SDQuery DSI: Integrating Data Management Support with
a Wide Area Data Transfer Protocol

YuSu YiWang Gagan Agrawal
Computer Science and Engineering
The Ohio State University
Columbus, OH 43210
{su1,wayi,agrawal}@cse.ohio-state.edu

ABSTRACT

In many science areas where datasets need to be transferred
shared, rapid growth in dataset size, coupled with much eslow
increases in wide area data transfer bandwidths, is makiexr i
tremely hard for scientists to analyze the data. This pagdresses
the current limitations by developingDQuery DSl a GridFTP
plug-in that supports flexible server-side data subsettmgexist-

ing GridFTP server is able to dynamically load this tool tpsort
new functionality. Different queries types (query over dimions,
coordinates and values) are supported by our tool. A number o
optimizations, like parallel indexing, performance mofiel data
subsetting, and parallel streaming are also applied. Wepaoen
our SDQuery DSwith GridFTP defaultFile DSl in different net-
work environments, and show that our method can achieverbett
efficiency in almost all cases.

Categories and Subject Descriptors

H.3.1 Information Systems: INFORMATION STORAGE AND

RETRIEVAL—Content Analysis and Indexin@.2.5 [Computer

Systems Organizatioff: COMPUTER-COMMUNICATION NET-
WORKS —Local and Wide-Area Networks

Keywords

data management; wide area networks; indexing; query psoTg
1/0 performance tuning;

1. INTRODUCTION

As science has become increasingly data-driven, and asalata
umes and velocities are increasing, scientific advancesanym
areas will only be feasible if critical ‘big-data’ problenase ad-
dressed - and even more importantly, software tools emhgddi
these solutions are readily available to the scientistsviipfor-
ward, the key challenge being faced by data-intensive seief
forts is that while the dataset sizes continue to grow rgpidikk
speeds and wide-area transfer bandwidths are not copinbhug,
software tools for dealing with scientific data must be eigedrto
incorporate new approaches, for data-driven scientifi@aces to
be maintained in the future.

Increasing data volumes and velocities are seen from ayafie
data collection modalities. For example, in X-ray Photonr€la-
tion Spectroscopy (XPCS), the detection of electric changee-
ment is done using a charge-coupled device (CCD). Though the

Permission to make digital or hard copies of all or part o tvork for

personal or classroom use is granted without fee providatiabpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listgyies prior specific
permission and/or a fee.

SC13November 17-21, 2013, Denver, CO, USA.

Copyright 2013 ACM 978-1-4503-2378-9/13/11 ...$15.00.

(o]

Rajkumar Kettimuthu
The University of Chicago and
Argonne National Laboratory

Argonne, IL 60439

{kettimuthu}@mcs.anl.gov

current state-of-the-art CCDs operate at 60 frames-pemsk tech-
nology to produce 22,000 frames-per-second is expectedby,2
representing a 350 times increase in data volumes and tel@ei
the other hand, with growing computational capabilitiepafallel
machines, temporal and spatial scales of simulations acelsd-
coming increasingly fine-grained. The Community Earth 8yst
Model (CESM) is reducing the spatial scale from 1 degree1@®.
degree, implying a factor of 64 increases in the output sizes

As we stated above, wide area data transfer bandwidths@se gr
ing at a much slower pace, making it extremely hard for sigent
to transport these rapidly growing datasets. Similarlgkdipeeds
are also not coping up, making it difficult for applicationesttists
to manage and process large datasets. Support for managemen
and analysis of scientific datasets has been a very active ¢bp
research in recent years. On one hand, new database apgsoach
like the SciDB system [24] focus specifically on scientifitadeOn
the other hand, indexing techniques suitable for scierddiasets
have also been developed [30, 26]. Use of database andfx-ind
ing techniques can allow a subset of data of interest to bacted
from a repository, and such subsetting, if performed befodata
transfer, can likely reduce the volume of the data to be feared,
and subsequently stored and analyzed at the client-side.

In most cases, the practical state-of-art of sharing ancemewt
of scientific data remains very limited, in terms of any pblesi
incorporation of (efficient) data management techniquesough
a variety of methods and protocols may be used for supporting
data transfers (including scientists shipping CDs, whetds to be
common even today!), GridFTP [8] and its Software as a Servic
(SaaS) version, Globus Online, are extremely popular. FIid
provides additional security and performance over theueRI P
implementations, including striped, streaming, and/aala, as
well as more reliable and restartable data transfers. Hemyveith
an exception of integration of GridFTP with OPeNDAP [7] (wihi
only provides limited flexibility and efficiency), the unif data
transfer for GridFTP is a single file. While enhancing androjz-
ing data transfer frameworks [2, 14, 16, 17, 18, 13, 4] hasicoad
to be an active area of research, the ability to reduce dateneo
that needs to be transferred over the wide-area, by prayisiip-
port for user-defined data subsettirag the server-side, is clearly
needed.

