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ABSTRACT
In many science areas where datasets need to be transferred or
shared, rapid growth in dataset size, coupled with much slower
increases in wide area data transfer bandwidths, is making it ex-
tremely hard for scientists to analyze the data. This paper addresses
the current limitations by developingSDQuery DSI, a GridFTP
plug-in that supports flexible server-side data subsetting. An exist-
ing GridFTP server is able to dynamically load this tool to support
new functionality. Different queries types (query over dimensions,
coordinates and values) are supported by our tool. A number of
optimizations, like parallel indexing, performance modelfor data
subsetting, and parallel streaming are also applied. We compare
our SDQuery DSIwith GridFTP defaultFile DSI in different net-
work environments, and show that our method can achieve better
efficiency in almost all cases.

Categories and Subject Descriptors
H.3.1 [Information Systems]: INFORMATION STORAGE AND
RETRIEVAL—Content Analysis and Indexing; C.2.5 [Computer
Systems Organization]: COMPUTER-COMMUNICATION NET-
WORKS —Local and Wide-Area Networks

Keywords
data management; wide area networks; indexing; query processing;
I/O performance tuning;

1. INTRODUCTION
As science has become increasingly data-driven, and as datavol-

umes and velocities are increasing, scientific advances in many
areas will only be feasible if critical ‘big-data’ problemsare ad-
dressed - and even more importantly, software tools embedding
these solutions are readily available to the scientists. Moving for-
ward, the key challenge being faced by data-intensive science ef-
forts is that while the dataset sizes continue to grow rapidly, disk
speeds and wide-area transfer bandwidths are not coping up.Thus,
software tools for dealing with scientific data must be enhanced to
incorporate new approaches, for data-driven scientific advances to
be maintained in the future.

Increasing data volumes and velocities are seen from a variety of
data collection modalities. For example, in X-ray Photon Correla-
tion Spectroscopy (XPCS), the detection of electric chargemove-
ment is done using a charge-coupled device (CCD). Though the
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current state-of-the-art CCDs operate at 60 frames-per-second, tech-
nology to produce 22,000 frames-per-second is expected by 2015,
representing a 350 times increase in data volumes and velocity. On
the other hand, with growing computational capabilities ofparallel
machines, temporal and spatial scales of simulations are also be-
coming increasingly fine-grained. The Community Earth System
Model (CESM) is reducing the spatial scale from 1 degree to 0.125
degree, implying a factor of 64 increases in the output sizes.

As we stated above, wide area data transfer bandwidths are grow-
ing at a much slower pace, making it extremely hard for scientists
to transport these rapidly growing datasets. Similarly, disk speeds
are also not coping up, making it difficult for application scientists
to manage and process large datasets. Support for management
and analysis of scientific datasets has been a very active topic of
research in recent years. On one hand, new database approaches
like the SciDB system [24] focus specifically on scientific data. On
the other hand, indexing techniques suitable for scientificdatasets
have also been developed [30, 26]. Use of database and/or index-
ing techniques can allow a subset of data of interest to be extracted
from a repository, and such subsetting, if performed beforea data
transfer, can likely reduce the volume of the data to be transferred,
and subsequently stored and analyzed at the client-side.

In most cases, the practical state-of-art of sharing and movement
of scientific data remains very limited, in terms of any possible
incorporation of (efficient) data management techniques. Though
a variety of methods and protocols may be used for supporting
data transfers (including scientists shipping CDs, which tends to be
common even today!), GridFTP [8] and its Software as a Service
(SaaS) version, Globus Online, are extremely popular. GridFTP
provides additional security and performance over the default FTP
implementations, including striped, streaming, and/or parallel, as
well as more reliable and restartable data transfers. However, with
an exception of integration of GridFTP with OPeNDAP [7] (which
only provides limited flexibility and efficiency), the unit of data
transfer for GridFTP is a single file. While enhancing and optimiz-
ing data transfer frameworks [2, 14, 16, 17, 18, 13, 4] has continued
to be an active area of research, the ability to reduce data volume
that needs to be transferred over the wide-area, by providing sup-
port for user-defined data subsettingat the server-side, is clearly
needed.

In this paper, we address several important challenges thatarise
in integration of core data management functionality (efficient data
subsetting) with a protocol for data movement over a wide-area
network. Specifically, the issues that need to be addressed are:

• How should a system integrating basic data management sup-
port with a data transfer protocol be designed to allow easy
use and integration with existing environments?

• How can usersviewa remote file, which uses one of the pop-
ular scientific data formats like NetCDF or HDF5, and con-
veniently specify the subset of the data that is of interest to
them?

• In retrieving a subset of a file from a disk, when is it appro-
priate to use an indexing-based retrieval over a simple read



followed by in-memory filtering of data, and can this deci-
sion be automated?

• How can data retrieval and filtering be parallelized, to make
use of multiple cores and the likely benefits from using mul-
tiple streams, to achieve efficient utilization of the underlying
network?

This paper develops solutions for the above problems, and in-
corporates them in a tool we refer to asSDQuery DSI(Scientific
Data Query Data Storage Interface), a GridFTP plug-in whichsup-
ports flexible server-side data subsetting over HDF5 and NetCDF
data formats. The GridFTP server is able to dynamically loadthis
tool if it needs to perform subsetting before data transfers, and
switch back to using other DSIs subsequently. Different subsetting
predicates (queries over dimensions, queries over coordinates, and
queries over values) are supported by our tool, which is madepossi-
ble using existing metadata as well as bitmap indexing. Besides the
basic functionality, we also include the following features: 1) we
use a performance model to automatically select between indexing-
based retrieval of data segments and full retrieval followed by in-
memory filtering, 2) we support aparallel streamingtechnique,
where different disk blocks are read concurrently and pipedto dif-
ferent TCP/IP streams, and 3) we incorporate parallel indexing
to perform indexing operations for each sub-block concurrently.
Overall, while the data management functionality providedin this
system has some similarities with other efforts (e.g., the NoDB
approach [1] and the ADIOS project [15]), no other project has
provided a high-level API for specifying subsetting conditions on
NetCDF and HDF5 files, while also integrating (and optimizing)
such subsetting functionality with a data transfer protocol.

We have extensively evaluated our implementation. We first
compared our GridFTP versionSDQuery DSIwith the GridFTP
defaultFile DSI and show that our method can achieve better ef-
ficiency in almost all cases, with only exception being wherea
query outputs a large fraction of the original dataset and the net-
work bandwidth is also very high. We also show that our perfor-
mance model-based hybrid data reading method is effective,i.e., it
can automatically choose between indexing-based direct access and
the in-memory filtering method. The parallel streaming technique
we have implemented is able to improve both data read and data
transfer efficiency. Finally, we also show that the parallelindexing
can improve the index operation performance.

2. MOTIVATING APPLICATIONS
Many data sharing and transfer scenarios involve increasing dataset

sizes and significant benefits from subsetting data before transfers.
Several of these scenarios arise in the context of applications where
GridFTP is already being used for data transfers, though lack of
integration of any data management solution with GridFTP islim-
iting efficiency.
Analysis of Climate Simulation Outputs: Climate simulations
like the Community Earth System Model (CESM), or its prede-
cessor Community Climate System Model (CCSM), are produc-
ing massive datasets. CESM project has been jointly sponsored by
NSF and DOE, and its output is of immense value to a variety of
researchers.

