
FTProfiler: A New Profiling Tool for GridFTP 
Servers 

Huong Luu1, Rajkumar Kettimuthu2,3, Marianne Winslett1 
1 Department of Computer Science, University of Illinois at Urbana-Champaign, USA 

2Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, USA 
3Computation Institute, University of Chicago/Argonne National Laboratory, Chicago, USA  

 
Abstract— GridFTP is a high-performance, secure, and 

reliable data transfer protocol that is being widely used in data 
transmission in Grid computing. A GridFTP server needs to 
achieve high throughput as it sends and receives data to and from 
multiple sources, each with its own configuration. Profiling tools 
can potentially help GridFTP administrators gain insight into the 
system’s activities and identify configuration tradeoffs as well as 
potential bottlenecks. This paper presents a new profiling tool, 
called FTProfiler, which is built upon standard system profiling 
tools OProfile and Sar, to provide a more complete view of the 
system and simplify the profiling process for new GridFTP 
servers.  FTProfiler calls OProfile and Sar, analyzes their 
profiling results and generates a detailed report.  Through a case 
study, we show how FTProfiler can help administrators 
understand the effects of system parameters such as the TCP 
buffer size, block size, and parallel TCP streams on server 
performance and load, thus simplifying the process of detecting 
bottlenecks and tuning for performance.  

Keywords – Profiling GridFTP, Profiling WAN data movement, 
Profiling high-speed transfers 

I. INTRODUCTION  
GridFTP [1] extends the standard FTP [2] protocol to 

provide a high-performance, secure, reliable data transfer 
protocol optimized for high-bandwidth wide-area networks. 
The Globus GridFTP implementation [3] has been widely 
used for data transfer in the Grid community. It provides a 
modular and extensible data transfer system architecture 
suitable for wide area and high-performance environments. 
To get the maximum performance from the GridFTP 
server, a variety of parameters need to be tuned. Profiling 
tools can potentially help GridFTP administrators gain 
insight into the system’s activities, identify configuration 
tradeoffs, and understand their impact on server load. 

Currently two good profiling tools, OProfile [21] and 
Sar [23], can provide information on different aspects of 
the system behavior without imposing much overhead. In 
this paper we present FTProfiler, which leverages OProfile 
and Sar to provide a more complete view of the GridFTP 
system and simplify the profiling process on new servers. 
Through our case studies, we demonstrate the use of 
FTProfiler to profile system, to identify the potential 
bottleneck and to understand the effects of system 
parameters on server behavior, including TCP buffer size, 
I/O block-size, and the number of parallel streams or 
otherwise called parallelism. 

In the remainder of the paper, we provide background 
on GridFTP in Section 2, discuss the design of FTProfiler 

in Section 3 and present the profiling case studies in 
Section 4. We describe related work in Section 5 and 
summarize in Section 6. 

II. GRIDFTP 
FTP is a widely implemented and well-understood 

IETF-standard protocol. It provides a well-defined 
architecture for protocol extensions and supports dynamic 
discovery of the extensions supported by a particular 
implementation. Many extensions for FTP have been 
defined through the IETF. The FTP protocol also separates 
control and data channels, enabling third-party transfers, 
that is, the transfer of data between two end hosts, mediated 
by a third host.  The GridFTP protocol is based on FTP and 
thus also benefits from the FTP protocol advantages 
mentioned above. In addition, it extends the FTP protocol 
to provide a high-performance, secure, and reliable data 
transfer protocol optimized for high-bandwidth wide-area 
networks. 

The following is a summary of key GridFTP features. 
Third-party control of data transfer. To manage large 

datasets for distributed communities, we must provide 
authenticated third-party control of data transfers between 
storage servers. A third-party operation allows a user or 
application at one site to initiate, monitor and control a data 
transfer operation between two other sites: the source and 
destination for the data transfer.  

Authentication, data integrity, and data confidentiality. 
GridFTP supports Generic Security Services (GSS)-API 
authentication of the control channel (RFC 2228) and data 
channel (GridFTP extensions), and supports user-controlled 
levels of data integrity and/or confidentiality. Data channel 
authentication is of particular importance in third party 
transfers, since the IP address of the host connecting for the 
data channel will be different than that of the host 
connected on the control channel, and there must be some 
way to verify that it is the intended party. 

