
Utility-Based Scheduling for Bulk Data Transfers between
Distributed Computing Facilities

Xin Wang,∗ Wei Tang,† Rajkumar Kettimuttu,† Zhiling Lan∗

∗Department of Computer Science, Illinois Institute of Technology
Chicago, IL 60616, USA

xwang149@hawk.iit.edu, lan@iit.edu
†Mathematics and Computer Science Division

Argonne National Laboratory, Argonne, IL 60439, USA
{wtang, kettimut}@mcs.anl.gov

Abstract—Today’s scientific applications increasingly involve
large amounts of input/output data that must be moved among
multiple computing facilities via wide-area networks (WANs).
The bandwidth of WANs, however, is growing at a much
smaller rate and thus becoming a bottleneck. Moreover, the
network bandwidth has not been viewed as a limited resource,
and thus coordinated allocation is lacking. Uncoordinated
scheduling of competing data transfers over shared network
links results in suboptimal system performance and poor
user experiences. To address these problems, we propose
a data transfer scheduler to coordinate and schedule data
transfers between distributed computing facilities over WANs.
Specifically, the scheduler prioritizes and allocates resources to
data transfer requests based on user-centric utility functions in
order to achieve maximum overall user satisfaction. We con-
ducted trace-based simulation and demonstrated that our data
transfer scheduling algorithms can considerably improve data
transfer performance as well as quantified user satisfaction
compared with traditional first-come, first-serve or short-job-
first approaches.

Keywords-data transfer scheduling; utility function; simula-
tion

I. INTRODUCTION

Today’s scientific applications increasingly involve large
amounts of data. The needs for bulk data transfer between
remote data centers or computing facilities are growing,
such as running data backup on a remote site [18] or
moving original data to a remote site for further analysis
because of computing resource requirements [28]. Moving
the increasing volume of data has imposed a heavy load
on the networks between data centers. Especially when
multiple data transfers compete for the limited bandwidth,
coordinating and scheduling these transfers have become a
challenge.

GridFTP (or its software-as-a-service version, Globus [3])
is widely used for bulk data movement. It has been installed
on thousands of sites and is being used to move an average of
more than 1 PB of data every day. Efforts have been made
to improve the performance of a single GridFTP transfer
or a set of related GridFTP transfers [23][29]. However,
no efforts have been made to coordinate and schedule bulk

data transfers as schedulable batch jobs in order to improve
the overall experience of all users. As multiple data transfer
jobs compete for limited network resources, an unreasonable
schedule of data transfers may lead to unbalanced use of the
link capability in both temporal and spatial dimensions [27].

To address these problems, we designed and developed a
data transfer scheduler to coordinate data transfer requests
between distributed computing facilities. Our goal is to
process data transfer requests in an coordinated fashion
in order to improve system performance as well as user
satisfaction. Unlike commonly used first-come, first-served
(FCFS) or short-job-first (SJF) approaches, our approach
quantifies user satisfaction by using a time-utility function
(TUF) and schedules data transfer jobs in both temporal and
spatial dimensions trying to maximize the aggregate job util-
ity. Here the utility function is a function of job turnaround
time and can be used to represent the value (or utility)
that the user attaches to the job completion. Maximizing
aggregate job utility is consistent with an enhanced overall
user satisfaction regarding job turnaround.

We apply our new scheduler to a real case study where
data movements are conducted between multiple XSEDE
[2] sites using Globus [3]. To evaluate our approach, we
developed an open-source event-driven data transfer schedul-
ing simulator named Dsim [1]. Using real job traces from
multiple XSEDE sites, we demonstrated that our utility-
based data transfer scheduler can achieve enhanced system
performance and user satisfaction compared with traditional
FCFS and SJF approaches in terms of reduced average job
response time, less network contention, and aggregate job
utility.

The remainder of this paper is organized as follows.
Section II discusses related work; Section III presents the
background and the problem statement; Section IV de-
scribes our utility-based data transfer scheduling algorithms;
Section V introduces Dsim, our event-driven data transfer
simulator; Section VI evaluates our new approaches with
Dsim using real job traces; and Section VII summarizes our
conclusions and briefly discusses future work.