The current output organization involves keeping all the vari-
ables for the entire globe, for one time-slice, in a single NetCDF
file. In the future, the organization is likely to be changed to one
variable, entire time-series, and the entire globe, in one NetCDF
file. However, most researchers focus on a specific geographical
region (and often certain time-ranges). This involves spatial or
spatio-temporal subsetting of data over a Cartesian (non-rectilinear)
grid. Moreover, data needs to be transported over wide area net-
works. For example, one common operation is: one dataset is at
one location (possibly within one organization), another dataset is
stored across the WAN, and user wants the same geospatial sub-
set from each, take difference of values (for certain attributes), and
then visualize the results at their location. Several climate scientists
extensively use GridFTP for such data movements, but currently
spend unnecessary time because of its inability to select subsets at

the server-side. Moreover, as simulation outputs scale, they face an
enormous challenge.
Data Pipelines from Tomography: Two and three dimensional
x-ray imaging studies of dynamical phenomena, with spatialreso-
lution as small as tens of nanometers, are popular methods for new
material characterization. However, when scientists approach a fa-
cility with state-of-the-art Tomography facility (such asthe Imag-
ing Group at Argonne), a large volume of data is generated, and
this volume will increase rapidly in the near future (10 GB/second
by 2015). Moreover, after this data is processed and a 3-d repre-
sentation is created, the amount of data increases. Such processed
data needs to be moved to the scientist’s home institution for fur-
ther studies, and slow wide-area networks are clearly a bottleneck.
While some scientists use GridFTP, others move data physically af-
ter copying them to CDs, and in fact, spend additional days atthe
facility waiting for the data to be copied onto the CDs. Moving data
by CDs is also highly unreliable - e.g., airports scanners frequently
corrupt the data.

It turns out that a very high fraction of data is not even useful for
scientists. After preprocessing, data is stored in the HDF5format,
and a simple query mechanism on a HDF5 file can help reduce
the data sizes by a large number, and make transfer feasible and
efficient using GridFTP.
Data Pipelines from X-ray Photon Correlation Spectroscopy
(XPCS): XPCS is a powerful technique to probe the dynamics in
materials, with classical applications including the Brownian dif-
fusion in liquids, and more recent applications like understand-
ing the effect of the changes in proteins on diseases. The state-
of-the-art CCD detector which captures the phenomenon operates
continuously at 60 fps (frames per second), streaming one million
(1M) pixels in each frame, and thus producing 120 MB/sec of data.
New detectors that are suitable for XPCS will be available in2015,
and will stream 1M pixels at 22,000 fps, facilitating betterunder-
standing of biological processes. However, current technologies
are completely inadequate for moving data arriving at such rates
to a compute-cluster within the organization, and subsequently to
scientists over the entire world. GridFTP has been currently being
used for data movement from the device to the compute cluster,
and then to scientists’ home organizations [20]. With support for
subsetting, future data rates can be adequately handled.

3. SYSTEM OVERVIEW
This section gives an overview of the system we have imple-

mented. Optimization methods are presented in the next section.

3.1 Background: Globus GridFTP
While the underlying ideas in our work on integrating data man-

agement support with a data transfer protocol are general, our im-
plementation has been in the context of Globus GridFTP. Globus
GridFTP has become an important high-performance data transfer
tool for the scientific community. Currently, the GridFTP server
is deployed on more than 3,500 servers all over the world and is
responsible for an average of more than 10 million transfersevery
day, moving more than one petabyte of data. Its modular architec-
ture provides a very convenient way for GridFTP-compliant clients
to access to any storage system, provided that an implementation
of GridFTP’s Data Storage Interface (DSI) specific to this storage
system is available. It also supports an eXtensible I/O interface,
which allows GridFTP to target high-performance wide-areacom-
munication protocols such as UDT and RDMA-based protocols.
Globus GridFTP is optimized to handle different types of datasets
- from dataset containing one single, large file to those comprising
a number of small files.

Figure 1 shows the general Globus GridFTP architecture. From
the figure, we can see that it comprises three components: twoPro-
tocol Interpreters (PIs), which are the server and the client protocol
interpreters, and the Data Transfer Process (DTP). PIs are used to
handle the control channel protocol. Because GridFTP follows an
asymmetric protocol exchange, the client PI is different from the
server PI. The DTP is used to handle access to the actual data and its
movement via the data channel protocol. These three components
can be combined in various ways to create servers with different ca-
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Figure 1: Globus GridFTP Architecture

pabilities. DTP can be further divided into a three-module pipeline:
the data access module, the data processing module, and the data
channel protocol module. The data access module provides anin-
terface to the data sources (orsinks). The data processing module
performs server-side data processing, if requested by an extended
store/retrieve (ESTO/ERET) command. The data channel protocol
module reads data from or writes data to the data channel.

In today’s scientific cyberinfrastructure, there are a number of
distributed storage systems. The protocols used and data access
patterns across them vary substantially, as they all focus on meet-
ing different requirements. To make GridFTP a general transfer
protocol, Globus GridFTP provides a modular pluggable interface
called the Data Storage Interface (DSI), which can be loadedand
switched at runtime. When the GridFTP server requires service
from the storage system, it first sends a request to the loadedDSI.
To create a DSI, programmers need to implement a set of functions
that are part of the API.

3.2 Overview of Desired Functionality
As we had summarized in Section 2, in many scenarios, sci-

entists do not need to download the entire data file for analysis.
They are only interested in a subset of the data, such as temper-
ature within a specific area or a given value range. Hence, our
goal is to integrate basic ‘database-like’ functionality of supporting
user-defined subsetting with GridFTP’s data transfer protocol. Our
system design was motivated by the following requirements:

(1) Support High-level Queries over Popular Scientific Data For-
mats: Supporting data subsetting queries using a high-level lan-
guage, over arbitrary flat or binary files, and without requiring data
to be reorganized and/or loaded into a database system, is almost
impossible. Thus, we focus on popular scientific data formats,
and use the metadata associated with them to expose a high-level
schema, which can be used to specify subsetting conditions.Our
current implementation supports HDF5 and NetCDF, each of which
is used across a number of scientific areas. There are severalchal-
lenges in supporting a high-level query language on these, includ-
ing how users can view the structure of these datasets and express
their queries in an unambiguous way.

(2) Support Variety of Subsetting Requirements:Both HDF5 and
NetCDF formats organize the data as a set of multi-dimensional
arrays, which typically involve spatial and/or temporal dimensions
and coordinates. Hence, subsetting situations that arise can be di-
vided into three categories: queries based on dimensions, queries
based on coordinates (dimension scalesfor HDF5 andcoordinate
variablesfor NetCDF), and queries based on values (value-based
queries). Our system should be able to support all of these, and
even a flexible combination of these three types, efficiently.