Striped data transfer. Data may be striped or interleaved 
across multiple servers, as in a parallel file system or DPSS 
disk cache [19]. Thus, GridFTP defines protocol extensions 
that support the transfer of data partitioned among multiple 
servers. 

Parallel data transfer. On wide-area links, using 
multiple TCP streams in parallel between a single source 



and destination can improve aggregate bandwidth relative 
to that achieved by a single stream [17, 20]. GridFTP 
supports such parallelism via FTP command extensions and 
data channel extensions. A GridFTP implementation can 
use long virtual round trip times to achieve fairness when 
using parallelism or striping [18]. Note that striping and 
parallelism may be used in tandem, i.e., users may have 
multiple TCP streams open between each of the multiple 
servers participating in a striped transfer. 

Partial file transfer. Some applications can benefit from 
transferring portions of files rather than complete files, such 
as analyses that require access to subsets of massive files. 
FTP allows transfer of the remainder of a file starting at a 
specified offset. GridFTP supports requests for arbitrary 
file regions. 

Automatic negotiation of TCP buffer/window sizes. 
Using optimal settings for TCP buffer/window sizes can 
dramatically improve data transfer performance. However, 
manually setting TCP buffer/window sizes is an error-prone 
process, particularly for non-experts, and is often simply 
not done. GridFTP extends the FTP command set and data 
channel protocol to support both manual setting and 
automatic negotiation of TCP buffer sizes for large files 
and for large sets of small files.  

Support for reliable and restartable data transfer. 
Reliable transfer is important for many applications that 
manage data. Fault recovery methods are needed to handle 
failures such as transient network and server outages. The 
FTP standard includes basic features for restarting failed 
transfers, but these are not widely implemented. GridFTP 
exploits these features and extends them to cover its new 
data channel protocol.   

The Globus implementation of GridFTP provides all 
these key features along and is highly extensible. Its 
modular architecture enables a standard GridFTP-compliant 
client to access any storage system that implements its data 
storage interface [5], including the HPSS archival storage 
system [6], SRB [7], the PVFS parallel file system [8], the 
GPFS parallel file system [9], and POSIX [10] file systems. 
Its eXtensible I/O interface [11] allows GridFTP to target 
high-performance wide-area communication protocols such 
as UDT [12], FAST TCP [13], and RBUDP [14]. Globus 
GridFTP is optimized to handle a variety of types of 
datasets, from a single, huge file to datasets comprising lots 
of small files [15, 16].  

III. FTPROFILER OVERVIEW 
In general, GridFTP server performance profiling 

needs to be done in a way that minimizes interference with 
the production jobs running on the server. Thus the steps of 
preparation and generating reports are usually done on a 
separate machine, rather than the server itself. For this 

reason, FTProfiler runs on the client machine where the 
transfer is initiated for a client-server transfer or a third 
party transfer between servers. During execution, 
FTProfiler first remotely accesses the server to start the 
underlying tools, including OProfile and Sar, then runs the 
test workload on the client machine. After finishing the run, 
FTProfiler again accesses the server to turn off the running 
profiling tools and post-process the results, which are then 
sent back to the client machine. Based on the results 
received, FTProfiler generates a report that covers the 
essential information. The user has the option of viewing 
additional information from the profiling result files. The 
working scenario of FTProfiler is shown in Figure 1.  

FTProfiler uses OProfile and Sar as underlying tools 
because they provide different aspects of system profiling 
with low overhead. OProfile uses the hardware 
performance counters of the CPU to profile the entire 
system. OProfile shows how time is spent in different parts 
of the system, such as the kernel, kernel modules, interrupt 
handlers, shared libraries and applications. On the other 
hand, Sar is capable of profiling the memory usage, 
including memory and swap space utilization and other 
performance metrics for each processor. FTProfiler 
processes the results from both tools to provide essential 
information to the user, such as CPU utilization, peak and 
average load. 