In this paper, we address several important challengesithsat
in integration of core data management functionality (efficdata
subsetting) with a protocol for data movement over a widsar
network. Specifically, the issues that need to be addressed a

e How should a system integrating basic data management sup-
port with a data transfer protocol be designed to allow easy
use and integration with existing environments?

e How can usersiewa remote file, which uses one of the pop-
ular scientific data formats like NetCDF or HDF5, and con-
veniently specify the subset of the data that is of interest t
them?

e In retrieving a subset of a file from a disk, when is it appro-
priate to use an indexing-based retrieval over a simple read

followed by in-memory filtering of data, and can this deci-
sion be automated?

e How can data retrieval and filtering be parallelized, to make
use of multiple cores and the likely benefits from using mul-
tiple streams, to achieve efficient utilization of the urgieg
network?

This paper develops solutions for the above problems, and in
corporates them in a tool we refer to 8®Query DSKScientific
Data Query Data Storage Interface), a GridFTP plug-in whigh
ports flexible server-side data subsetting over HDF5 ancCNEt
data formats. The GridFTP server is able to dynamically kbdsl
tool if it needs to perform subsetting before data transfarsl
switch back to using other DSIs subsequently. Differensstting
predicates (queries over dimensions, queries over caaatnand
queries over values) are supported by our tool, which is madsi-
ble using existing metadata as well as bitmap indexing. d&ssihe
basic functionality, we also include the following featsirel) we
use a performance model to automatically select betweeaxing-
based retrieval of data segments and full retrieval follbJog in-
memory filtering, 2) we support parallel streamingtechnique,
where different disk blocks are read concurrently and pipedif-
ferent TCP/IP streams, and 3) we incorporate parallel imdex
to perform indexing operations for each sub-block conaulye
Overall, while the data management functionality providethis
system has some similarities with other efforts (e.g., tleDR
approach [1] and the ADIOS project [15]), no other projecs ha
provided a high-level API for specifying subsetting coratis on
NetCDF and HDFb5 files, while also integrating (and optimigin
such subsetting functionality with a data transfer protoco

We have extensively evaluated our implementation. We first
compared our GridFTP versioBDQuery DSlwith the GridFTP
defaultFile DSI and show that our method can achieve better ef-
ficiency in almost all cases, with only exception being whare
query outputs a large fraction of the original dataset ardnibt-
work bandwidth is also very high. We also show that our perfor
mance model-based hybrid data reading method is effeciveit
can automatically choose between indexing-based direesaand
the in-memory filtering method. The parallel streaming teghe

the server-side. Moreover, as simulation outputs scadg,féce an
enormous challenge.

Data Pipelines from Tomography: Two and three dimensional
x-ray imaging studies of dynamical phenomena, with spagisd-
lution as small as tens of nanometers, are popular methodefo
material characterization. However, when scientists @ggir a fa-
cility with state-of-the-art Tomography facility (such tee Imag-
ing Group at Argonne), a large volume of data is generated, an
this volume will increase rapidly in the near future (10 G&isnd
by 2015). Moreover, after this data is processed and a 3+@+ep
sentation is created, the amount of data increases. Suchgsed
data needs to be moved to the scientist's home institutiofufe
ther studies, and slow wide-area networks are clearly ¢ebeitk.
While some scientists use GridFTP, others move data phiysafa
ter copying them to CDs, and in fact, spend additional daybeat
facility waiting for the data to be copied onto the CDs. Mayitata
by CDs is also highly unreliable - e.g., airports scannexguiently
corrupt the data.

It turns out that a very high fraction of data is not even uskfu
scientists. After preprocessing, data is stored in the HDF®Bat,
and a simple query mechanism on a HDF5 file can help reduce
the data sizes by a large number, and make transfer feasitlle a
efficient using GridFTP.

