Characterization of Backfilling Strategies for Parallel Job Scheduling*

Srividya Srinivasan

Rajkumar Kettimuthu

Vijay Subramani P. Sadayappan

Department of Computer and Information Science
The Ohio State University
{ srinivas,kettimut,subraman,saday } @cis.ohio-state.edu

Abstract

Although there is wide agreement that backfilling pro-
duces significant benefits in scheduling of parallel jobs,
there is no clear consensus on which backfilling strategy
is preferable e.g. should conservative backfilling be used
or the more aggressive EASY backfilling scheme; should
a First-Come First-Served(FCFS) queue-priority policy be
used, or some other such as Shortest job First(SF) or eX-
pansion Factor(XF); In this paper, we use trace-based
simulation to address these questions and glean new in-
sights into the characteristics of backfilling strategies for
job scheduling. We show that by viewing performance in
terms of slowdowns and turnaround times of jobs within
various categories based on their width (processor request
size), length (job duration) and accuracy of the user’s esti-
mate of run time, some consistent trends may be observed.

1 Introduction

Effective job scheduling schemes are important for su-
per computer centers in order to improve system met-
rics like utilization, and user metrics like turnaround time.
Most of the studies in literature have reported these metrics
averaged over all jobs of simulated traces. When compar-
ing different scheduling strategies, many studies have con-
cluded that the relative effectiveness of different schemes
often depends on the job mix [1]. In order to gain greater
insight into the relative effectiveness of different schedul-
ing strategies, we group jobs into categories and study the
effect of various schemes on the different categories. Three
important factors that affect the scheduling of a job are -
the length (run time of the job), width (number of nodes
requested by the job) and the accuracy of the user’s es-
timated runtime. By classifying jobs along these dimen-
sions, and interpreting metrics like slowdown for various
job categories instead of just a single average for the en-
tire job trace, we are able to obtain new insights into the
performance of different scheduling schemes.

* Supported in part by agrant from Sandia L aboratories

We address a number of issues in this paper:

e How does conservative backfilling [8] compare with
aggressive (EASY) [7, 10] backfilling?

e The most commonly used priority policy for backfill-
ing is First-Come First-Served(FCFS) [1,3,5]. How
does it compare with other priority-policies, such as
Shortest job First(SF) and eXpansion Factor(XF)?

e What is the effect of inaccurate user estimates of job
runtime? A recent study [1] concluded that with
FCFS, performance is actually enhanced by worse
user estimates, suggesting that it might be desirable
for supercomputer centers to systematically multiply
user-specified wall-clock limits by some factor. We
study this issue, considering different scheduling pri-
orities and backfilling policies, viewing the results by
grouping them based on the extent of over-estimation.

The paper is organized as follows. We provide back-
ground about job scheduling strategies in Section 2 and in-
formation about the job traces in Section 3. In Section 4,
we compare conservative and aggressive backfilling under
the assumption of exact user estimates of runtime. In Sec-
tion 5, we study the effect of inaccurate estimation of job
runtime. In Section 6, we provide conclusions and discuss
future work.

2 Background

Scheduling of parallel jobs is usually viewed in terms of
a 2D chart with time along one axis and the number of pro-
cessors along the other axis. Each job can be thought of as
a rectangle whose height is the user estimated run time and
width is the number of processors required. Parallel job
scheduling strategies has been widely studied in the past
[1,2,5,6,9, 11, 12]. The simplest way to schedule jobs
is to use the First-Come-First-Served (FCFS) policy. This
approach suffers from low system utilization. Backfilling
[7, 8, 13] was proposed to improve system utilization and

has been implemented in several production schedulers [4].
Backfilling works by identifying “holes” in the 2D chart
and moving forward smaller jobs that fit those holes. There
are two common variations to backfilling - conservative
and aggressive (EASY)[8, 10]. In conservative backfill,
every job is given a reservation when it enters the system.
A smaller job is moved forward in the queue as long as
it does not delay any previously queued job. In aggres-
sive backfilling, only the job at the head of the queue has a
reservation. A small job is allowed to leap forward as long
as it does not delay the job at the head of the queue. Under
FCFS, the priority of a job is its wait time. Other priority
policies like Shortest job First (SF), eXpansion Factor(XF)
can be used. Under SF, the priority of a job is inversely pro-
portional to its user estimated run time. Under the XFactor
priority scheme, the priority of a job is its XFactor which
is defined as follows:

XFactor = (Wait time + Estimated Run time) / Estimated
Run time

Some of the common metrics used to evaluate the
performance of scheduling schemes are the average
turnaround time and the average bounded slowdown. We
use these metrics for our studies. The bounded slowdown
of a job is defined as follows:

Bounded Slowdown = (Wait time + Max(Run time,
10))/ Max(Run time, 10)

The threshold of 10 seconds is used to limit the influ-
ence of very short jobs on the metric.