 
Figure 1: Working scenario for FTProfiler  

IV. CASE STUDY 
The goal of our experiments was to perform a 

performance study to see the effects of different parameters 
to GridFTP performance. In this process, we demonstrate 
the use of FTProfiler and other tools to detect the 
bottleneck of the transfers. To this end, we used five 
servers in multiple locations, to model both local and 
distant data transfers.  For the local case, the client and 
server are nodes in the Breadboard cluster at Argonne 
National Laboratory, each with 4GB of main memory, 



approximately 300GB of storage per node, connected by a 
Myri-10G 10Gbps network with a 1Gb/s network interface 
card (NIC) on each machine.  

For the distant case, we used dedicated GridFTP 
servers at different TeraGrid sites, namely the servers Pople 
at the Pittsburgh Supercomputing Center, Abe at the 
National Center for Supercomputing Applications, and 
Ranger at the Texas Advanced Computing Center. These 
servers can utilize the TeraGrid backbone network (10 – 30 
Gb/sec) to the fullest for a better transfer rate. However, 
Pople uses 1 Gb/s NIC while Abe and Ranger have 10 Gb/s 
NICs.  

We had the privileges to adjust server configurations 
on Breadboard nodes, but not elsewhere. Our experiments 
tune the most common options for performance: TCP 
buffer size, parallel TCP streams, and buffer size. We 
transfer 16GB of data with files of size 800MB, 1GB, and 
4GB. 

A. TCP buffer size 
The TCP buffer size option (-tcp-bs) specifies the size 

of the TCP buffer to be used by the underlying FTP data 
channels. This parameter has long been believed to be 
critical to achieve good performance over the WAN. The 
optimal value for the TCP buffer size is believed to be the 
Bandwidth * Delay Product (BDP), which depends on the 
available Bandwidth and Round Trip Time (RTT) between 
two destinations. However, in most modern operating 
systems, TCP buffers are automatically tuned which means 
the buffer size is automatically adjusted based on the 
changing network conditions.  This raises the question: will 
manually changing the TCP buffer size hurt or help, in the 
presence of auto-tuning?  We investigated this question 
through a performance study of the effect of TCP buffer 
size parameter on GridFTP transfers. 

For the case where the RTT between the client and the 
server is on the order of few milliseconds or less, the TCP 
buffer size does not affect the transfer rate much, hence it 
will not be the source of a bottleneck.  Thus we tested the 
effect of this parameter in the long distance case. We 
transferred data between TeraGrid sites and the server on 
the Breadboard cluster. We tested with different TCP buffer 
sizes: the default option of GridFTP (which uses 
autotuning), a manually calculated BDP value and fixed 
values of 4MB, 8MB, 16MB and 32MB. The 4MB, 8MB, 
16MB and 32MB values are recommended for the optimal 
transfer rate among TeraGrid servers, and are actually used 
by TeraGrid for this purpose. In all tests we have 
conducted, parameters other than the one being tested are 
set to the default values. 

To calculate BDP, we used Iperf [24] to measure 
bandwidth and ping to determine the RTT between sites. 
To assess GridFTP servers’ performance, we measured the 
transfer rate of each configuration multiple times, 
eliminated any outliers, then calculated the average value. 

The transfers were performed at different times of day to 
take into account the effects of loads created by other users 
in a shared environment like TeraGrid. Based on our 
measurements, the BDP values are approximately 500KB 
(Abe and BB), 2MB (Pople and Abe, Pople and BB), 3MB 
(Ranger and Abe, Ranger and Pople) and 4.5MB (Ranger 
and Pople). 

One disadvantage of using BDP rather than other 
options is that BDP needs to be calculated for every 
connection that we want to improve, while auto-tuning and 
fixed buffer sizes do not require that. Manually choosing 
the TCP buffer size might worsen the performance because 
too-large buffers possibly overload the receiver’s TCP 
window and create congestion on the server. This is a 
serious problem called the “buffer bloat” problem [28, 29], 
discussed by Jim Gettys, in which excessively large buffers 
in the network communication system eventually lead to 
network congestion, destroy congestion avoidance in the 
transport protocols and cause poor performance.  