(3) Interoperate with Existing GridFTP Server Binaries:To make
it easy for others to use our system, it is very desirable thatreinstal-
lation of the GridFTP server is not needed. Instead, currentusers
of GridFTP should be able to simply download the additional func-
tionality we are providing. As mentioned in Section 3.1, this can be
achieved because GridFTP allows a new DSI to be loaded at run-

Logical Layout Descriptor

varname = “TEMP”,

 varid = 3

 datatype = float

ndims = 4

 dim = {time, depth, tlat, tlon}

 Coordinate Variables:

  tlat = (-78.47, -78.43, , 89)

tlon = (-179.95, -179.85, , 179.95)

Physical Storage Descriptor

TEMP = /tmp/server/temp.nc

UVEL = /tmp/server/uvel.nc

VVEL = /tmp/server/vvel.nc

Value Distribution Descriptor

 Min/Max Value: (-21.1, 33.1)

Value Distribution: 

(-21.1, -20.1): 201

(-20.1, -19.1): 233

(32.1, 33.1): 120

Logical Layout Descriptor

varname = “VVEL”,

 varid = 5

 datatype = float

ndims = 4

 dim = {time, depth, ulat, ulon}

 Coordinate Variables:

  ulat = (-78.45, -78.40, , 89.02)

  ulon = (-179.9, -179.8, , 180)

Value Distribution Descriptor

 Min/Max Value: (-246, 225)

Value Distribution: 

(-246, -245): 810

(-245, -244): 1045

(224, 225): 30

Figure 2: A High-level NetCDF Data Schema

time. This way, the client can choose to download the entire file or
perform subsetting before the download, and in the latter case, our
DSI can be invoked and used.

(4) Optimize for Different Subsetting Scenarios:By supporting an
index on an existing HDF5 or NetCDF file, we can retrieve from
the disk only the subsets that are of interest to us, reducingI/O vol-
umes. For queries where only a small fraction of the file needsto be
retrieved, this is clearly advantageous. However, if a query is going
to select a large fraction of the file, it may be more efficient to load
either the entire file or the major data sub-blocks into memory, and
then perform in-memory filtering, instead of performing a number
of (possibly non-continuous) disk I/O accesses. Choosing which
method will result in better performance is hard, but very desirable
for efficiency.

(5) Support Efficient Data Transfers after Subsetting:It has been
seen from many studies [9, 22] that in a wide-area network, us-
ing parallel TCP streams between single source and destination
can improve the aggregate bandwidth achieved, over using a sin-
gle stream. However, unlike the case when the entire file needs to
be transferred, using parallel streams with data subsetting during
retrieval is non-trivial.

3.3 Supporting Structured Queries: High-level
Data Schema

One of the requirements we had listed earlier was“support high-
level queries over popular scientific data formats”. We now de-
scribe how this requirement is met for NetCDF and HDF5 formats.
Specifically, during the data storing process, we generate ahigh-
level data schema that can be downloaded by users to guide their
queries.

Figure 2 shows the data schema example of a NetCDF file, which
is generated by the Parallel Ocean Program (POP) [11]. The three
components of this schema are motivated by the following three re-
quirements. First, query processing requires dataset physical stor-
age information to locate the target data file for subsettingand
downloading. Second, the users require thelogical layout informa-
tion of each variable to find the relationship among the variables,
the dimensions and the coordinate values. Third, the users need to
know the value ranges and distribution information, to helpcon-
struction of value-based queries that can be meaningful.

Thus, returning to Figure 2, the three components of the scheme
are: 1) Physical Storage Descriptor, which describes physical loca-
tions where each NetCDF variable is resident. By looking up this
descriptor, users are able to specify which data file to subset and
download. 2) Logical Layout Descriptor, which exposes the logic
data layouts, including variable ids, data types, dimension names



ID Value e0 e1 e2 e3 i0 i1

=1 =2 =3 =4 [1, 2] [3, 4] 

0 4 0 0 0 1 0 1 

1 1 1 0 0 0 1 0 

2 2 0 1 0 0 1 0 

3 2 0 1 0 0 1 0 

4 3 0 0 1 0 0 1 

5 4 0 0 0 1 0 1 

6 3 0 0 1 0 0 1 

7 1 1 0 0 0 1 0 

Dataset Low Level Indices High Level Indices 

Figure 3: An Example of Bitmap Indexing

and lengths, and coordinate values of the current variable.Specifi-
cally, coordinate variables, which are relatively small insize, are
fully loaded to support the queries that are based on coordinate
values. By looking up this descriptor, users are able to specify
dimensions and/or coordinates based query conditions. This de-
scriptor is generated by extracting the header of each NetCDF data
file. 3) Value Distribution Descriptor, which describes thedata val-
ues and a general value distribution over bins (how many elements
within bins). Users are able to specify value-based query conditions
by checking this descriptor. This descriptor is generated based on
bitmap indices metadata, which we will describe next.

The data schema structure for the HDF5 data format is quite sim-
ilar. One difference is that NetCDF and HDF5 use different terms.
For example, HDF5 data format uses dataset instead of variable,
data space instead of dimension and dimension scale insteadof co-
ordinate variable. Another difference is that because HDF5dataset
can be organized in a hierarchical structure, in which case the lay-
out metadata may be dispersed in separate header blocks for each
group. If this is the case, scattered logic metadata should be col-
lected and grouped together.

In our system, the high-level schema provides avirtual relational
table view to the user, who can now use SQL to express a variety
of subsetting conditions. The reason why we support SQL is be-
cause it is the most popular database language, and various graphi-
cal front-ends currently available for SQL can allow a user to com-
pose their queries interactively.

3.4 Supporting Subsetting Conditions: Bitmap
Indexing

One of the requirements we had listed earlier was:“support a va-
riety of subsetting queries (efficiently)”. Though dimension-based
queries can be supported by using the metadata associated with
NetCDF and HDF5, for value-based queries, one clearly needsin-
dexing. Bitmap indexing, which utilizes the fast bitwise operations
supported by the computer hardware, has been proved as an effi-
cient approach for scientific data management [21, 33]. Moreover,
it can be applied without any need for reorganization of data(which
is not desirable in our case). Thus, our system uses bitmaps to help
enable a variety of subsetting queries.

Figure 3 showed an example of bitmap indexing. In this simple
example, the dataset contains a total of 8 elements with 4 distinct
values (1, 2, 3, 4). The low-levelbitmap indices contain 4 bitvec-
tors (e0, e1, e2, e3) and each bitvector corresponds to one value.
Each bitvector contains a sequence of 0-bits and 1-bits, andthe to-
tal number of bits is equal to total number of elements in the dataset.
In each bitvector, a bit is set to 1 if the value for the correspond-
ing data element’s attribute is equal to thebitvector value, i.e., the
particular distinct value for which this vector is created.Thehigh-
level indices can be generated based on either the value intervalsor
value ranges. From Figure 3, we can see twohigh-Levelindices (i0,
i1) are built based on value intervals. During query processing, a
collection of bitvectors are extracted based on the value subsetting
conditions. Logic AND or OR operations are performed among
them to generate a point id set as the result.

Usually scientific dataset contains floating-point values which
have extremely high cardinality. Bitmap indexing also has been

proven to be an efficient method for floating-point values [32]. In
such case, instead of building bitvector for each distinct value, we
can first group a set of values together (binning) and build bitvec-
tors for small bins. This way, the total number of bitvectorscan
be greatly decreased. From the example we can also see that the
number of bits within each level bitmap indices isn × m (n is to-
tal number of elements andm is the total number of bitvectors),
which is even greater than data itself. Existing methods userun-
length compression[3, 31] to address these problems, which are
incorporated in our system as well.

