] The Large Haldron Collider (LHC)
http://lhc.web.cern.ch/lhc/.

[2] Globus ftp client api.
http://www.globus.org/api/c/globuisp_client/html/index.html
2002.

[3] Globus metrics, version 1.4.

(4]

(5]

http://incubator.globus.org/metrics/reports/20070&f,

2007.
W. Allcock, J. Bresnahan, R. Kettimuthu, and M. Link.

The globus striped gridftp framework and server. In
SC '05: Proceedings of the 2005 ACM/IEEE conference
on SupercomputingMashington, DC, USA, 2005. IEEE

Computer Society.
M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi,

A. Rowstron, and A. Singh. Splitstream: high-bandwidth
multicast in cooperative environments. 80SP '03:
Proceedings of the nineteenth ACM symposium on Op-
erating systems principlepages 298-313, New York,
NY, USA, 2003. ACM.

[6] A. Giersch, Y. Robert, and F. Vivien. Scheduling tasks

(7]

sharing files from distributed repositories. BHuro-Par
2004: Parallel Processing: 10th International Euro-Par
Conference, volume 3149 of LN@fages 246-253, Sept.

2004.
O. Ibarra and C. Kim. Heuristic algorithms for schedul-

ing independent tasks on nonindentical processhmst-
nal of the ACM 24(2):280-289, Apr 1977.

12

[8] G. Khanna, U. Catalyurek, T. Kurc, P. Sadayappan, and

J. Saltz. Scheduling file transfers for data-intensive
jobs on heterogeneous clusters. In A.-M. Kermarrec,
L. Bougé, and T. Priol, editor&uro-Par, volume 4641

of Lecture Notes in Computer Sciengages 214-223.
Springer, 2007.

G. Khanna, N. Vydyanathan, T. Kurc, U. Catalyurek,
P. Wyckoff, J. Saltz, and P. Sadayappan. A hypergraph
partitioning based approach for scheduling of tasks with
batch-shared i/o. ICCGRID '05: Proceedings of the
Fifth IEEE International Symposium on Cluster Comput-
ing and the Grid (CCGrid’05) - Volume, 2ages 792—
799, Washington, DC, USA, 2005. IEEE Computer So-
ciety.

10] T. Kosar and M. Livny. Stork: Making data placement a

first class citizen in the grid. IfCDCS '04: Proc.of the
24th International Conference on Distributed Computing
Systems (ICDCS’04pages 342-349, Washington, DC,

USA, 2004. IEEE Computer Society.
D. Kosti€, A. Rodriguez, J. Albrecht, and A. Vahdat.|Bu

let: high bandwidth data dissemination using an overlay
mesh. INSOSP '03: Proceedings of the nineteenth ACM
symposium on Operating systems principfeges 282—
297, New York, NY, USA, 2003. ACM.

V. S. Pai, K. Kumar, K. Tamilmani, V. Sambamurthy,

and A. E. Mohr. Chainsaw: Eliminating trees from over-
lay multicast. In M. Castro and R. van Renesse, editors,
IPTPS volume 3640 oLecture Notes in Computer Sci-

ence pages 127-140. Springer, 2005.
M. Piatek, T. Isdal, T. E. Anderson, A. Krishnamurthy,

and A. Venkataramani. Do incentives build robustness in

bittorrent? INNSDL USENIX, 2007.
M. Swany. Improving throughput for grid applica-

tions with network logistics. IrSC '04: Proceedings
of the 2004 ACM/IEEE conference on Supercomputing
page 23, Washington, DC, USA, 2004. IEEE Computer
Society.

15] TeraGrid. http://www.teragrid.org.

L. Yang, J. M. Schopf, and I. Foster. Improving parallel
data transfer times using predicted variances in shared
networks. InCCGRID ’'05: Proceedings of the Fifth
IEEE International Symposium on Cluster Computing
and the Grid (CCGrid’05) - Volume,2ages 734-742,
Washington, DC, USA, 2005. IEEE Computer Society.