On the other hand, sometimes the TCP settings are too 
small, thus limiting the server’s performance and under-
utilizing the network. Hence manual tuning is generally not 
recommended over auto-tuning. 

As shown in Figure 2, with auto-tuning, the choice of 
TCP buffer size is not as important as it was in the past. 
Among Teragrid servers, the difference between the best 
and the worst transfer rates is about 10% except for the 
Ranger to Pople case, where the default auto-tuning gives a 
46% improvement compared to the worst buffer size, 
16MB. The Breadboard server worked best with the auto-
tuning option and the performance quickly dropped when 
TCP buffer size increased which might indicate the 
bottleneck in TCP settings. Figure 2 also shows that the 
transfer rates in different directions for the Ranger server 
are not the same; in fact, the rate from Abe to Ranger is 
double the reverse direction. This could mean that Ranger 
has different network configurations for each direction. 
Ranger seems to prioritize its configuration for incoming 
traffic over outgoing. 

 

 
Figure 2: Transfer rates (MB/s) with different TCP buffer size values 



Variable: meaning Abe Pople Ranger Breadboard 
net.core.rmem_max/wmem_max: Set max size of 
TCP receive/transmit window. 

16MB 
 

2MB 32MB 128KB 

net.core.rmem_default/wmem_default: Set 
default size of TCP receive/transmit window. 

112KB 256KB 64KB 122KB 

net.ipv4.tcp_rmem: Set min, default, max receive 
window. 

4KB/ 85KB/ 16MB 4KB/ 85KB/ 16MB 4KB/ 85KB/  32MB 4KB/ 85KB/ 4MB 

net.ipv4.tcp_wmem: Set min, default, max 
transmit window.  

4KB/ 64KB/ 16MB 4KB/ 16KB/ 256KB 4KB/ 12MB/ 32MB 4KB/ 16KB/ 4MB 

net.ipv4.tcp_mem: Set min, default, max 
allocatable TCP buffer space.  

1.5MB/ 2MB/ 3MB 48KB/ 64KB/ 96KB 768KB/ 1MB/ 32MB 367KB/489KB/734KB 

net.core.netdev_max_backlog: Maximum 
number of packets in the receiver’s queue.  

250,000 2500 400,000 1000 

Table 2: Servers' TCP settings

To explain the low performance of transfers between 
Breadboard and Abe/Pople in Figure 2, we used FTProfiler 
to gain more insight into this problem. The profiling result 
for the Breadboard server, shown in the left half of Table 1, 
suggested that the current TCP settings under-utilize the 
server with a very low transfer rate to the physical I/O 
device (server) as well as the network transfer rate. This 
indicates that network setting could potentially be the 
bottleneck in this case.  

To understand the impact of TCP settings, we 
examined the settings on each server; the main differences 
between servers’ settings are listed in Table 2. As we can 
see, the TCP settings in Breadboard are quite small and 
hence, the transfer rate from/to Breadboard server is low 
because of this limitation. It also explains why Breadboard 
server performance decreased as we increased the TCP 
buffer size, as shown in Figure 2. 

We adjusted the settings of the Breadboard server to 
improve its performance, using the sysctl command [25]. 
We changed the Breadboard server auto-tuning settings to 
be the values suggested in TCP tuning manuals [22]. The 
suggested values are very close to Abe’s except that 
netdev_max_backlog becomes 30,000 instead of 250,000. 
After changing the TCP settings, the transfer rates using 
different buffer sizes all improved greatly, as much as five 
times faster, as shown in Figure 3. Further, once the TCP 
settings were set appropriately, the effect of the buffer size 
is small. The Breadboard profiling result with new settings, 
shown in the right half of Table 1, also confirmed this. 

In conclusion, auto-tuning does a good job in 
achieving good performance without having to manually 
select a value for the TCP buffer size. However, we might 
need to adjust other TCP settings to make sure that we can 
fully take advantage of auto-tuning.   