3.5 System Overview
We now describe how the major components of the system op-

erate together. In the process, we also address the requirement of
“interoperating with existing GridFTP server binaries”.

As mentioned in Section 3.1, one of the key features of GridFTP
is the API for accessing any new data storage medium, referred to
as the DSI. GridFTP also allows a new DSI to be loaded at runtime.
Thus, the file-level subsetting functionality we provide isencapsu-
lated as a new DSI, which we refer to as the scientific data query or
SDQueryDSI.

Any data transfer protocol, including the Globus GridFTP data
transfer protocol, can be divided into two phases: a preparatory
phase, where a control channel is first built up, and then the op-
eration of the data channel between the client and the server. The
data subsetting optimization using ourSDQuery DSIis applied dur-
ing the data channel communication, whereas the control channel
setup is used, unmodified, from the original GridFTP framework.
Figure 4 shows the architecture ofDTP (Data Transfer Process) be-
tween client and server using theSDQuery DSI. It should be noted
thatSDQuery DSIis also able to support third-party data transfer,
i.e., a client can initiate transfer from one server to another server.
However, Figure 4, as well as our discussion here, will focuson
transfer from a server to a client only.

There are (up to) three different ways in which our system is
used. First, it can be used to load a new NetCDF and HDF5 file
in a way that indexing support can be generated, and a high-level
data schema, based on which structured queries are to be written
and executed, can be supported. Second, before issuing a high-
level query, a user may want to request a high-level schema tohelp
understand the dataset. Third, the user may want to retrievea data
subset with a structured query. From the figure, we can see that the
first step in our workflow is to use therequest parserto parse the
request and check if it is a data store request, a data schema request,
or a data retrieval request. Each kind of request is subsequently
processed by the corresponding pipeline.

In the case of a data store request, theindex generationcompo-
nent is invoked to build up multi-level bitmap indices for all vari-
ables included in the current file. The indices are stored as metadata
with the original file. Theschema managementcomponent gener-
ates a high-level data schema view of the current data file based
on the file header and the index metadata. The entire index and
data schema generation process runs at the backend so that other
GridFTP clients are still able to download data files at the same
time.

For a schema retrieval request, theschema managementcom-
ponent will find all data schema files of the current dataset and
the file senderwill send them back to the client-side. The size of
data schema file is typically much smaller than the dataset size, and
thus, this operation can be performed efficiently. Based on the data
schema, users are able to write SQL queries and further generate
the data retrieval request. Figure 5 shows an example of a SQL
query and data retrieval request based on the data schema we had
shown earlier in Figure 2. This query’s intent is to find the data ele-
ments within the Gulf of Mexico area, under the depth of 50 meters
and where the temperature is larger than 5 centigrade. By looking
up thelogical layout descriptor, we can find alllongitude, latitude,
depth values and their relationship with the variableTEMP. By
looking up thevalue distribution descriptor, we can find the value
range of the variableTEMPand specify value-based query condi-
tions that are likely to provide useful insights. A GridFTP data
retrieval request is generated by embedding the SQL query. The
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globus-url-copy "ftp://127.0.0.1:5000/tmp/server/temp.nc(

SELECT TEMP FROM temp.nc WHERE TEMP >=5 AND

tlat>24 AND tlat<30 AND tlon>-98 AND tlon<-82 AND

 depth>50)" file:///tmp/client/netcdfsubset/

SELECT TEMP FROM temp.nc WHERE TEMP >=5 AND

tlat>24 AND tlat<30 AND tlon>-98 AND tlon<-82 AND 

 depth>50

SQL Query

GridFTP Data Retrieve Request

Figure 5: An Example SQL Query and GridFTP Data Re-
trieval Request Embedding the Query

globus-url-copytool provides a command-line client for request-
ing transfers to, from, or between GridFTP servers, and supports
rich data transfer functionality by adding different command-line
parameters. Among these parameters, the source URL includes the
transfer protocol, the server IP address, the GridFTP port number,
the target file location (obtained from thePhysical Storage Descrip-
tor), and the embedded SQL query. The destination URL contains
the path where the data subset file is to be stored at the client-side.

After the server-side receives the data retrieval request,thequery
analysiscomponent takes the request as the input and invokes the
following modules: first,SQL parser, implemented by making cer-
tain modifications to the parser from SQLite1, generates the parse
tree. Next, themetadata parsertakes the data file name and the
variable name(s) as the input, looks up the corresponding metadata
files, finds the data schema and the data layout information, and
loads them into the memory. Finally, thequery request generator
is responsible for generating a data subsetting request by combin-
ing the SQL parse-tree information with the metadata information.

The indexing operationscomponent takes the query request as
the input, performs bitwise operations using the bitmap indices,
and returns all data position identifiers (IDs) that satisfythe current
query. Recall that there are three types of subsetting conditions.
For the subsetting condition based on the dimension identifiers and
the coordinate values, dimension bitvectors that satisfy these two
query types are dynamically generated (for query over coordinates,
a mapping is first applied to map the coordinate values to the di-
mension IDs). Within the dimension bitvectors, the bits with the
value 1 satisfy the current dimension and/or coordinate query con-

1http://www.sqlite.org

ditions. For query based on the variable values, the bitvectors that
satisfy the current value ranges are read from the disk. After that,
bitwise (logic AND/OR) operations are performed among the value
bitvectors and the dimension bitvectors. Finally theresult bitvector
is returned. All 1-bits indicate the data positions that satisfy the cur-
rent query. To improve data retrieval efficiency, parallel indexing
approach is applied, where indices are built separately fordifferent
data sub-blocks. Details of this optimization method can beseen in
Section 4.3. Thedata readercomponent takes the data position IDs
generated in the previous step as the input, retrieves the data from
the dataset chunk by chunk, and send chunks to the sending queue
of the file sender. The file sendercomponent dequeues the data
chunks from the sending queue and sends them to the client-side.
Two key optimizations, a performance model-based hybrid data re-
trieval method and a parallel streaming data transfer method, can be
applied during this process to improve the efficiency. The detailed
description of these two optimizations can be seen in Sections 4.1
and 4.2, respectively.

4. SYSTEM OPTIMIZATIONS
This section describes several optimizations implementedin the

system.

4.1 Performance Model-Based Optimized Data
Subset Retrieval

Consider processing of avalue-basedquery given by the user.
We can perform bitwise operations over the bitvectors that were
generated earlier, and generate apoint-ID-set, specifying the records
that should be retrieved. This step normally does not consume
much time, because the size of bitvectors is much smaller than that
of the dataset, and fast bitwise operations can be performedeffi-
ciently in memory. However, we next need to read records that
comprise the results of the query. As this step can potentially
involve a number of distinct and possibly non-contiguous I/O re-
quests, it can get expensive, and the advantage of subsetting can be
easily undone.

Clearly, initiating a separate read operation for each record that
needs to be read will most likely be prohibitively expensive. One
simple optimization that can be applied will be to generate con-
tiguous or almost contiguous segments of records that are needed
by the query. This process is calledsegmentation. Thus, segments,
instead of individual elements, can be read at any given time. One
reason why this approach turns out to be quite effective in prac-
tice is that for most scientific datasets, neighboring records tend to
have very similar values for any given attribute. Hence, reading
based on segments will greatly decrease the I/O access timesand
improve the data reading efficiency.