3 Workload Characterization

The simulation studies were performed using a locally
developed scheduler with workload logs from supercom-
puter centers. From the collection of workload logs avail-
able from Feitelson’s archive [3], the CTC workload trace
and the SDSC workload trace were used to evaluate the
various schemes. The CTC trace is from the 430 node Cor-
nell Theory Center. The SDSC trace is from the 128 node
IBM SP2 system at the San Diego Supercomputer Center.

To gain a better understanding of the performance of
various schemes, we classify the jobs into various cate-
gories based on the runtime and the number of proces-
sors requested, and analyze the average slowdown and
turnaround time for each category. In the initial part
of the study we compare the performance of the differ-
ent schemes assuming accurate user estimates. Later, we
present the results taking user estimate inaccuracy in to
account. Simulation studies were performed under both
normal and high loads. A high load condition was simu-
lated by shrinking the inter-arrival times of jobs. Similar
trends were observed under both loads. The trends are pro-
nounced under high load. Hence we present the results for
high load in subsequent sections.

To analyze the performance of jobs of different sizes

and lengths, jobs were classified into 4 categories: two
categories based on their run time - Short(S) and Long(L)
and two categories based on the number of processors re-
quested - Narrow(N) and Wide(W). The criteria used for
job classification is shown in Table 1. The distribution of
jobs in the various traces, corresponding to the four cate-
gories is given in Tables 2 and 3.

Job Categorization Criteria

<=8 Processors | >8 Processors
<=1Hr SN SW
>1Hr LN LW

Table 1. Categorization of jobs based on their
runtime and width

Job Distribution

N w
S | 45.06% | 11.84%
L | 30.26% | 12.84%

Table 2. CTC Trace

N w
S | 47.24% | 21.44%
L | 20.94% | 10.38%

Table 3. SDSC Trace

4 Evaluation with Exact Estimates of Run-
time

Previous studies have been inconclusive about which
backfill strategy is preferable: conservative or aggressive.
Here we attempt to characterize the performance of these
backfill policies under different priority schemes by using
trace based simulation. Super computer schedulers make
scheduling decisions based on the user estimated run time.
Thus, aborted jobs and the poorly estimated jobs can skew
the average slowdown. Therefore to eliminate such effects,
we initially study the performance of the various schemes
assuming accurate user estimates. Later, in Section 5, we
study the impact of inaccurate user estimates of runtime.
4.1 Priority Equivalence

Under conservative backfilling, if the user estimates are
accurate, irrespective of the priority policy used, the re-
sulting schedules are exactly the same. This is because,

Conservative vs EASY - CTC Trace Conservative vs EASY - SDSC Trace
% 20 % 30
— 25 4
ER mrcrs || % 20] OFCFS
» 10 1 B SF » 15 1 B SF
> OXF $ 101 OXF
g 5 1 g 5 |
> o0 " >0 "
< <
CONS EASY CONS EASY
Backfill policy Backfill policy
Conservative vs EASY - CTC Trace Conservative vs EASY - SDSC Trace
2 2
5 25000 3 20000
= 20000 - =
g o 15000 | mFcrs || & 150007 OFCFS
> E HESF = £ 10000 4 B SF
= F 10000 - o = o
g 5000 XF g 5000 XF
<°>(’ 0 3 0 :
CONS EASY CONS EASY
Backfill policy Backfill policy

Figure 1. Comparison of conservative vs. EASY backfilling under different priority policies: Accurate user
estimates. Under conservative backfilling, all priority policies are equivalent. EASY backfilling with SF or

XF priority outperforms conservative backfilling.

under conservative backfilling, every job is given a reser-
vation at the time it enters the system. Thus these start
time guarantees are given in arrival order. Therefore, irre-
spective of the priority scheme used for ordering the jobs
in the idle queue, the reservations will be exactly the same.
The difference between the priority schemes occurs only
when backfilling occurs to fill holes created by jobs that
complete earlier than expected. When jobs abort, or com-
plete before the user estimated time, jobs in the idle queue
are considered for backfill in the priority order and hence
different priority schemes can produce different schedules.
But if the user estimates are accurate, no new “holes” are
created, and no new backfilling opportunities arise for any
queued job. Hence all priority schemes result in exactly the
same schedule under conservative backfilling.