 

 
Figure 3: Transfer rate (MB/s) for different TCP buffer sizes, after 

adjusting Breadboard's other TCP settings 

B. Parallelism 
This parameter specifies the number of TCP streams 

running in parallel to be used in the transfer.  It is one of the 
most commonly tuned parameters to achieve good 
performance because it improves the aggregate bandwidth 
and makes better use of the available bandwidth. The 
default value for parallelism is 1. In these tests, we auto-
tune the TCP buffer size and use the new settings for 
Breadboard’s other TCP parameters, as described in the 
previous section. Other parameters are set to default. 

The experiment results are presented in Figure 4. In 
general, using parallel streams improves the transfer rate 
quite significantly, especially when the RTT between 
servers is large. For Abe and Breadboard transfers whose 
RTT is only 6.5 ms, increasing the number of parallel 
streams does not help. It is interesting to observe that even 
though Ranger does not have a good outgoing rate using 
the TCP buffer size option, we can actually improve it 
significantly with the parallelism option. And the transfer 
from Abe to Pople requires further investigation, but our 

 With old TCP settings With new TCP settings 
Peak 
load 

Transfers to 
I/O devices 
per second 

Network packets 
received per 
second 

Network packets 
transmitted per 
second 

Peak 
load 

Transfers to 
I/O devices 
per second 

Network packets 
received per 
second 

Network packets 
transmitted per 
second 

Default 23.7% 4.85   11675  15529  34.9% 9.43   45372  61977  
BDP 20.6% 2.11   5734 7664   20.4% 10.78   38332  52539  
4MB 20.5% 2.87   7271  9673   28.2% 11.63   38725  53191  
8MB 20.6% 3.40   8352 11083  34.5% 12.00   39021  53618  
16MB 21.4% 3.99   9524  12635  34.5% 10.51   33798  46433  
32MB 20.1% 4.49   10527  13947  34.0% 10.92   34483  47385  

Table 1: GridFTP server profiling result using different TCP settings 



privileges only allow in-depth investigation on Breadboard. 
 

 
Figure 4: Throughput (MB/s) with 1-16 parallel TCP streams  

For transfers from Breadboard to Pople, increasing 
parallelism (P) significantly helped to improve the transfer 
rate for small P, but this trend reversed for P=8. By looking 
at the profiling result shown in Table 3, we see that P=4 
improves total throughput without increasing kernel load. 
So for this transfer, we could recommend to use P=4 to 
maximize the server performance. 

 P =1 P = 2 P = 4 P = 8 P = 16 
Transfer rate 
(MB/s) 

45.86 58.36 59.06 47.01 58.33 

Peak CPU 
utilization (%)   

22.2 39.1 41.7 38.7 36.4 

Kernel load (%) 45.22 48.60 46.73 53.94 59.26 
Table 3: Server profiling for Breadboard to Pople transfer case 

C. Block size:  
This parameter specifies the size of the buffer that the 

underlying IO system uses when posting read requests to 
the disk. This parameter gives the user more control, as 
each underlying IO system that GridFTP uses has its own 
optimal IO buffer size value. As this parameter is only 
applicable to read requests, it affects only the data sender.  
We must distinguish between two cases – sending from the 
client or server – to make sure we adjust the right value. 

When the client sends data to the server, we specify 
the block size value using the –bs option in globus-url-copy 
command.  In the third party transfer case, in which a client 
initiates the transfer between two servers or when the server 
sends data to the client, we adjust the server’s configuration 
by adding the block size option when starting the server. 
The default value is 256KB. Other parameters are set to 
default.  

As shown in Figure 5, the experiments’ result shows 
that the adjustment does not significantly improve the 
performance. In fact the default value for block size 
(256KB) performs slightly better overall than other values.  

Intuitively, as long as the block size is big enough to 
keep the rest of the system fed with data, it will not be the 
bottleneck. We, therefore suspect that it might become the 
bottleneck if there is more load, for example with 16 
parallel streams.  However, the impact of increasing the 
block size is still small, for 16-way parallel transfers from a 
Breadboard client to the Abe server. 

 
Figure 5: Effects of adjusting block size 

D. Putting everything together: How well do we do?  
In general, there are two types of GridFTP transfer: 

one that involves disk activity and another one that does 
not, which is memory-to-memory transfer. The latter type 
is usually used to identify if the performance bottleneck lies 
in the network configuration or in disk I/O. In this section, 
we first perform memory-to-memory transfers between 
servers and then by comparing the memory-to-memory 
transfer rate to the best disk-to-disk transfer rate, we find 
out how efficiently we have utilized the network for disk 
related transfer. 