In cases where segmentation is not sufficiently effective, we can
choose to read either the entire dataset or data blocks (if the mem-
ory size is not sufficient to hold the entire dataset) from thedisk,
and then performmemory filtering, i.e., apply filtering conditions
on each element in memory. Memory filtering is an alternativeto
the scheme in which each segment is individually read from the
disk, which we also refer to as thedirect accessmethod. A key
optimization built in our system involves automatically choosing
between the two methods at the runtime, so as to minimize the
data access times. This optimization exploits the fact thatby using
bitmap indices, we know the fraction of the data to be read after
bitwise operations, even before performing any I/O operation.

Intuitively, we can see that if the subsetting percentage isrela-
tively small, directly read the query results from the disk is likely
to be more efficient compared to load the entire dataset into the
memory. In comparison, if a large fraction of the data needs to be
returned as query results, the direct access method will likely in-
cur many distinct disk accesses, which can be time consuming. At
the same time, memory filter will perform fewer (and more con-
tiguous) data accesses, lowering disk I/O costs to a level that even
after memory-based filtering, the total execution time willbe less.
However, except for the cases where only a very small amount of
data or a very large fraction of data needs to be retrieved, the choice



between the two methods depends on the data queries, the dataset
itself, and the hardware.

Thus, we have developed a performance model to choose be-
tween these two options. Before we explain the details of this
model, we note that for both HDF5 and NetCDF data formats, the
data reading methods can be divided into three categories: read-
ing theentire dataset(or all elements of a variable), reading a data
block, and reading a data point. The time cost associated with each
of them can be divided into three parts: theseek timeand actual
retrieval time, as in the case of any disk operation, and in addi-
tion, before every read operation, both HDF5 and NetCDF invoke
several functions, the time cost of which is referred to as theprepa-
ration timeof data reading. For reading the entire dataset (variable)
or a sufficiently large data block, read operation time is thedomi-
nant factor, and in comparison, data seek and read preparation time
can be ignored. For reading a small data block or a point, we need
to explicitly include the read preparation time and the seektime in
our model.

Table 1: Major Parameters of Auto-Tuning Model
Identifier Description

DS Size of the entire dataset
BN Total number of blocks in the dataset
SS Size of the query results
SN Total number of segments
Tdb Average time to load one data block

from disk to memory
Tde Average time to load one data element

from disk to memory
Tml Average time to filter one data element

in memory
Tseg Time for generating data segments
Tp Average time to prepare for data read operation
Tdl Average time to locate the start position

in the dataset

The complete list of all parameters used in our model is shown
in Table 1. We start our discussion by focusing on the costs asso-
ciated with the memory filtering method.TMF denotes the cost of
producing the query results using the memory filter method, and
can be calculated as:

TMF = BN × (Tp + Tdl + Tdb) + FS × Tml. (1)

FS = MIN (SS, DS − SS) . (2)

Equation 1 can be divided into two parts. Because in most cases,
the actual data size is much larger than the memory, the entire data
is first logically divided into fix-sized blocks and each timeone data
block is loaded and filtered in memory. Hence, the entire diskI/O
time is the product of the total number of blocks and the sum ofthe
read preparation time, the data seek time, and the data transfer time
of each block. The data transfer time is much larger than the read
preparation time and the data seek time.

The second part of Equation 1 involves the termFS, which is
the smaller value between the current subset size and the rest of
the data size, as shown in Equation 2. With the help of bitmap
indexing, we do not need to apply the filtering conditions on each
record and choose data subset based on that. Instead we can directly
locate the target data elements based on the point IDs withinpoint-
ID-set. This brings another optimization: when the data subsetting
percentage is smaller than 50%, we can directly locate those1-
bits to select the data subset in memory; when the data subsetting
percentage is larger than 50%, we can directly locate those 0-bits
and select data elements between each 0-bits pair. This way,we
ensure that the in-memory filter operation will be applied toat most

50% of the data elements for all different queries. Now, returning
to Equation 1, the second term calculates the memory filtering time,
which is the product of average filter time per element andFS.

Next, we focus on query processing using the direct access. Ini-
tially, we consider the case when segmentation is not used. The
time for this approach is denoted asTDA1 and calculated as fol-
lows:

TDA1 = SS × (Tp + Tdl) + SS × Tde. (3)

In this case, we have to prepare, seek and read each element
separately. So the total time is the product of the size of data subset
and the sum of the read preparation time, the data seek time, and
the data transfer time. Alternatively, we can use segmentation, and
the resulting cost will be:

TDA2 = Tseg + SN × (Tp + Tdl) + SS × Tde. (4)

Using this method, although it has additional point segmentation
cost, the total number of read preparations and seek operations can
be much less.

Now, the goal of our model is to calculate the likely query pro-
cessing costs using the two approaches, and choose the more effi-
cient method. We now elaborate on how (and when) all parameters
are obtained. Considering all parameters involved in our model, we
can see that the total number of blocks (BN ) and the dataset size
(DS) are known for each dataset. For each query, after the index-
ing operations, we can also see the size of the query result (SS), the
total number of segments involved (SN ) and the segmenting time
(Tseg). The parameters whose values are not readily available are
the average time to prepare for the read operation (Tp), the average
seek time (Tdl), the average time to load the data from disk to the
memory - (Tdb, per block, for the memory filter method andTde,
per element, for the direct access method), and the average time to
filter data in memory (Tml).

To improve the accuracy of the method, we obtain values of sev-
eral of these parameters separately for each method, i.e., the mem-
ory filter and the direct access method, and in some cases, even
for queries with different range of subsetting levels. In the case of
memory filtering method, all data blocks have to be loaded into the
memory first, which implies that the read preparation time (Tp),
and the data block loading time (Tdb) are constants. Moreover, for
simplicity, the seek time (Tdl) is also treated as a constant. The
total in-memory data filtering time is proportional to the number of
target elements (either to be selected or to be skipped). Theaverage
filter time (Tml) is easy to estimate based on results of an initial set
of queries.

For the direct access method, the parameters that need to be
trained areTp, Tdl and Tde. Tp is (almost) identical for differ-
ent queries, whereasTdl andTde are related to the data subsetting
percentage. Specifically, the average seek time (Tdl) is inversely
proportional to the subsetting percentage, whereas the average data
transfer timeTde is proportional to the subsetting percentage. This
is because the average segment length is, in practice, proportional
to the data subsetting percentage. When the segment length be-
comes larger, the average data transfer speed increases. Based on
these observations, we divide the training set of the directaccess
method into several buckets, based on subsetting percentage, e.g.,
20%-30%, 30%-40%, and so on. The parametersTdl andTde are
obtained based on execution of several queries from each bucket.

The training process we use is a combination of off-line train-
ing and on-line training. When the server is free, we performthe
off-line training to estimate the parameters. Otherwise, we apply
the on-line training based on users’ real queries, and improve our
estimate of different parameters. Specifically, during thetraining
process,Tp, Tdl, Tde, Tdb, andTml are continuously updated until
each parameter reaches a relatively stable status.