Data Pipelines from X-ray Photon Correlation Spectroscopy
(XPCS): XPCS is a powerful technique to probe the dynamics in
materials, with classical applications including the Bniawn dif-
fusion in liquids, and more recent applications like untierd-
ing the effect of the changes in proteins on diseases. The-sta
of-the-art CCD detector which captures the phenomenonatgeer
continuously at 60 fps (frames per second), streaming oli®mi
(1M) pixels in each frame, and thus producing 120 MB/sec td.da
New detectors that are suitable for XPCS will be availabl2dh5,
and will stream 1M pixels at 22,000 fps, facilitating betterder-
standing of biological processes. However, current teldyies
are completely inadequate for moving data arriving at sadtbsr

to a compute-cluster within the organization, and subssattyuéo
scientists over the entire world. GridFTP has been currdrging
used for data movement from the device to the compute cjuster
and then to scientists’ home organizations [20]. With supfmr
subsetting, future data rates can be adequately handled.

we have implemented is able to improve both data read and data

transfer efficiency. Finally, we also show that the paraiidexing
can improve the index operation performance.

2. MOTIVATING APPLICATIONS

Many data sharing and transfer scenarios involve incrgakitaset
sizes and significant benefits from subsetting data befarsters.
Several of these scenarios arise in the context of appitsitivhere
GridFTP is already being used for data transfers, thougk déc
integration of any data management solution with GridFTIRris
iting efficiency.

Analysis of Climate Simulation Outputs: Climate simulations
like the Community Earth System Model (CESM), or its prede-
cessor Community Climate System Model (CCSM), are produc-
ing massive datasets. CESM project has been jointly speddnyr
NSF and DOE, and its output is of immense value to a variety of
researchers.

The current output organization involves keeping all the-va
ables for the entire globe, for one time-slice, in a singleNk-
file. In the future, the organization is likely to be changedhe
variable, entire time-series, and the entire globe, in oreCROF
file. However, most researchers focus on a specific geogralphi
region (and often certain time-ranges). This involves ispatr
spatio-temporal subsetting of data over a Cartesian (aotilinear)
grid. Moreover, data needs to be transported over wide agka n

3. SYSTEM OVERVIEW

This section gives an overview of the system we have imple-
mented. Optimization methods are presented in the nexbgect

3.1 Background: Globus GridFTP

While the underlying ideas in our work on integrating datanma
agement support with a data transfer protocol are genaraine
plementation has been in the context of Globus GridFTP. @&ob
GridFTP has become an important high-performance dataferan
tool for the scientific community. Currently, the GridFT P
is deployed on more than 3,500 servers all over the world and i
responsible for an average of more than 10 million trandeesy
day, moving more than one petabyte of data. Its modular @ehi
ture provides a very convenient way for GridFTP-complidisints
to access to any storage system, provided that an impletimnta
of GridFTP’s Data Storage Interface (DSI) specific to thizage
system is available. It also supports an eXtensible I/Orfiate,
which allows GridFTP to target high-performance wide-azem-
munication protocols such as UDT and RDMA-based protocols.
Globus GridFTP is optimized to handle different types ofdats
- from dataset containing one single, large file to those c@imy
a number of small files.

Figure 1 shows the general Globus GridFTP architecturemFro
the figure, we can see that it comprises three componentP 1o+

works. For example, one common operation is: one datasét is a tocol Interpreters (Pls), which are the server and the thestocol

one location (possibly within one organization), anothatadet is

interpreters, and the Data Transfer Process (DTP). Plssae to

stored across the WAN, and user wants the same geospatial subhandle the control channel protocol. Because GridFTPValan

set from each, take difference of values (for certain attab), and
then visualize the results at their location. Several dsaientists
extensively use GridFTP for such data movements, but cilyren
spend unnecessary time because of its inability to selésess at

asymmetric protocol exchange, the client Pl is differentrfrthe
server Pl. The DTP is used to handle access to the actualmtiis a
movement via the data channel protocol. These three comfone
can be combined in various ways to create servers with diftara-

Client PI Physical Storage Descriptor

TEMP = /tmp/server/temp.nc
UVEL = /tmp/server/uvel.nc
VVEL = /tmp/server/vvel.nc

Server PI Server PI [

T |

| Intemnal IPC API | | Intemnal IPC API |

Logical Layout Descriptor Logical Layout Descriptor

varname = “TEMP”,
varid =3

\
|
|
|
|
| varname = “VVEL”,
|
|

datatype = float |
|
|
|
|
i
i
I
I
I
I
|

varid =5

datatype = float

ndims = 4

dim = {time, depth, ulat, ulon}

ndims =4
dim = {time, depth, tlat, tlon}

Data Channel

|
: Coordinate Variables:

I | ulat=(78.45,-78.40, -, 89.02)
|| ulon = ¢179.9,-179.8, -, 180)