II. RELATED WORK

In the 1980s, one of the earliest works addressing the
file transfer scheduling problem [8] proposed list scheduling
algorithms whereby transfers are ordered from largest to
smallest. Since then, many other algorithms have adapted
this idea with the addition of extra parameters [15][11]. The
ordering technique usually gives a sub-optimal solution, thus
a number of efforts have sought to optimize data transfers
via WANs. Khanna et al. [16] divide datasets so that they
can be sent over different paths to make full use of network
bandwidth. Tummala and Kosar [24] group data transfers
on the same path and send them together. Kettimuthu et
al. [14] provide an analytical model to optimize concurrency
and parallelism. Balman and Kosar [5] suggest a scheduling
method that gradually improves the level of concurrency and
can achieve a near-optimal value. Arslan et al. [4] propose an
algorithm for auto-tuning data transfer parameters such as
pipeline, concurrency and parallelism. In practice, Globus
[3] serves data transfer requests in FCFS fashion. In our
work, we consider the bandwidth as a schedulable resource
and develop a scheduler to maximize user-centric metrics in
order to achieve better user satisfaction.

The utility function is a concept that is widely used
in economics to calculate the relative values of compara-
ble items. Utility functions can be used to represent the
value users attach to job completion as a function of time
elapsed from when the job was submitted. J. Wang and
B. Ravindran [26] propose an efficient packet scheduling
algorithm to maximize aggregate utility. Lee and Snavely [9]
present precise and realistic utility functions for user-centric
performance analysis of schedulers. Vengerov et al. [25] use
utility functions for scheduling of data-intensive multipro-
cessor jobs. Chen [7] proposes utility-based scheduling for
multimedia streams in peer-to-peer (p2p) systems. Our work
also uses utility functions for data transfer scheduling, which
to our best knowledge is the first attempt in this area.

In recent years, network simulation tools have been
continuously improved and used for network performance
evaluation. According to Jain [12], simulation provides an
easy way to predict system performance or compare different
approaches. Silvestre et al. [21] propose a p2p simulator that
can simulate both middleware-layer and application-layer
protocols. ROSS [6] is a massively parallel discrete-event
simulation tool that models the operations of the system
as a sequence of discrete events in time. Based on ROSS,
CODES [10] simulation framework implements multiple
network models that can be used to build diverse upper-
level application models, such as a data-aware workflow
scheduling simulation [22]. In this work, we develop an
event-driven simulator that schedules data transfer requests
over shared network resources based on the CODES wide-
aware network model, which extends the use cases of
CODES framework.

III. BACKGROUND AND PROBLEM STATEMENT

In this section, we introduce some concepts of GridFTP
data transfers and utility functions as background. We then
present the formulation of the problem we will address.

A. Data Transfer with GridFTP

We address data transfer scheduling problems in which
GridFTP is used to manage bulk data transfers via WANs. In
this context, data transfers are issued by multiple users using
GridFTP clients, and data transfers are conducted between
GridFTP servers deployed at distributed data centers.

In GridFTP transfers, parallelism and concurrency are two
key performance-tuning mechanisms. As illustrated in Fig-
ure 1, parallelism involves the use of multiple connections
to transfer chunks of a file in parallel from a single-source
GridFTP server process to a single-destination GridFTP
server process; concurrency involves the use of multiple
GridFTP server processes at the source and destination.

In this work, we use both parallelism and concurrency in
data transfer. Specifically, we make the TCP connections as
sharing and schedulable resources among the queued data
transfers.

Figure 1. Parallelism and concurrency in GridFTP

B. Utility Functions

Jensen’s time-utility functions [13] allow the semantics
of soft timing constraints to be precisely specified. A TUF
specifies the utility to the system for completing an ap-
plication or a job. Here, the utility represents the value
users associate with their jobs’ turnaround time. Figure 2
shows some example TUFs. Usually, the utility function is
monotonically nonincreasing; it reaches maximum value at
the time when job is submitted and drops to zero at some
specified time.

The utility function has recently been applied in batch
job scheduling in order to quantify user satisfaction. For
example, assuming a job is associated with a utility function
U(t) as described in Figure 2(a), the job will achieve (or
deliver) a maximum utility value (umax) if it is completed
by time t1, meaning the user gets maximum satisfaction. If
the job completes between t1 and t2, the delivered utility



(a) soft step TUF (b) linear TUF

(c) exponential TUF (d) step TUF

Figure 2. Different shapes of the time-utility function.

will between the umax and 0, decreasing as time goes by.
If the job completes after t2, the utility is 0, meaning that
even if the job is finished, it is too late to deliver any benefit
to the user. In this work, we use aggregate utility (the sum
of all the utility of completed data transfer jobs) to quantify
overall user satisfactions.