4.2 Parallel Streaming Data Transfer
Parallel streaming data transfer, as supported in our system, in-

volves the following: 1) the data subsetting operations areper-
formed in parallel to improve disk I/O efficiency, 2) the datatrans-
fer is performed in parallel to improve network transfer efficiency,



0 1 1 1 0 1 0 0

1 1 0 0 0 1 1 0

0    0    1 1 0 1    1    0

0    1 0    1    1    1    0    0

0    0    0    1    0    0    0    0

Chunk0

TCP Stream

TCP Stream

Chunk1 Chunkn

Chunk0 Chunk1 Chunkn

S0 S1 S2

S0 S1 S2

Sending Queue0

Sending Queue1

Result Bitset

Thread00

Thread10

Thread01

Thread11

Sm

Sm

Figure 6: Parallel Streaming Data Transfer

and finally, 3) the data reading and data transfer operationsare per-
formed in a pipeline mode, and thus, the data reading time is amor-
tized by the network transfer time. We now elaborate on some of
the key aspects of implementation of this approach.

Figure 6 shows an example of parallel data streaming. The num-
ber of streams in this simple example is 2. Two threads are used
in each stream, withThread00 and Thread01 belonging to the
first stream, andThread10 andThread11 belonging to the second
stream. Within each stream, one thread is responsible for fetch-
ing data subset chunk by chunk and inserting data chunks intothe
sending queue, and another thread is responsible for extracting data
chunks from thesending queueand transferring them to the client-
side through network.

Initially, bitmap operations are performed sequentially,since they
do not consume too much time. The result of this step is apoint-ID-
set, containing the point IDs (bits with the value 1) that satisfy the
current query. As an example, in Figure 6, the result bitset contains
17 out of 40 elements.

The next step is crucial for parallel streaming performance. Here,
points segmentingand points partitioningare used. Points seg-
menting groups continuous points into segments to decreasethe
disk read times. This method is used only if the direct access
method is chosen. From Figure 6, we can see that with the help
of segmenting, the total number of disk I/O accesses is 9 instead
of 17. Points partitioning divides the dataset into blocks based on
the number of streams, with each stream takes care of one data
block. Here, we have two partitioning options: atraditional par-
tition method would involve dividing the dataset into blocks with
equal size based on the dimensions. This method is straightforward
to implement, and has no partitioning overheads, but can incur se-
rious load imbalance, as the subset of interest may not be evenly
distributed within each block. Anoptimizedpartition method in-
volves counting the total number of elements within the result bit-
set, and then dividing the dataset into blocks with equal number of
1-bits. This option has additional partitioning cost, but can clearly
obtain much better load balance. We have used the optimized op-
tion because the data partitioning based on the result bitset (using
fast bit-based operations in the memory) is much smaller than the
disk I/O and the network transfer time. We also use multi-threads to
perform both points segmenting and partitioning in parallel to fur-
ther improve the efficiency, which can be divided into two stages:
1) The result bitset is logically divided into intervals with a fixed
size, and then, all 1-bits within each interval are counted and seg-
mented. 2) Merge operations are performed to group intervals into
blocks based on the count of 1-bits, and segments are also grouped
together between intervals. As an example, in Figure 6, we can see
that the first stream will process the 8 elements in the first two rows,
and another stream will process the left 9 elements in the following
three rows. The entire operations in the first two steps are based on
bitmap indices without touching the dataset.

After the point partitioning, one thread within each streamwill
be invoked to perform data read operations, with performance model
based data subsetting method applied. Also, as one thread ineach
stream is responsible for data reads, another thread (Thread00 in
the first steam andThread10 in the second stream) can keep mon-
itoring theSending Queue. If the queue is not empty, it will extract
the data chunk at the head of the queue and send it through the net-
work using the TCP protocol. Chunks in different streams canbe
sent in parallel which makes better use of the bandwidth. More-
over, the network transfer process can be started immediately after
the first data chunk is ready. This way, the data transfer and data
reading overlap with each other, which further improves theeffi-
ciency.

4.3 Parallel Indexing
This subsection describes parallel bitmap indexing, whichhas

at least two advantages: First, we are able to improve both index
generation and index retrieval efficiency. Second, our performance
model-based data subsetting method can be applied at a finer gran-
ularity.

During the index generation phase, instead of building and com-
pressing bitmap indices over the entire dataset, we first logically
partition one dataset into a collection of data blocks, and then ini-
tialize multiple processes and make each process build multi-level
bitmap indices over a set of data blocks. This way, the index gen-
eration is performed in parallel and achieves a good speedup. A
global metadata file, which keeps the relationship between dimen-
sion boundaries and bitmap indices of each block, is generated. It
can be used to locate target index files during query processing. In
the index operation phase, by checking the dimension and/orco-
ordinate based query conditions, we are able to know how many
blocks are involved in the current query. By looking up the global
metadata, we are able to locate the index files of the correspond-
ing data blocks. Afterwards, we can invoke multiple processes and
perform indexing operations over different index files in parallel.

Besides the obvious advantages of this approach, another point
to note is that in most cases, data elements within the subsetare not
evenly distributed among different blocks. For data blocksthat do
not contain any data subset element, parallel indexing can help us
skip these blocks. For data blocks that contain a small percentage
of elements, we can usedirect accessmethod to subset the data.
For data blocks that involve a large percentage of data subset el-
ements, we can use thememory filtermethod to subset the data.
Hence, the performance model-based data subsetting methodcan
be applied to each data block, instead of the entire dataset,which
offers more subsetting flexibility and is able to improve thedata
reading efficiency.

5. EXPERIMENT RESULTS
In this section, we report results from a number of experiments

conducted to evaluateSDQuery DSI. We designed the experiments
with the following goals: (1) To compare the performance (query
processing and data transfer time) ofSDQuery DSIagainst GridFTP
default File DSI, for queries involving a range of subsetting ra-
tios, and show that despite indexing operations and possibly non-
contiguous accesses, server-side data subsetting is able to improve
data transfer efficiency (the same set of experiments are performed
with three different network bandwidths). (2) To show that our per-
formance model-based selection between direct access and mem-
ory filtering is effective (i.e., we can almost always choosethe
more efficient approach at runtime). (3) To measure how the paral-
lel streaming with our partitioning approach is able to improve the
data transfer efficiency. (4) To examine how the parallel indexing
method improves the efficiency of indexing operations.

BecauseSDQuery DSIsupports both NetCDF and HDF5 data
formats, our experiments used two large and real datasets, one for
each format. For NetCDF, we used the datasets generated by the
Parallel Ocean Program (POP) [11]. POP is an ocean circulation
model, and the execution we used has a grid resolution of approx-
imately 10 km (horizontally), and vertically, it has a grid spacing
of nearly 10 m near the surface, and reaching 250 m in the deep
ocean. POP generates 1.4 GB data for each variable per time-slice,



and each variable is modeled with three dimensions: longitude, lat-
itude, and depth. The dataset we use here isTEMPwith 100 time-
steps. The size of the dataset is 140 GB. For HDF5, we used the
datasets generated by Mediterranean Oceanic Data Base (MODB).
MODB is generated from a simulation for a 34-layer space in the
Mediterranean Sea. The dataset we use here issalinity. A sample
data file available for downloading has 34 layers, 63 rows, and 167
columns. Because the real dataset was only of a small size, weex-
trapolated the original data by extending the time dimension, and
created a dataset of size 105 GB for our experiments.