 
 Abe Breadboard Pople Ranger 
Abe  110.9 113.9  552.95 
Breadboard 111  105.98 111.33 
Pople 115.94 84.3  115.32 
Ranger 434.47 NA 111.78  

Table 4: Memory to memory transfers between servers, in MB/s  
As shown in Table 4, memory-to-memory transfers 

from or to Breadboard and Pople were able to saturate the 
network and reach close to the bandwidth limit (bounded 
by 1 Gb/s NIC (approximately 125 MB/s)). Abe and 
Ranger servers have 10 Gb/s NIC. That’s why the transfer 
rates between Abe and Ranger are 550MB/s and 434MB/s. 
Obviously, we were not able to saturate the network link in 
this case. The throughput is only 35-45% of the available 
capacity. It could be due to network bottlenecks or because 
the end systems are not powerful enough to drive a 10Gb/s 
network link. The transfer rate from Pople to Breadboard 



was about two thirds of the NIC limit, which might indicate 
bottlenecks in network configuration. 

Next, we compared the best achievable disk-to-disk 
transfer rate (using all performance-improving parameter 
settings discussed so far) to the memory-to-memory 
transfer rate, to identify the disk I/O overhead. Our 
preliminary results in Table 5 indicated that we were not 
using the network efficiently.  FTProfiler can help us gain 
insight into where the bottleneck might be and improve the 
performance optimization. 

 

 

Best disk to 
disk transfer 
rate (MB/s) 

Memory to 
memory 
transfer rate 

Percentage 
utilization 

Abe to BB 40.32 110.90 36% 
Abe to Pople 56.76 113.90 50% 
Abe to Ranger 75.13 552.95 14% 
BB to Abe 62.25 111.00 56% 
BB to Pople 59.53 105.98 56% 
Pople to Abe 86.82 115.94 75% 
Pople to BB 45.41 84.30 54% 
Pople to Ranger 82.41 115.32 71% 
Ranger to Abe 99.99 434.47 23% 
Ranger to Pople 37.84 111.78 34% 
Table 5: Percentage of network utilization for best disk to disk transfers  

We first measured the GridFTP transfer rate from 
Breadboard clients to the Breadboard server. We measured 
the local disk-to-disk transfer because on the Breadboard 
system we have exclusive access to the nodes used in the 
test, so that the transfer rate is not affected by the load 
created by other clients. The memory to memory transfer 
rate was 112MB/s. However, the disk-to-disk transfer rate 
between Breadboard nodes is only about 60MB/s. We also 
measured the memory to disk and disk to memory transfer 
rates, which were 50MB/s and 80MB/s, respectively. 

We expected the transfer rate to be close to the rate 
measured by a standard disk benchmark such as FIO [26] 
or Bonnie [27]. We used Bonnie to measure Breadboard 
nodes’ disk performance, focusing on block sequential IO. 
However, the rate reported by Bonnie is 100MB/s and 
91MB/s for output and input respectively, which is much 
higher than the GridFTP disk IO performance. 

To understand where the bottleneck might be, we 
profiled both source and destination server for all transfer 
cases between memory and disk. The results are shown in 
Table 6. In this table, /mbcache refers to the filesystem 
meta information block cache. /nfs is the file system 
module, /sunrpc is the protocol for making remote 
procedure calls. /tcp_cubic module provides the cubic 
congestion control protocol and /tg3 module is the Ethernet 
NIC driver. 

We discovered several interesting patterns. First, /nfs 
is heavier on the destination server with disk I/O because it 
has to allocate disk blocks to write data to. /mbcache is disk 
I/O related only; /sunrpc runs mainly on the source server 
with disk-related transfer while /tcp_cubic only appears on 

the source server, and /tg3 is needed in all cases. This 
observation suggests that we should focus on improving 
these related modules for disk transfer cases.  