C. Problem Statement

Now we describe the data transfer scheduling problem
we will address. We target our problem in a distributed
environment where each source host has GridFtp service that
handles all data transfer requests by moving data to multiple
destinations over WANs.

The data transfer requests are modeled as data transfer
jobs and are managed in a queue at the source host. Each
job include four parameters: the source host where the data is
originally locates; the destination host where the data needs
to be sent; the size of the data (in bytes); and the submit
time of the data request.

For example, in Figure 3 a source host is connected with
three destination hosts via a router. A scheduler inside the
source host coordinates the data transfers between the source
host and the respective destination hosts, via the links with
different bandwidths. The decisions made by the scheduler
include which jobs should be started now and how many
TCP connections should be assigned to each job.

The first aspect involves temporal job sorting/prioritizing.
FCFS and SJF are commonly used queuing policies. The
former is good for job arrival fairness, and the latter can im-
prove average job turnaround. In addition, other job metrics
can be factored into job priorities, such as the “importance”

Figure 3. Example of data transfer scheduling problem. A source host is
connected with three destination hosts via a router. A scheduler inside the
source host will coordinate the data transfers and makes following decisions
at each scheduling iteration: (1) which jobs should be started now and (2)
how many TCP connections to assign to each job. The scheduling goal is
to improve both system performance and user satisfaction.

to user satisfaction, which can be be represented by job
utility.

The second aspect involves spatial bandwidth allocation.
For example, with limited bandwidth shared, we want to
allocate more TCP connections to high-priority jobs so that
they can get enhanced transfer. We should also coordinate
the TCP connections based on destination bandwidths in
order to avoid bandwidth waste. For example, in the figure
if we assign an equal number of connections to the three
transfer jobs, J3 will get up to 33 MB bandwidth between
the source host and the router, whereas it can achieve only
10 MB between the router and the destination, resulting in
an uncoordinated bandwidth waste.

To generalize the problem, we need a scheduler that
coordinates the data transfer jobs by prioritizing jobs in the
queue and allocates bandwidths to jobs by assigning TCP
connections. The goal of the scheduler is to achieve im-
proved system performance and user satisfaction. Improved
system performance can be measured by reduced average
job turnaround and network contentions. User satisfaction
here can be represented by aggregate job utility.

IV. METHODOLOGY

In this section, we describe our methodology in detail.
Before discussing the algorithms, we list in Table I the
nomenclature used in the text.

Table I
NOMENCLATURE

Symbol Definition Symbol Definition
N # of destinations BW shared bandwidth
Qi queue for dest. host i size job size
Fi fair share for Qi W window size
M # of jobs Tw job waiting time
Cmax max. connections Te estimated transfer time
Cavail available connections tc job complete time
Cj connections for job j Uj(.) utility for job j



A. Base Methods

We first describe the base methods that have been used in
practice for prioritizing data transfers. In the basic model, the
scheduler select one or more jobs with the highest priorities
(or at the head of the queue) to start the data transfers. In
this work, we examine two policies that will be used as a
baseline to be compared with our newly designed scheduling
method.

The first policy is first-come, first-served (FCFS), where
the scheduler will pick the job with oldest submission time
in order to maintain fairness regarding job arrival order. The
second policy is short-job-first (SJF), which typically refers
to the policy that sorts the jobs based on their lengths (i.e.,
execution times) to minimize the average waiting time. Here,
we examine a modified version of SJF, which considers not
only the job lengths but also the job waiting times. That is,
the jobs are sorted based on the ratio of waiting time and
job size (defined as Tw/size). This is to based on the fact
that larger (longer) jobs can tolerate longer waiting time than
smaller (shorter) jobs.

B. Utility-Based Scheduling

Unlike the base methods, our utility-based scheduling
method not only schedules job temporally but also allocates
resources (network bandwidth) spatially. In addition, we
quantify user satisfaction using the utility function, and we
try to maximize the aggregate utility of all jobs.

Specifically, our scheduling algorithm comprises three
major steps. First, we try to allocate bandwidths for jobs
with different destination with certain fairness guarantees.
Second, for the jobs with same destination, we prioritize
these jobs and select candidate jobs based on a window size.
Third, we apply a utility optimization algorithm to assign
TCP connections to selected jobs. Algorithm 1 describes the
main algorithm. We will next describe these steps in more
details.