The majority of our experiments were conducted on a local clus-
ter (theRI cluster), where every node has 8 cores 2.53 GHz Intel(R)
Xeon(R) processors, with 12 GB RAM and 200 GB local disk
space. Some of our experiments also used another cluster, from a
supercomputing center (theGlenncluster), where every node has 8
cores, 2.6 GHz AMD Opteron(TM) processors, with 64 GB RAM
and 1.9 TB local disk space. We use three server-client pairs, to
evaluate our approach with different bandwidths. The first situa-
tion involves transfers over a local area network (LAN) with1 Gb/s
bandwidth and 0.17 msec round trip time (RTT), the second situa-
tion involves an inter-cluster but intra-campus transfer at 200 Mb/s
and 24 msec RTT, and the third situation involves a WAN transfer
with 20 Mb/s average speed and 60 msec RTT.

5.1 Efficiency Comparison between SDQuery
DSI and File DSI

In this experiment, we examine the performance advantages of
SDQuery DSI, by comparing it against the default GridFTP imple-
mentation that simply transfers the entire file to the client-side, re-
ferred to asFile DSI. TheRead & Transfer Timethat we report for
File DSI includes both the data retrieval time (from the disk) and
the network transfer time.SDQuery DSIexecution time that we
report can be divided into two parts: theQuery Processing Time
and theSubseting and Transfer Time. The former includes the time
to parse the query, perform indexing operations to generatepoint
ID set, and perform points segmenting and partitioning. Thelatter
includes the data subset retrieval and network transfer time. Here,
we have used theDirect Access with segmentationmethod for data
subsetting. Optimizations based on performance model to speedup
data retrieval will be emphasized in the next set of experiments.
Two streams were used for both methods in the results we report.

Figure 7 compares the efficiency between theSDQuery DSIand
the File DSI for the POP Dataset. Here we generated 2000 SQL
queries based on scientists’ real ocean analysis requirement, e.g.,
different temperaturescopes within specific ocean areas and cer-
tain depths. We also divided queries into 6 categories, which in-
clude queries with subsetting percentage of<1%, 1%-10%, 10%-
25%, 25%-50%, 50%-75%, and>75%, respectively. The execu-
tion time of theFile DSI indicates the time to transfer the entire
data file, as shown in the rightmost bar of each sub-figure. In Fig-
ure 7, each sub-figure corresponds to one network environment. In
the left sub-figure, where we use 1 Gb/s network, we can see that
when the data subsetting percentage is smaller than 50%,SDQuery
DSI achieves better efficiency thanFile DSI, with speedups rang-
ing between 1.26 and 9.41. Otherwise,File DSI achieves better
efficiency. When the query is going to return a large fractionof the
data, and the network bandwidth is very high, the reduction in data
transfer time is offset by the query processing time. Particularly,
the disk I/O now becomes a bigger constraint than the network,
and retrieving a subset is not likely to be as efficient as retrieving
the entire file. However, if we look at the center sub-figure, where
we use 200 Mb/s network, we can see that our method achieves
better efficiency thanFile DSI for all six categories, with speedups
between 1.15 and 29.07. This is because the total execution time of
a transfer request is now dominated by the network time. As shown
in the right sub-figure, where the average network speed is 20Mb/s
network, our method achieves even better efficiency thanFile DSI,
with speedup between 1.21 and 81.32. Moreover, if we compare
the query processing time with data transfer time ofSDQuery DSI,
we can see that in different network environments, the querypro-
cessing over bitmap indices has much smaller time cost than the

disk I/O and network transfer in most cases (The only exception is
to transfer a small amount of data (less than 10%) with high-speed
(1Gb) network). Overall, considering that most data transfers occur
over a wide area network where limited bandwidth is further shared
among a number of transfers, we can expect a large improvement
from our system. Even with a high bandwidth, our method is still
useful if less than 50% of the original file needs to be transferred, as
is indeed the case with the applications we described in Section 2.

Figure 8 compares the efficiency betweenSDQuery DSIandFile
DSI for the MODB (HDF5-based) dataset. We also generated 2000
queries for MODB dataset and divided them into 6 categories.The
results are very similar. With 1 Gb/s network, our method achieves
better efficiency when the subset percentage is smaller than50%
and the speedup ranges from 1.16 to 7.91. Our method achieves
better efficiency for all subsetting percentages using lower band-
widths. The speedup using 200 Mb/s and 20 Mb/s can be as high
as 31.15 and 74.34, respectively.

5.2 Effectiveness of the Performance Model
This subsection evaluates the effectiveness of the performance

model-basedhybrid method. As explained in Section 4.1, the hy-
brid method automatically chooses between memory filteringand
direct access for any given query. Thus, to evaluate the effective-
ness of this method, we compare the performance of the memory
filtering and direct access methods, as well as note which oneis
picked by the hybrid method. For completeness, we include both
direct access with segmentation and direct access without segmen-
tation. Parameters of our performance model were obtained using
400 test queries, and another 2000 queries were used for validation.

Figure 9 compares performance of the method over two differ-
ent datasets (POP and MODB) and two different execution envi-
ronments (RI cluster and Glenn cluster). The X axis shows dif-
ferent subsetting percentages and the Y axis shows the execution
time. To emphasize the difference among the methods, we only
show the data subsetting time (i.e., do not include either the query
processing or the network transfer time, which are identical for all
methods). The left sub-figure shows the subsetting time using the
POP dataset on the RI cluster. TheDirect Access (points)method
does not use segmentation, and we can see that it is very inefficient.
With segmentation, i.e.,Direct Access (segments), we have greatly
improved the efficiency. It turns out that the average segment length
is 300.36 and the speedup compared with the approach withoutthe
segmentation method is between 1.64 and 3.93. TheMemory Fil-
ter method achieves similar subsetting efficiency for all different
queries. Compared withDirect Access (segments), it achieves bet-
ter efficiency when subsetting percentage is larger than 62%.

If we look at the use of the performance model, i.e., theHybrid
Accessmethod, we can find that in most cases it makes the right
choice between the two methods. The only exception is that from
62% to 70%, memory filtering has better efficiency but our model
chooses direct access method. However, as we can see from thefig-
ure, the time difference within this subsetting range is quite small.
In other words, the hybrid method either matches the best method,
or is only very marginally (1%-2% at most) slower.

The middle sub-figure shows the subsetting time for the MODB
dataset on the RI cluster. The direct access method is fasterif the
subsetting percentage is 42% or lower. The data subsetting effi-
ciency using the direct access method on this dataset is worse than
what we observed for the POP dataset. The reason is that HDF5
supports more complex storage structure and provides more pow-
erful subsetting functionality, but it also incurs heavieroverhead
for each subsetting operation. Though our implementation does
use advanced HDF5 functions that are able to read multiple points
or hyperslabs together within one function call, still the overhead is
larger than what we observed for NetCDF. Another reason is that
for the MODB dataset, the average segment length is only 72.21.
Thus, we incur more frequent I/O accesses.