 

Table 6: Percentage of load on server for important modules 

V. RELATED WORK 
The work we present in this paper is similar to that of 

George Kola et al. [4], who performed a full system 
profiling and comparison between GridFTP and NeST 
servers, the very commonly used data servers at that time. 
Based on the profiling result, they discussed the 
configuration tradeoffs of parallel streams and the block-
size parameter for server performance and server load. 
Their experiments were carried out with GridFTP 2.4.3. 
Since then, Globus Alliance has released several other 
versions of GridFTP with many improvements and new 
features. Our experiments are performed with Globus 
Toolkit 5.0.0 and GridFTP server 3.19, and thus provide a 
more current view of GridFTP.  

VI. SUMMARY AND FUTURE WORK 
We have developed FTProfiler, a profiling tool for 

GridFTP. This tool was motivated by the need to 
understand the effects of various system parameters in 
performance tuning and detecting bottlenecks. We have 
demonstrated the use of this tool using a variety of 
GridFTP transfers both in the LAN and WAN settings. We 
have shown the effect of tuning parameters such as TCP 
buffer size, parallel streams and block size on the 
performance of GridFTP.  

Our performance study has shown that the auto-tuning 
feature in modern operating systems is doing a good job in 
adjusting the TCP buffer size automatically based on the 
changing network conditions. However, to be effective, 
auto-tuning requires good settings for other TCP 
parameters. After changing the other TCP settings of the 
Breadboard server, data transfer rates with auto-tuning 
were as much as five times faster. We also found that using 

 /mbcache /nfs /sunrpc /tcp_ 
cubic 

/tg3 

Mem-to-mem:  
Log on source 

0 0 0 0.148 2.403 

Mem-to-mem:  
Log on destination 

0 0 0 0 3.389 

Mem-to-disk:    
Log on source 

0 0 0 0.087 2.008 

Mem-to-disk:    
Log on destination 

0.004 2.423 0.364 0 2.615 

Disk-to-mem:   
Log on source 

0.005 0.428 1.048 0.014 2.341 

Disk-to-mem:   
Log on destination 

0 0 0 0 2.943 

Disk-to-disk:     
Log on source 

0.006 0.412 1.209 0.038 2.703 

Disk-to-disk:     
Log on destination 

0.005 2.395 0.240 0 2.387 



parallel streams helps to improve the transfer rate while 
block size does not show a clear effect on the performance. 

Further, we have compared the performance of disk-
to-disk transfers with memory-to-memory transfers and 
identified some bottlenecks in the GridFTP system, using 
the detailed analysis provided by the FTProfiler tool.  

In future, we plan to extend our study to profile striped 
servers and analyze the impact of small file optimizations 
such as pipelining, parallel transfers, and on-the-fly tarring 
of files.  We also intend to do a detailed study of the pros 
and cons of using TCP versus UDT in WAN settings, using 
FTProfiler.  

This work was supported in part by NSF grant CCF 
0938064 and the Google Summer of Code program.  

 
REFERENCES 

1. Allcock, W. GridFTP: Protocol Extensions to FTP for 
the Grid. Global Grid Forum GRD-R-R.020, 2003. 

2. Postel, J. and Reynolds, J. File Transfer Protocol. 
Internet Engineering Task Force, RFC 959, 1985. 

3. W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, C. 
Dumitrescu, I. Raicu, and I. Foster, “The Globus 
Striped GridFTP Framework and Server,” SC’05, 
ACM Press, 2005 

4. Kola, G., Kosar, T., Livny, M., "Profiling Grid Data 
Transfer Protocols and Servers", In Proceedings of 
10th European Conference on Parallel Processing 
(Europar 2004) 

5. Kettimuthu, R., Link, M., Bresnahan, J., Allcock, W., 
“Globus Data Storage Interface (DSI) - Enabling Easy 
Access to Grid Datasets,” 1st DIALOGUE Workshop: 
Applications-Driven Issues in Data Grids, Aug. 2005. 

6. Watson, R.W. and Coyne, R.A. The Parallel I/O 
Architecture of the High-Performance Storage System 
(HPSS). IEEE MSS Symposium, 1995. 