Algorithm 1: Utility-Based Data Transfer Scheduling
Input: a set of data transfer jobs J
Output: a subset of jobs Js that can start, each with an

assigned number of C (connections)
1 Qc = assign queue C min max fairness(J , BW );
2 Js = [];
3 foreach q in Qc do
4 Jc = select candidate jobs by window(q, W );
5 Jq

s = sched C by utility(Jc);
6 Js.append(Jq

s );
7 end
8 start transfers(Js);

1) Bandwidth Allocation: For data transfer jobs with
different destination hosts, some links are shared by all the
jobs, and some are used by jobs with certain destination.

For example, in Figure 3 the link between the source
and router is shared whereas the links between the router
and destinations are separate. For an individual job, the
bandwidth of the path from source to destination is bounded
by the link with the smallest bandwidth along the path
(i.e., the bottleneck link). In this setting the separate links
are bottlenecks. Therefore, we want to allocate the shared
bandwidth to jobs with different destination based on their
respective bottleneck bandwidth.

To allocate the shared bandwidths fairly, we use max-
min fairness [17], a technique widely used in practice. The
sharing of a network resource is “max-min fair” when the
following conditions hold: the lowest demand on data rate
is maximized; only after the lowest demand on the network
resource has been satisfied will the second-lowest demand
on the network resource be maximized; and so on.

Figure 4 shows a simple example. If the bandwidth of
bottleneck links are 200, 400, and 500 (MB/s) for each
destination, respectively, and the bandwidth of the source
link is 1000 MB/s, then the fair share of three destinations
will be 20%, 40%, and 40%. Max-min fairness will not
assign more bandwidth to a “slow” destination, so that the
destinations fully utilize the shared bandwidths.

In this work, we realize the bandwidth allocation by as-
signing the number of TCP connections to jobs with different
destinations, given we have a maximum total number of
TCP connections (Cmax) at the source host. Thus, after the
bandwidth allocation step, the jobs in different queues (one
queue per destination) are assigned with a certain number
of TCP connections, which will be further assigned to each
candidate job at later steps.

Figure 4. Max-min fairness example. If the bandwidth of separate
bottleneck links are 200, 400, and 500 (MB/s) for each destination,
respectively, and the bandwidth of the shared link is 1000 MB/s, then the
fair share of three destinations will be 20%, 40%, and 40%.

2) Job Prioritizing and Selection: Once we have assigned
available TCP connections to each job queue, we then iterate
with each of the queues and select a set of candidate jobs that
can be started at the current scheduling iteration. That is, the
jobs will be sorted with certain policies, and the jobs at the
head of the queue will be selected. The sorting criteria can
be FCFS, based on the job submission time, or SJF, based
on the ratio of job waiting time and the job size (Tw/size).



To favor the high-priority jobs, we apply a cap to limit
the number of candidate jobs at the head of the queue. We
call this cap the window size (W ). That is, at most W jobs
can be started at the current scheduling iteration.

3) Utility-Based Connection Allocation: Once we select a
set of candidate jobs for each queue, we want to decide how
many TCP connections for each job to use for data transfers.
The more connections a job uses, the more bandwidth it can
occupy and the faster the data transfer. Therefore, we can
use the connection assignment to favor certain important
jobs—jobs that deliver more utility—to achieve aggregate
user satisfaction.

In order to assign connections based on utility, the
scheduler estimates the utility of a job based on the job’s
TUF assuming that the job will be started right away. As
mentioned earlier, the utility score of a job starts with a
maximum value and decays until it drops to 0. We denote
the utility function of job i as Uj(.). Thus the utility of job
i at time tc will be Uj(tc), i ∈ [1,M ], where tc is the job
completion time. For each job queue, the scheduler solves
the following problem and finds the optimal TCP connection
assignment for each job.

max(

W∑
j

Uj(Tw + Te))

s.t.

W∑
j

Cj = Cavail

(1)

where Cavail is the current available TCP connections,
which is no more than the assigned connections in the
bandwidth allocation step.

The scheduler selects the optimal assignment of Cj for
job j. It needs to know the estimated utility of assigning Cj

connections to job j, which is defined as Uj(Tw+Te). Here
Te is the estimated data transfer time, which is calculated
as

Te =
sizej

fi ∗BW
+ overhead, (2)

where BW is the bandwidth of the shared link, and fi is
the fraction of bandwidth of destination host i, which is
calculated by

fi = Cj/(Fi ∗ Cmax). (3)

We implement the utility-based connection assignment
using a greedy algorithm. We first initialize a table of
estimated utilities by different TCP connections and evenly
distribute the total available connections to each job. Next,
we conduct connection exchange iterations, at which we
reduce one connection from a job and add it to another job
such that the reduced utility of the former job is minimal
and the increased utility of latter is the maximum. We repeat

this step until we cannot increase the aggregate utility any
more. The final number of connections will be used as the
final connection assignment for the candidate jobs. The job
with zero connections will not be started. Figure 5 shows a
simple example.