4.2 Conservative versus Aggressive Backfilling

Figure 1 shows the overall average slowdown and
turnaround time for the different backfill policies under
different priority schemes for the two traces. We observe
that EASY backfilling with XF or SF priority policy clearly
outperforms conservative backfilling with XF or SF. To ex-
plain the above observation we first compare conservative
and EASY backfilling under FCFS priority. In conserva-
tive backfilling, a newly arriving job is given a reservation
at the earliest time that will not violate any previously ex-
isting guarantees. The existing reservations act as roofs
in the schedule that prevent later arriving jobs from back-
filling easily. The longer the job is the more difficult it is
for it to get a reservation ahead of previously arrived jobs.
Therefore long jobs find it difficult to backfill under conser-

vative backfilling. EASY backfilling relaxes this constraint
by maintaining only one reservation at any point of time.
The presence of only one blocking reservation in the sched-
ule helps long jobs to backfill more easily. Wide jobs find
it difficult to backfill because they cannot find enough free
processors easily. Conservative backfill helps such wide
jobs by guaranteeing them a start time when they enter the
system. In EASY backfill, since these jobs are not given
a reservation until they reach the head of the idle queue,
more jobs can backfill ahead of them. Thus jobs in the
Long Narrow(LN) category benefit from EASY backfill-
ing, while jobs in the Short Wide(SW) category benefit
from conservative backfilling. As far as the Short Nar-
row(SN) jobs are concerned, there is no clear trend be-
tween conservative and EASY backfilling because these
jobs backfill quickly in both the schemes. Similarly, for
the Long Wide(LW) jobs, there is no clear advantage in
one scheme over the other because conservative backfill-
ing provides these with the advantage of reservation while
EASY backfilling offers better backfilling opportunities
due to fewer blockades in the schedule. Figure 2 shows
a category-wise comparison of EASY versus conservative
backfilling for the CTC trace. The relative change in slow-
down for EASY backfilling is presented, relative to con-
servative backfilling. It can be observed that the above ex-
pectations for the different job categories are clearly borne
out. Thus the overall performance of conservative versus
EASY backfilling will depend on the relative number of
jobs in each of the categories.

When we compare conservative and EASY backfilling

Conservative vs EASY under FCFS - CTC Trace
S 60
g 4
g 4
»n 20
- 1 [mEASY |
o 0 T T — =
g 204 SN SW Lw Overall
S
< 40

Job Categories

Conservative vs EASY under SF - CTC Trace

0 : : : :
20 L Isn sw LN Lw| _ quer
-40
.60 B
-80

[mEASY |

% change - Slowdown

Job Categories

o

Conservative vs EASY under XF - CTC Trace

204 |SN SW| LN

LW Qvergll
OEASY

% change - Slowdown
EN
o

Job Categories

Figure 2. Category-wise performance comparison of conservative vs. EASY backfilling under different
priority policies: Accurate user estimates. Under EASY backfilling with SF or XF priority policy, the short(SN

and SW) jobs and the long narrow(LN) jobs benefit.

under SF priority, we find that the short jobs (SN and
SW) benefit under EASY backfilling because they receive
higher priority. Further the Long Narrow (LN) jobs ben-
efit from the increased backfill opportunities provided by
EASY as explained above. Because of the improvements
in each of these categories, the overall average tends to de-
crease under EASY backfilling with SF priority compared
to conservative backfill with SF priority. A similar ob-
servation is true when comparing conservative and EASY
backfill under the XF priority policy also which implicitly
gives higher priority to the short jobs because their XFac-
tors tend to rise quickly compared to long jobs. These
trends are visible in Figure 2. Figure 1 indicates that SF
and XF priority policies perform comparably with respect
to overall average slowdown. However, the worst-case
turnaround time under EASY backfilling is worse com-
pared to conservative backfilling. This can be observed
from Table 4. The lack of a bound in the delay that a
job could incur under EASY backfilling manifests itself as
high values of worst case turnaround time.