Again, we can see that our performance model works well. It
makes the correct prediction in most cases, with only exception
being the subsetting percentage varied from 42% to 50%. However,
as we observed earlier also, this is the range where the performance
difference between the two methods is negligible. Thus, again we
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Figure 7: Efficiency Comparison between SDQuery DSI and FileDSI for POP Dataset (Three Different Network Bandwidths)
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Figure 8: Efficiency Comparison between SDQuery DSI and FileDSI for MODB Dataset (Three Different Network Bandwidths)
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Figure 9: Data Retrieval Based on Performance Model: Different Datasets and Platforms

have shown that our performance model either chooses the best
method, or results in performance that is only 1%-2% slower than
the best method.

The right sub-figure shows the subsetting time using MODB
dataset on the Glenn cluster. The switch point between the di-
rect access and the memory filtering method is with a subsetting
percentage of 36%. The memory filtering method becomes more
efficient even for a smaller subsetting percentage because the Glenn
cluster has faster disk transfer speed, though the seek times are the
same. Again, the hybrid method makes the right choice in almost
all cases.

To summarize, the relative performance of direct access andmem-
ory filtering methods depends not only on the subsetting percent-
age of the query, but also the data format, the dataset itself, and/or
the execution environment. By obtaining parameters from a set of
initial or training queries specific for the data format and the envi-
ronment, we are able to tune our model, and almost always choose
the best method for the given query.

5.3 Improving Efficiency with Parallel Stream-
ing

The next experiment was designed to evaluate how data transfer
efficiency can be improved with the help of parallel streaming. As
we discussed in Section 4.2, parallel streaming not only uses paral-
lel TCP streams (to make better usage of the bandwidth), but also
enables parallel data retrieval, and overlap between data retrieval
and transfer. The results we report here are from experiments with
the MODB dataset only, as the results from the POP dataset are
very similar. To highlight the benefits of the streaming method, we
also implemented aNon-overlappingmethod. In this version, the
data subset is retrieved (and possibly filtered), and the data trans-
fer takes place only after the data subset is ready. Because of the
memory limit for theNon-overlappingmethod, we use a 10.5 GB
dataset here. The network speed is 200 Mb/s.

Figure 10 shows the performance of our method with different
number of streams. We again generated 2000 queries and divided
them into 4 categories. The Y axis shows the execution time, which
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Figure 10: Efficiency Improvements with Parallel Streaming

includes both data subsetting time and network transfer time. From
the figure we can see that, for all different categories of queries,
although the1 streammethod does not apply any parallel opti-
mization, it greatly improves the total efficiency because the data
read time is effectively overlapped by the data transfer time. The
speedup compared withNon-overlappingmethod is from 1.19 to
1.52, and the majority time is spent on data transfer. Moreover,
parallel streaming can further improve the efficiency. Compared
with 1 stream, the speedup using 2 streams for all categoriesranges
from 1.36 to 1.47, the speedup using 3 streams ranges from 1.50
to 1.73, the speedup using 4 streams ranges from 1.57 to 1.75,and
the speedup using 5 streams ranges from 1.54 to 1.71. Compared
with 1 stream, use of 2 streams is able to obtain over 40% more
bandwidth. Use of 3 or 4 streams does result in more bandwidth,
but the gains become smaller. After reaching a certain number of
streams (5 streams in this case), the efficiency is not improved. This
is because the bandwidth has been fully utilized (around 90%us-
age in this case), and increasing the stream number leads to more
seek time during data retrieval. The appropriate number of paral-
lel streams depends on both network bandwidth and RTT, and the
range is from 2 to 16 in most cases.

5.4 Benefits of Parallel Indexing
This experiment was designed to show the performance advan-

tages of parallel indexing. Although query processing timeis much
smaller compared with the data read and data transfer time, it can
also be optimized to improve the overall efficiency, especially in the
condition where the dataset is extremely large. In this experiment,
we use the POP dataset of size 140 GB.

Figure 11 shows the scalability of parallel indexing with different
number of processes. Here, we first logically divide the dataset
into a collection of blocks. Each process takes care of indexfiles
that correspond to a separate set of data blocks. This way, parallel
indexing not only decreases the index file loading time, but also
reduces the time for bitwise indexing operations. From the figure,
we can see that there is a good speedup as the number of processes
increases. Compared with the use of only 1 process, the speedup
on 2 processes varies from 1.55 to 1.69, the speedup on 4 processes
varies from 2.38 to 2.43, and the speedup on 6 processes varies
from 3.14 to 3.24.

6. RELATED WORK
Scientific data management has been widely studied. Here, we

first compare our effort with the work that has been in the context
of Globus GridFTP (DSI implementation), and then discuss closely
related other efforts.

By default, Globus GridFTP has its own File DSI [8] to sup-
port data fetching on POSIX systems. Several other DSIs [12]
have also been widely used, including the Storage Resource Broker
(SRB) DSI, the High Performance Storage System (HPSS) DSI,
and NeST DSI. MAPFS DSI is designed to support parallel data
transfer on MAPFS system, which is a parallel and multi-agent file
system for clusters [23]. Hans-Christianet al. [10] did an initial
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Figure 11: Indexing Time with Different Number of Processes

study on supporting HDF5 data subsetting and visualizationus-
ing GridFTP. However, their tool only supports dimension-based
queries. Compared to our effort, it did not support NetCDF, did not
include support for value-based queries, and did not apply any of
the optimizations we have included here.

Our work has several similarities with the NoDB approach [1]
(previously also presented as automatic data virtualization [29]),
where database-like operations are supported without loading data
into a database. The distinct aspect of our work is application of
this approach on NetCDF and HDF5 formats, and integration with
a data movement protocol.

Several other tools have also been developed for scientific data
management. OPeNDAP [7] provides data virtualization through
a data access protocol and data representation. We had compared
an earlier implementation of our approach [25, 28] (before its in-
tegration with GridFTP) against OPeNDAP and demonstrated that
our approach has better efficiency, because it does not require data
transformation to another format. In other efforts relatedto sci-
entific data management, SciHadoop [5] enhances the map-reduce
framework with a data partitioning method suitable for scientific
datasets. Fastbit [30] and FastQuery [6] apply bitmap indexing and
parallel indexing to support efficient value-based subsetting. Scien-
tific Data Manager (SDM) [19] employs the Metadata Management
System (MDMS) and provides a programming model to abstract
low-level parallel I/O operations for complex scientific processing.
NCO and its parallel implementation SWAMP [27] support data
query and data computation over NetCDF datasets. Neither ofthem
supports flexible data subsetting or includes integration with a data
transfer protocol. In-situ analysis has been a topic of muchinves-
tigation in recent years, with ADIOS project providing a mature
implementation of this approach [15].

7. CONCLUSIONS
This paper has describedSDQuery DSI, a GridFTP plug-in which

supports flexible server-side data subsetting over HDF5 andNetCDF
data formats. We have shown how a schema can be constructed
using metadata from HDF5 and NetCDF formats, and structured
queries can be issued to specify subsets of interest to the users. An-
other contribution of the work is in designing the system to be used
by existing GridFTP servers without reinstallation. We have also
provided several optimizations to help improve the performance.
We have extensively evaluated our implementation. We show that
subsetting at the server-side is effective, despite some overheads
of indexing-related operations, with only exception beingwhere a
query outputs a large fraction of the original and the network band-
width is also very high. We have evaluated each of our optimization
methods and have demonstrated their effectiveness.
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