Figure 5. Example of the maximum aggregate utility using a greedy
algorithm. In the beginning, we assign 4 connections equally to 4 jobs
(one per each). After an exchange iteration, we reduce one connection for
j1 (utility -1) and add it to j3 (utility +4), because this results in maximum
utility increase. In this case, we cannot further increase the utility by the
exchange operation. Thus the final assignment is [0, 1, 2, 1] for job j1 to
j4.

V. SIMULATION FRAMEWORK

Event-driven simulation is an efficient way to under-
stand the system behavior under various workloads, system
configurations, and resource scheduling policies. To model
the data movement among distributed sites, we developed
an open-source simulator named DSim [1]. As shown in
Figure 6, Dsim takes inputs such as various job workloads,
scheduling policies, and network configurations. With two
internal components—queue manager and scheduler—Dsim
emulates data transfer scheduling and generates a series
of output events, based on which we can analyze the
performance metrics. In order to simulate network data
transfer, Dsim is built on the CODES network simulation
framework [10].

Figure 6. Diagram of Dsim

The goal of the CODES project [10] is to use paral-
lel, fine-grained simulation to explore the design of large-
scale storage or network architectures and distributed data-



intensive science facilities. CODES is built on the Rensselaer
Optimistic Simulation System (ROSS) [6], a discrete event
simulation framework that allows simulations to be run in
parallel.

Network simulation is one of key features in the CODES
framework. It can be used to model various network topolo-
gies. The network congestions between multiple transfers
are emulated by breaking the data transfer load into small
packets queued up at the ends of the configured network
links. Existing work using CODES network models includes
the dragonfly network [20] and torus network [19]. Here
we use WAN model provided by CODES for data transfer
simulation.

VI. EXPERIMENTS

We evaluate our utility-based scheduling approaches using
Dsim. We first discuss the workload characteristics, experi-
ment configurations, and evaluation metrics. We then present
our experimental results.

A. Workload Characteristics

We use real job traces collected from at data transfer nodes
(DTNs) at four XSEDE sites. The source DTN is associated
with Stampede1, and three different destination DTNs are
with Gordon,2 Mason,3 and Yellowstone.4

The original job trace consists of job IDs, destination host,
job submission time, job completion time, and data size.
After removing some small-noise jobs, the trace consists of
2,248 data transfer jobs. We categorize these jobs as large
jobs and small jobs based on whether they are larger than 1
GB. Table II shows the statistics of the job trace.

Table II
JOB TRACE STATISTICS

Category Job Count Avg.Size(MB) Small Job Large Job
Gordon 797 1068.43 61% 39%
Mason 624 816.38 63% 37%

Yellowstone 897 1032.36 63% 37%
Total 2248 985.20 61% 39%

B. Experimental Configuration

In our experiments, we set up one source host that handles
all job transfer requests to three destination hosts via a single
router. We configure network bandwidths shown in Figure 4.
The shared bandwidth between the source host and the router
is set to 100 MB/s, whereas the WAN bandwidth for each
destination host is set to 100 MB/s, 50 MB/s, and 20 MB/s,
respectively. We conduct our experiments with different
numbers of maximum TCP connections varying from 10

1A supercomputer at Texas Advanced Computing Center (TACC)
2A computer cluster at San Diego Supercomputer Center (SDSC)
3A computer cluster at Indiana University
4A supercomputer at Nat’l Center for Atmospheric Research (NCAR)

to 50. For each configuration of maximum connections, we
run simulations with four scheduling policies:

• FCFS. Job queue is maintained as a FIFO (first-in,
first-out) queue. The scheduler picks the first job in
the queue to run until the maximum TCP connections
are consumed.

• FCFS-U. Job queue is sorted by FIFO, and the utility-
based connection allocation is applied after W jobs are
selected at the head of the queue.

• SJF. Job queue is sorted by the ratio of waiting time and
job size (Tw/size) . The scheduler picks the first job in
the queue to run until the maximum TCP connections
are consumed.

• SJF-U. Job queue is sorted by SJF. The utility-based
connection allocation is applied after W jobs are se-
lected at the head of the queue.