Coordinate Variables:
tlat = (-78.47,-78.43, -+, 89)
tlon = (-179.95,-179.85, -+, 179.95)

Figure 1: Globus GridFTP Architecture

Value Distribution Descriptor Value Distribution Descriptor

Min/Max Value: (-21.1, 33.1)
Value Distribution:

I
i
i
i
i
!
1 Value Distribution:
(-21.1, -20.1): 201 1
i
i
I
I
I
)

(-246, -245): 810
(-245, -244): 1045

1
1
1
'
1
| | Min/Max Value: (-246, 225)
1
1
1
|
|

pabilities. DTP can be further divided into a three-modupefine:

the data access module, the data processing module, andtthe d
channel protocol module. The data access module providés an e eSS
terface to the data sources @nkg. The data processing module

performs server-side data processing, if requested by temaxd Figure 2: A High-level NetCDF Data Schema
store/retrieve (ESTO/ERET) command. The data channebpobt
module reads data from or writes data to the data channel.

In today’s scientific cyberinfrastructure, there are a nemtf
distributed storage systems. The protocols used and de&ssc
patterns across them vary substantially, as they all foouneet-
ing different requirements. To make GridFTP a general feans

protocol, Globus GridFTP provides a modular pluggablerfate (4) Optimize for Different Subsetting Scenariddy supporting an

(-20.1,-19.1): 233

time. This way, the client can choose to download the enteefi
perform subsetting before the download, and in the lattee caur
DSI can be invoked and used.

called the Data Storage Interface (DSI), which can be lo@etl index on an existing HDF5 or NetCDF file, we can retrieve from

switched at runtime. When the GridFTP server requires servi the disk 0n|y the subsets that are of interest to us, redu[ﬂ_‘ngm-

from the storage system, it first sends a request to the loa@d umes. For queries where only a small fraction of the file neetie

To create a DSI, programmers need to implement a set of btmecti - retrieved, this is clearly advantageous. However, if ayjisgoing

that are part of the API. to select a large fraction of the file, it may be more efficieribad
either the entire file or the major data sub-blocks into mefremd

3.2 Overview of Desired Functiona“ty then perform in-memory filtering, instead of performing arer

As we had summarized in Section 2, in many scenarios, sci- of (possibly non-continuous) disk 1/0 accesses. Choosihighw

entists do not need to download the entire data file for aisalys fmethf?d. will result in better performance is hard, but vergiile
They are only interested in a subset of the data, such as tempe 'O €lficiency.

ature within a specific area or a given value range. Hence, our (5) Support Efficient Data Transfers after Subsettitighas been

goal is to integrate basic ‘database-like’ functionalifgopporting seen from many studies [9, 22] that in a wide-area network, us
user-defined subsetting with GridFTP’s data transfer paitcOur ing parallel TCP streams between single source and destinat
system design was motivated by the following requirements: can improve the aggregate bandwidth achieved, over usimg-a s

gle stream. However, unlike the case when the entire fileseed
be transferred, using parallel streams with data subgettiming
retrieval is non-trivial.

(1) Support High-level Queries over Popular Scientific Data-For
mats: Supporting data subsetting queries using a high-level lan-
guage, over arbitrary flat or binary files, and without remgirdata

to be reorganized and/or loaded into a database systermésal . ST
impossible. Thus, we focus on popular scientific data fosmat 3.3 Supporting Structured Queries: High-level
and use the metadata associated with them to expose a high-le Data Schema

schema, which can be used to specify subsetting conditions. One of the requirements we had listed earlier teapport high-
currentimplementation supports HDF5 and NetCDF, each aftwh |evel queries over popular scientific data formatstWe now de-
is used across a number of scientific areas. There are sehatal scribe how this requirement is met for NetCDF and HDF5 fosmat

lenges in supporting a high-level query language on thes&)d- Specifically, during the data storing process, we generdtigta:

ing how users can view the structure of these datasets améssxp |evel data schema that can be downloaded by users to guiile the
their queries in an unambiguous way. queries.

(2) Support Variety of Subsetting Requiremer@ath HDF5 and Figure 2 shows the data schema example of a NetCDF file, which

is generated by the Parallel Ocean Program (POP) [11]. Tke th
components of this schema are motivated by the followinggtine-
quirements. First, query processing requires datasetqatystor-
age information to locate the target data file for subsetting
downloading. Second, the users requireltiigcal layout informa-
tion of each variable to find the relationship among the varigbles
the dimensions and the coordinate values. Third, the usad t©
know the value ranges and distribution information, to hedp-
struction of value-based queries that can be meaningful.