Wor st-case Turnaround Time
Conservative 125044
FCFSEASY 127135
XF EASY 169960
SF EASY 221571
Table 4. Comparison of worst-case

turnaround time in seconds: CTC Trace

5 Impact of Inaccurate Estimates of Run-
time

5.1 Systematic Overestimation

Previous studies [5, 8, 14] suggest that inaccurate user
estimates of runtime may be beneficial because of better
backfilling possibilities. These studies evaluate the effect
of inaccurate user estimates by multiplying the runtime of
all jobs by an over estimation factor. Presented below are
the results of such systematic overestimation. Tables 5 and
6 contain results for R=1 where the user estimates are ac-
curate, R=2 where the user estimated run time is twice the
actual run time and R=4 where the user estimated run time
is four times the actual run time. As pointed out by [5]
when systematic overestimation is used, the overall slow-
down decreases significantly compared to the slowdowns
when the user estimates are accurate. This is because of
the larger holes created in the schedule when jobs finish
earlier than expected. This effect is more pronounced un-
der conservative backfilling, where early job completions
create holes in the schedule and better backfilling opportu-
nities. With EASY backfilling, the difference is less signif-
icant because EASY backfilling provides good backfilling
opportunities even when user estimates are accurate.

5.2 Actual User Estimates

We next present the results using actual user estimates.
We observe from Figure 3 that although the overall slow-
down improves with systematic overestimation, with ac-
tual user estimates the overall slowdown deteriorates. In
order to get better insights, we categorize the jobs into two

Conservative vs EASY with User Estimates - CTC
Trace
c
325
=l
2 20
0 15 OCONS
2]
o 101 EEASY
g 5
g 0 :
>
< FCFS SF XF
Priority policy

Conservative vs EASY with User Estimates - SDSC
50

Trace
40 1
30 1
20 1
10
0

FCFS SF XF
Priority policy

OCONS
B EASY

Average Slowdown

Figure 3. Comparison of conservative vs. EASY backfilling under different priority policies: Actual user
estimates. EASY backfilling has lower overall average slowdown compared to conservative backfilling for

all priority policies.

R=1 | R=2 | R=4

FCFS | 1347 | 6.75 | 6.71
SF 13.47 | 3.84 | 3.62
XF | 13.47 | 3.71 | 453

Table 5. Systematic overestimation: Conser-
vative

R=1 | R=2 | R=4

FCFS | 16.27 | 11.98 | 12.34
SF 473 | 393 | 4.68
XF 463 | 397 | 453

Table 6. Systematic overestimation: EASY

categories - well estimated jobs and poorly estimated jobs.
Jobs whose user estimated run time is less than or equal
to twice their actual run time are considered to be well es-
timated and jobs whose user estimated run time is greater
than twice their actual run time are considered to be poorly
estimated. Figure 4 shows a comparison of the average
slowdown for the well and poorly estimated jobs with that
of the same set of jobs when all user estimates are accurate
for the CTC trace. Similar trends were observed for the
SDSC trace.

The average slowdown of the well estimated jobs de-
creases compared to their slowdown when all user esti-
mates are accurate. On the other hand, the average slow-
down of the poorly estimated jobs increases compared to
when all user estimates are accurate. This is because the
well estimated jobs benefit from the backfilling opportuni-
ties due to the holes created by the badly estimated jobs.
The poorly estimated jobs owing to their increased length
have difficulty backfilling and hence have higher slow-
downs compared to when all user estimates are accurate.
As before, we observe that this effect is more pronounced
under conservative compared to EASY. This is because

EASY backfilling has good backfilling opportunities even
under accurate user estimates. Therefore, when user esti-
mates are not accurate, the well estimated jobs do not bene-
fit as much as under conservative backfilling and the poorly
estimated jobs do not worsen as much as under conserva-
tive backfilling, because even the seemingly long jobs have
good backfilling opportunities under EASY backfilling.

When the job trace contains a mix of both well and
poorly estimated jobs, performance of conservative back-
filling is comparable to that of EASY backfilling for the
well estimated jobs under the various priority policies.
However, if all the jobs in the trace were very well esti-
mated, then performance of conservative backfilling would
be much worse than that of the EASY backfilling (as shown
in Section 4, where the user estimates are assumed to be
accurate). EASY backfilling performs better than conser-
vative backfilling under both SF and XF priority policies
with respect to overall average slowdown.

Table 7 shows the worst-case turnaround time for the
two backfilling schemes under different priority policies.
We observe as before that the worst-case turnaround time
under EASY is worse compared to conservative.