C. Utility Function Setting

In the experiments, we use a soft-step decreasing utility
function as shown in Figure 2(a). For each data transfer job,
we assign a utility of 100 at the job submission time, which
emphasize that each job is equally important. We define the
ideal finish time of a job as the time period for transferring
the job with one connection. The utility remains at 100 if
the job finishes before its ideal finish time; then the utility
decays linearly over time. The time point when the utility
drops to zero (e.g. t2 in Figure 2(a)) is different for small
jobs and large jobs. We set t2 to be 20 times the ideal finish
time for small jobs, and 40 times the ideal finish time for
large jobs. We also set t2 to be no less than 300 seconds.

D. Evaluation Metrics

In our experiment we used the following metrics:
• Waiting time: time period between job submission and

job start.
• Response time (also called turnaround time): time pe-

riod between job submission time and job completion,
consisting of waiting time and data transfer time.

• Transfer time: time period between job start to transfer
and job transfer time. In this work, the job transfer
time of the same job in different test cases is variable
because of network contention.

• Aggregate utility: As noted in [9], when armed with
jobs bearing utility functions, we can directly compute
the total value delivered to users:

Uaggr =

M∑
j

Uj(tc)

E. Results

We conducted simulations with different scheduling poli-
cies and different numbers of maximum TCP connections.
Figure 7 illustrates the overall results. The x-axis indicates
different value of maximum connections. The y-axis shows



(a) avg. job response time (sec) (b) avg. transfer time (c) aggregate utility

Figure 7. Performance evaluation for different scheduling policies under various maximum TCP connection configurations. The legends of (a) through
(c) represent different scheduling policies. The x-axis is the number of maximum TCP connections.

the average performance results among all the jobs, regard-
ing the metrics described earlier (excluding waiting time as
it follows very similar trend with response time).

Figure 7(a) shows the results for average response time.
We first observe the utility-based scheduling improves the
average response time for the respective queuing policies.
That is, FCFS-U reduces the average response time by
34% compared with FCFS; SJF-U improves it by 48%
compared with SJF. We also notice that SJF is better than
FCFS-U here, meaning that the average response time is
more sensitive to the temporal queuing policy (short-job-
first) than is the spatial utility-based connection allocation.
Using both SJF and the utility-based allocation results in
the best performance, a nearly 75% improvement compared
with FCFS.

Figure 7(b) shows the results for average transfer time. Al-
though the total job size is the same, the average data transfer
time differs in each test case. The reason is that different
concurrency levels cause different network contentions. As
shown in the figure, using utility-based scheduling improves
the data transfer time significantly, no matter what queuing
policy is used. Specifically, FCFS-U reduces transfer time
64% compared with FCFS, whereas SJF-U reduces it 52%
compared with SJF.

Figure 7(c) shows that using utility-based scheduling can
significantly improve aggregate job utility, especially when
the queuing policy is SJF. FCFS-U increases aggregate
utility from 12% up to 74% compared with FCFS, and SJF-U
increases aggregate utility from 54% up to 149% compared
with SJF. We also note that the fewer the maximum number
of TCP connections, the more significant the utility increases
by using utility-based scheduling. This means that the utility
optimization algorithm has more impact when a large data
transfer workload is sharing limited bandwidth resources.

In addition to the average or aggregate values examined,
we present cumulative distributed function (CDF) plots in
order to gain more insight into how the performance is
improved. We present the CDF plots of one test case to
compare the performance variations brought by different

scheduling policies and job categories (large or small jobs
divided by a 1 GB threshold).

Figure 8 shows the CDF of response times for all jobs. We
observe that for small jobs, using utility-based scheduling
greatly improves the response time. At the 50th percentile,
FCFS-U decreases the response time by 19% compared
with FCFS, and SJF-U decreases the response time by 95%
comparing to SJF. On the other hand, at the 50th percentile
of large jobs, FCFS-U improves response time by 38%
compared with FCFS, and SJF-U improves the time 66%
compared with SJF. The utility optimization model improves
the response time for both small jobs and large jobs.

Figure 8. CDF of response time for different policies and job sizes. The
y-axis represents the proportion and the x-axis the job response time.

Figure 9 shows the cumulative distributions of data trans-
fer times. We observe that utility-based scheduling improves
the transfer time for both small jobs and large jobs. At the
50th percentile of all jobs, FCFS-U decreases the transfer
time 64% for small jobs and 43% for large jobs compared
with FCFS, and SJF-U increases the time 80% for small jobs
and decreases it 60% for large jobs compared with SJF. We
can see that about 65% of the small jobs have better transfer
times with SJF rather than SJF-U. At the 90th percentile,



however, SJF-U decreases the transfer time 51% compared
with SJF for small jobs.