NetCDF formats organize the data as a set of multi-dimeasion
arrays, which typically involve spatial and/or temporahdnsions
and coordinates. Hence, subsetting situations that asisée di-
vided into three categories: queries based on dimensiusies
based on coordinategifnension scalefor HDF5 andcoordinate
variablesfor NetCDF), and queries based on valuesle-based
querie3. Our system should be able to support all of these, and
even a flexible combination of these three types, efficiently

(3) Interoperate with Existing GridFTP Server Binariefo make Thus, returning to Figure 2, the three components of thersehe
it easy for others to use our system, it is very desirablertinstal- are: 1) Physical Storage Descriptor, which describes phykica-
lation of the GridFTP server is not needed. Instead, cuueats tions where each NetCDF variable is resident. By lookinghig t
of GridFTP should be able to simply download the additionaktf descriptor, users are able to specify which data file to gudrse
tionality we are providing. As mentioned in Section 3.1stt&n be download. 2) Logical Layout Descriptor, which exposes tigid

achieved because GridFTP allows a new DSI to be loaded at run-data layouts, including variable ids, data types, dimensiames

1D Value € e e e io i
=1 =2 =3 =4 [1,2] [3,4]
0 4 0 0 0 1 0 1
1 1 1 0 0 0 1 0
2 2 0 1 0 0 1 0
3 2 0 1 0 0 1 0
4 3 0 0 1 0 0 1
5 4 0 0 0 1 0 1
6 3 0 0 1 0 0 1
7 1 1 0 0 0 1 0
Dataset Low Level Indices High Level Indices

Figure 3: An Example of Bitmap Indexing

and lengths, and coordinate values of the current varigpecifi-
cally, coordinate variables, which are relatively smalkine, are
fully loaded to support the queries that are based on coatelin
values. By looking up this descriptor, users are able toif§pec
dimensions and/or coordinates based query conditionss dév
scriptor is generated by extracting the header of each NEet:Da
file. 3) Value Distribution Descriptor, which describes ttaa val-
ues and a general value distribution over bins (how many eh¢sn
within bins). Users are able to specify value-based quengditions
by checking this descriptor. This descriptor is generatskd on
bitmap indices metadata, which we will describe next.

The data schema structure for the HDF5 data format is quiite si
ilar. One difference is that NetCDF and HDF5 use differennte
For example, HDF5 data format uses dataset instead of l@riab
data space instead of dimension and dimension scale insteae
ordinate variable. Another difference is that because H@dt&set
can be organized in a hierarchical structure, in which casdaty-
out metadata may be dispersed in separate header blockactor e
group. If this is the case, scattered logic metadata shaeilcob
lected and grouped together.

In our system, the high-level schema providesraual relational
table view to the user, who can now use SQL to express a variety
of subsetting conditions. The reason why we support SQL is be
cause itis the most popular database language, and varapisig
cal front-ends currently available for SQL can allow a usezdm-
pose their queries interactively.

3.4 Supporting Subsetting Conditions: Bitmap
Indexing

One of the requirements we had listed earlier wWaspport a va-
riety of subsetting queries (efficiently)Though dimension-based
queries can be supported by using the metadata associated wi
NetCDF and HDF5, for value-based queries, one clearly nigeds
dexing. Bitmap indexing, which utilizes the fast bitwisesogtions
supported by the computer hardware, has been proved as -an effi
cient approach for scientific data management [21, 33]. blee
it can be applied without any need for reorganization of ¢atsach
is not desirable in our case). Thus, our system uses bitrodpsp
enable a variety of subsetting queries.

Figure 3 showed an example of bitmap indexing. In this simple
example, the dataset contains a total of 8 elements withtihclis
values (, 2, 3, 4). Thelow-levelbitmap indices contain 4 bitvec-
tors (eo, €1, €2, e3) and each bitvector corresponds to one value.
Each bitvector contains a sequence of 0-bits and 1-bitsthentb-
tal number of bits is equal to total number of elements in titaskt.

In each bitvector, a bit is set to 1 if the value for the coroesp

ing data element’s attribute is equal to thievector valuei.e., the
particular distinct value for which this vector is creatdthe high-
levelindices can be generated based on either the value intervals
value ranges. From Figure 3, we can seeltvgh-Levelindices (o,

i1) are built based on value intervals. During query processan
collection of bitvectors are extracted based on the valbseiting
conditions. Logic AND or OR operations are performed among
them to generate a point id set as the result.