Conservative | EASY
FCFS 139221 151818
XF 138265 175610
SF 150268 171737
Table 7. Comparison of worst-case

turnaround time in seconds: CTC Trace

6 Conclusionsand Future Work

In this paper we studied the effect of various backfill-
ing schemes on different priority policies. We observed
that even though the overall slowdown is trace depen-
dent, on finer categorization of the jobs in a trace, con-
sistent category-wise trace independent trends become ev-

Conservative Backfill - CTC Trace - Well Estimated Jobs Conservative Backfill - CTC Trace - Poorly Estimated
Jobs
f=4
=5 c
<] 3
T 4 3 40
2 °
o 34+ O Exact Estimate 3 30 :
2] . ° O Exact Estimate
o 2 M User Estimate n 20 1)
= o B User Estimate
S 14+ 2 10
[o
; 0 T T 2 0
FCFS SF XF < FCFS SF XF
Priority policy Priority policy
EASY Backfill - CTC Trace - Well Estimated Jobs EASY Backfill - CTC Trace - Poorly Estimated Jobs
] € 40
o [=}
2 4 2 30
° 34 O Exact Estimate o° O Exact Estimate
0 . n 20 K
o 21 B User Estimate @ B User Estimate
j=2) j=2}
S 1 o 10
2 g
z 0 T z 0 T T
FCFS SF XF FCFS SF XF
Priority policy Priority policy

Figure 4. Comparison of the average slowdown under accurate user estimates vs. actual user estimates.
The average slowdown of well estimated jobs decreases while that of the poorly estimated jobs increases.

ident. Inaccurate estimates can cause significant deteriora-
tion of the overall slowdown. We observed that conserva-
tive backfilling, by providing reservations to all jobs, limits
backfilling opportunities. EASY backfilling on the other
hand, improves backfilling opportunities but the jobs that
have difficulty backfilling (e.g wide jobs) get a reservation
only when they manage to get to the head of the queue,
thus resulting in significant worsening in the worst-case
turnaround time. Therefore, instead of the non-selective
nature of reservations with both conservative and aggres-
sive backfilling, we are investigating a selective backfilling
strategy, wherein jobs do not get reservation until their ex-
pected slowdown exceeds some threshold, whereupon they
get a reservation. By doing so, if the threshold is chosen
judiciously, few jobs should have reservations at any time,
but the most needy of jobs get assured reservations.

Acknowledgments

We would like to thank the anonymous referees for their
helpful suggestions on improving the presentation of this

paper.

References

[1] K. Aida. Effect of job size characteristics on job scheduling
performance. In Proceedings of JSSPP, pages 1-17, 2000.

[2] O. Arndt, B. Freisleben, T. Kielmann, and F. Thilo. A com-
parative study of online scheduling algorithms for networks
of workstations. Cluster Computing, 3(2):95-112, 2000.

[3] D. G. Feitelson. Logs of real
parallel workloads from production systems. http://www.
c¢s.huji.ac.il/labs/parallel/workload/logs.html.

[4] D. Jackson, Q. Snell, and M. J. Clement. Core algorithms
of the maui scheduler. In JSSPP, pages 87-102, 2001.

[5] P.J. Keleher, D. Zotkin, and D. Perkovic. Attacking the
bottlenecks of backfilling schedulers. Cluster Computing,
3(4):245-254, 2000.

[6] R. Kettimuthu, V. Subramani, S. Srinivasan, T. B. Gopal-
samy, and P. Sadayappan. Selective preemption strategies
for parallel job scheduling. To appear in Proceedings of the
International Conference on Parallel Processing, 2002.

[7] D. Lifka. The ANL/IBM SP scheduling system. In JSSPP,
pages 295-303, 1995.

[8] A. W. Mu’alem and D. G. Feitelson. Utilization, pre-
dictability, workloads, and user runtime estimates in
scheduling the ibm sp2 with backfilling. In IEEE Transac-
tions on Paralld and Distributed Computing, volume 12,
pages 529-543, 2001.

[9] D. Perkovic and P. J. Keleher. Randomization, specula-
tion, and adaptation in batch schedulers. Cluster Comput-
ing, 3(4):245-254, 2000.

[10] J. Skovira, W. Chan, H. Zhou, and D. Lifka. The easy -
loadleveler API project. In JSSPP, pages 41-47, 1996.

[11] A. Streit. On job scheduling for hpc-clusters and the dynp
scheduler. In HiPC, pages 58-67, 2001.

[12] V. Subramani, R. Kettimuthu, S. Srinivasan, and P. Sa-
dayappan. Distributed job scheduling on computational
grids using multiple simultaneous requests. In Proceed-
ings of the 11th High Performance Distributed Computing
Conference, 2002.

[13] D. Talby and D. Feitelson. Supporting priorities and im-
proving utilization of the ibm sp scheduler using slack-
based backfilling. In In Proceedings of the 13th Interna-
tional Parallel Processing Symposium, 1999., 1999.

[14] D. Zotkin and P. Keleher. Job-length estimation and per-
formance in backfilling schedulers. In Proceedings of the
8th High Performance Distributed Computing Conference,
1999.