Figure 9. CDF of transfer time for different policies and job sizes. The
y-axis represents the proportion and the x-axis the job transfer time.

Figure 10 shows the cumulative distributions of job utility.
We first observe that utility-aware policies get better ag-
gregate job utility than does their respective utility-unaware
version. That is, the solid lines are all below the dashed lines
of the same color. If the queuing policy is SJF, the utility-
based algorithm can bring more significant improvement. In
terms of job size, we found that large jobs tend to deliver
higher utility than do small jobs. That is, the lines with
markers are all below the lines without markers. The reason
is that the small jobs are more sensitive to the utility decay.
Substantial numbers of small jobs have zero utility (we call
the proportion of these kinds of jobs “miss rate”). Utility-
based algorithms are helpful in this situation. For example,
SJF-U decreases the miss rate of small jobs from 78% to
15% compared with SJF.

Figure 10. CDF of job utility for different policies and job sizes. The
y-axis represents the proportion and the x-axis the job utility.

VII. CONCLUSION

In this work, we have presented a utility-based data
transfer scheduler to coordinate and schedule bulk data trans-
fers among distributed computing facilities via wide-area
networks. The goal of the scheduler is to coordinate multiple
data transfer requests to improve system performance and
overall user satisfactions. We implemented our algorithms in
an open-source data transfer scheduling simulator and con-
ducted trace-based simulations using real job traces collected
from production computing facilities. The experimental re-
sults demonstrate that our approach considerably improves
the system performance and user satisfaction compared with
traditional scheduling methods FCFS and SJF. Our utility
optimization model improves job response time, transfer
time and aggregate utility.

We plan to extend our work in following aspects. First,
we will improve our approaches to support more diverse
workload (e.g. a mixture of batch jobs and real-time jobs
with deadlines). Next, we will investigate more sophisticated
utility functions for different types of jobs. Finally, we
will evaluate our approaches with more complex network
topology and dynamic status. That is, we will add more
source and destination hosts and introduce unpredictable
external load in the simulation.

ACKNOWLEDGMENTS

This work is supported in part by National Science
Foundation grants CNS-1320125 and CCF-1422009. This
material is also based upon work supported by the U.S.
Department of Energy, Office of Science, under contract
DE-AC02-06CH11357. We give our special thanks to Drs
John Jenkins and Misbah Mubarak from Argonne’s CODES
project team (led by Dr Robert Ross) for their support and
consultant in network simulation.

REFERENCES

[1] Dsim project repo: https://github.com/xwang149/Dsim

[2] XSEDE: Extreme Science and Engineering Discovery Envi-
ronment. https://www.xsede.org

[3] B. Allen, J. Bresnahan, L. Childers, I. Foster, et al., “Software
as a service for data scientists,” Commun. ACM, 55(2):8188,
2012.

[4] E. Arslan, B. Ross, and T. Kosar, “Dynamic protocol tuning
algorithms for high performance data transfers,” in Euro-Par
2013 Parallel Processing, pp. 725-736, 2013

[5] M. Balman, and T. Kosar, “Dynamic adaptation of parallelism
level in data transfer scheduling,” in CISIS, L. Barolli, F. Xhafa,
and H.-H. Hsu, eds. IEEE Computer Society, pp. 872-877, 2009.

[6] C. Carothers, D. Bauer, and S. Pearce, “ROSS: A high-
performance, low memory, modular time warp system,” in Proc.
of Workshop on Paral. and Distri. Simulation, 2000.



[7] F. Chen, “A utility-based approach to scheduling multimedia
streams in peer-to-peer systems,” in Proc. of the 18th Interna-
tional Parallel and Distributed Processing Symposium (IPDPS’
04), 2004.

[8] E. G. Coffman, Jr., M. R. Garey, D. S. Johnson, and A. S.
LaPaugh, “Scheduling file transfers in a distributed network,”
in PODC, 1983.

[9] C. B. Lee, and A. E. Snavely, “Precise and realistic utility
functions for user-centric performance analysis of schedulers,”
in Proc. of 16th international symposium on High Performance
Distributed Computing, 2007.

[10] J. Cope, N. Liu, S. Lang, P. Carns, C. Carothers, R. Ross,
“CODES: Enabling co-design of multi-layer exascale storage
srchitectures,” in Proc. of Workshop on Emerging Supercomput-
ing Technologies, 2011.