7. Baru, C., Moore, R., Rajasekar, A. and Wan, M., The 
SDSC Storage Resource Broker. 8th Annual IBM 
Centers for Advanced Studies Conference, Toronto, 
Canada, 1998. 

8. Carns, H., Ligon III, W.B., Ross, R.B.,  and  Thakur, 
R., "PVFS: A Parallel File System For Linux Clusters", 
Proceedings of the 4th Annual Linux Showcase and 
Conference, Atlanta, GA, October 2000 

9. General Parallel File System (GPFS), 2004. www-
1.ibm.com/servers/eserver/clusters/software/gpfs.html. 

10. POSIX 1003.1e draft specification 
"http://www.suse.de/~agruen/acl/posix/posix_1003.1e-
990310.pdf" 

11. Allcock, W., Bresnahan, J., Kettimuthu, R. and Link, 
J., The Globus eXtensible Input/Output System (XIO): 
A Protocol-Independent I/O System for the Grid. Joint 
Workshop on High-Performance Grid Computing and 
High-Level Parallel Programming Models held in 
conjunction with International Parallel and Distributed 
Processing Symposium, 2005. 

12. Gu, Y. and Grossman, R.L., UDT: An Application 
Level Transport Protocol for Grid Computing. Second 
International Workshop on Protocols for Fast Long-
Distance Networks, 2003. 

13. Jin, C., Wei, D.X. and Low, S.H., FAST TCP: 
motivation, architecture, algorithms, performance. 
IEEE Infocom, 2004. 

14. He, E., Leigh, J., Yu, O. and DeFanti, T.A., Reliable 
Blast UDP: Predictable High Performance Bulk Data 
Transfer. IEEE Cluster Computing, 2002. 

15. Bresnahan, J., Link, M., Kettimuthu, R., Fraser, D., and 
Foster, I., "GridFTP Pipelining," in Teragrid 2007 
Conference, Madison, WI, 2007. 

16. Kettimuthu, R., Sim, A., Gunter, D. Allcock, W., 
Bremer, P., Bresnahan, J., Cherry, A., Childers, L., 
Dart, E., Foster, I., Harms, K., Hick, J., Lee, J., Link, 
M., Long, J., Miller, K., Natarajan, V., Pascucci, V., 
Raffenetti, N., Ressman, D., Williams, D., Wilson, L., 
Winkler, L., "Lessons learned from moving Earth 
System Grid data sets over a 20 Gbps widearea 
network", 19th ACM International Symposium on 
High Performance Distributed Computing (HPDC), 
2010 

17. Hacker, T., Athey, B. and Noble, B., The end-to-end 
performance effects of parallel tcp sockets on a lossy 
wide-area network.16th IEEECS /ACM International 
Parallel and Distributed Processing Symposium, 2002. 

18. Hacker, T.J., Noble, B.D. and Athey, B.D., Improving 
Throughput and Maintaining Fairness using Parallel 
TCP. IEEE InfoCom, 2004. 

19. Johnston, W., Greiman, W., Hoo, G., Lee, J., Tierney, 
B., Tull, C. and Olson, D., High-Speed Distributed 
Data Handling for On-Line Instrumentation 
Systems. ACM/IEEE SC97: High Performance 
Networking and Computing, 1997 

20. Qiu, L., Zhang, Y. and Keshav, S., On Individual and 
Aggregate TCP Performance. 7th International 
Conference on Network Protocols, 1999. 

21. OProfile: http://oprofile.sourceforge.net/news/ 
22. Linux TCP Tuning: 

http://fasterdata.es.net/fasterdata/host-tuning/linux/ 
23. Sar manual page: http://linux.die.net/man/1/sar 
24. Iperf project: http://sourceforge.net/projects/iperf/ 
25. Sysctl manual page: http://linux.die.net/man/8/sysctl 
26. FIO benchmark:  http://linux.softpedia.com/get/ 

System/Filesystems/fio-7881.shtml 
27. Bonnie benchmark: http://www.textuality.com/bonnie/ 
28. Buffer bloat wiki: 

http://www.bufferbloat.net/projects/bloat 
29.  Gettys, J., “Buffer bloat: dark buffers in the Internet”, 

talk at Bell Labs. April 3, 2011.  