[11] M. Hu, W. Guo, and W. Hu, “Dynamic scheduling algorithms
for large file transfer on multi-user optical grid network based
on efficiency and fairness,” in ICNS, J. L. Mauri, V. C. Giner,
R. Tomas, T. Serra, and O. Dini, eds. IEEE Computer Society,
2009, pp. 493-498, 2009.

[12] R. Jain, “The art of computer systems performance analysis:
techniques for experimental design, measurement, simulation,
and modeling.” Wiley, May 1991.

[13] D. Jensen, “Asynchronous decentralized real-time computer
systems,” Real-Time Computing, 1992.

[14] R. Kettimuthu, G. Vardoyan, G. Agrawal, P. Sadayappan,
“Modeling and optimizing large-scale wide-area data transfers,”
in Proc. of CCgrid’ 14, 2014.

[15] G. Khanna, U. Catalyurek, T. Kurc, P. Sadayappan, and
J. Saltz, “Scheduling file transfers for data-intensive jobs on
heterogeneous clusters,” in Euro-Par, ser. Lecture Notes in
Computer Science, A.-M. Kermarrec, L. Boug, and T. Priol,
eds., vol. 4641. Springer, 2007, pp. 214-223, 2007.

[16] G. Khanna, V. Catalyrek, T. M. Kur, R. Kettimuthu, P.
Sadayappan, I. T. Foster, and J. H. Saltz, “Using overlays
for efficient data transfer over shared wide-area networks,” in
IEEE/ACM SuperComputing Conference, 2008.

[17] A. Ghodsi , M. Zaharia , B. Hindman , A. Konwinski ,
S. Shenker , and I. Stoica,“Dominant resource fairness: fair
allocation of multiple resource types,” in Proc. of NSDI’11, pp.
323-336, 2011

[18] N. Laoutaris, M. Sirivianos, X. Yang, and P. Rodriguez,
“Interdatacenter bulk transfers with netstitcher,” in Proc. of the
ACM SIGCOMM 2011 Conference, 2011.

[19] N. Liu and C. D. Carothers, “Modeling billion-node torus
networks using massively parallel discrete-event simulation,”
in IEEE Workshop on Principles of Advanced and Distributed
Simulation, 2011.

[20] M. Mubarak, C. Carothers, R. Ross, and P. Carns, “Model-
ing a million-node dragonfly network using massively parallel
discrete-event simulation,” in Proc. of High Performance Com-
puting, Networking, Storage and Analysis (SCC), SC Compan-
ion, 2012.

[21] G. Silvestre and S. Monnet, “Performing accurate simulations
for deadline-aware applications,” in MOSPAS, 2013.

[22] W. Tang, J. Jenkins, F. Meyer, R. Ross, R. Kettimuthu,
L. Winkler, X. Yang, T. Lehman, and N. Desai, “Data-aware
resource scheduling for multi-cloud workflows: A fine-grained
simulation approach,” in Proc. of IEEE International Conference
on Cloud Computing Technology and Science, 2014.

[23] S. Thulasidasan, W. Feng, and M. K. Gardner, “Optimizing
GridFtp through dynamic right-sizing.” in Proc. of IEEE Inter-
national Symposium on High Performance Distributed Comput-
ing, 2003.

[24] S. Tummala, and T. Kosar, “Data management challenges in
coastal applications,” Journal of Coastal Research, special issue
no.50, pp. 1188-1193, 2007.

[25] D. Vengerov, L. Mastroleon, D. Murphy, and N. Bam-
bos, “Adaptive data-aware utility-based scheduling in resource-
constrained systems,” Research Disclosure, No. 513, pp. 38-39,
2007.

[26] J. Wang and B. Ravindran, “Time-utility function-driven
switched ethernet: packet scheduling algorithm, implementation,
and feasibility analysis,” in Proc. of IEEE Transactions on
Parallel and Distributed Systems, 2004.

[27] Y. Wang, S. Su, A. Liu, and Z. Zhang, “Multiple bulk data
transfers scheduling among datacenters,” Computer Networks,
68, pp. 123-137, 2014.

[28] W. Wu, P. DeMar, A. Bobyshev, “An analysis of bulk data
movement patterns in large-scale scientific collaborations,” Jour-
nal of Physics: Conference Series, 331(2011), 2011

[29] E. Yildirim and T. Kosar, “End-to-end data-flow parallelism
for throughput optimization in high-speed networks,” Journal of
Grid Comp., 10(3), pp. 395-418, 2012.