Usually scientific dataset contains floating-point valudsciv
have extremely high cardinality. Bitmap indexing also hasrb

proven to be an efficient method for floating-point values.[38

such case, instead of building bitvector for each distirtt®, we

can first group a set of values together (binning) and buileelboi

tors for small bins. This way, the total number of bitvectoas

be greatly decreased. From the example we can also see ¢hat th
number of bits within each level bitmap indicesnis< m (n is to-

tal number of elements ang is the total number of bitvectors),
which is even greater than data itself. Existing methodsruse
length compressiofB, 31] to address these problems, which are
incorporated in our system as well.

3.5 System Overview

We now describe how the major components of the system op-
erate together. In the process, we also address the requiterh
“interoperating with existing GridFTP server binaries”

As mentioned in Section 3.1, one of the key features of GriRIFT
is the API for accessing any new data storage medium, reféore
as the DSI. GridFTP also allows a new DSI to be loaded at rentim
Thus, the file-level subsetting functionality we providergapsu-
lated as a new DSI, which we refer to as the scientific datayqurer
SDQueryDSI.

Any data transfer protocol, including the Globus GridFTRada
transfer protocol, can be divided into two phases: a prépara
phase, where a control channel is first built up, and then fhe o
eration of the data channel between the client and the sefher
data subsetting optimization using &DQuery DSIs applied dur-
ing the data channel communication, whereas the contraingia
setup is used, unmodified, from the original GridFTP franmwo
Figure 4 shows the architecture@TP (Data Transfer Process) be-
tween client and server using t&®Query DSIIt should be noted
that SDQuery DSis also able to support third-party data transfer,
i.e., a client can initiate transfer from one server to aepoerver.
However, Figure 4, as well as our discussion here, will foons
transfer from a server to a client only.

There are (up to) three different ways in which our system is
used. First, it can be used to load a new NetCDF and HDF5 file
in a way that indexing support can be generated, and a higth-le
data schema, based on which structured queries are to kerwrit
and executed, can be supported. Second, before issuingha hig
level query, a user may want to request a high-level scheraelo
understand the dataset. Third, the user may want to retaielata
subset with a structured query. From the figure, we can sééiha
first step in our workflow is to use threquest parseto parse the
request and check if it is a data store request, a data sclegmest,
or a data retrieval request. Each kind of request is subségue
processed by the corresponding pipeline.

In the case of a data store request, itidex generatiorcompo-
nent is invoked to build up multi-level bitmap indices fot @éri-
ables included in the current file. The indices are storedetadata
with the original file. Theschema managemeocdomponent gener-
ates a high-level data schema view of the current data filedbas
on the file header and the index metadata. The entire index and
data schema generation process runs at the backend sohbat ot
GridFTP clients are still able to download data files at theesa
time.

For a schema retrieval request, thehema managemenbm-
ponent will find all data schema files of the current dataset an
thefile sendemwill send them back to the client-side. The size of
data schema file is typically much smaller than the datazet and
thus, this operation can be performed efficiently. Basedertata
schema, users are able to write SQL queries and further gfener
the data retrieval request. Figure 5 shows an example of a SQL
query and data retrieval request based on the data schemadwe h
shown earlier in Figure 2. This query’s intent is to find theadzle-
ments within the Gulf of Mexico area, under the depth of 50arset
and where the temperature is larger than 5 centigrade. Byrigo
up thelogical layout descriptorwe can find allongitude latitude,
depthvalues and their relationship with the variaBl&EMP. By
looking up thevalue distribution descriptorwe can find the value
range of the variabl@ EMP and specify value-based query condi-
tions that are likely to provide useful insights. A GridFTRta
retrieval request is generated by embedding the SQL quemg T

{GridFTP Client

GridFTP Client} {GridFTP Client

GridFTP
Protocol

GridFTP
Protocol

GridFTP
Protocol

GridFTP Server
{ Request Parser }

data retrieve
request

schema
request

data store
request

{ File Receiver }

Index Generation
Schema
Management

SDQuery DSI

{ Query Analysis }

—
HDFS5, NetCDF Dataset

Figure 4: System Architecture

SQL Query

SELECT TEMP FROM temp.nc WHERE TEMP >=5 AND
tlat>24 AND tlat<30 AND tlon>-98 AND tlon<-82 AND
depth>50

globus-url-copy "ftp://127.0.0.1:5000/tmp/server/temp.nc(
SELECT TEMP FROM temp.nc WHERE TEMP >=5 AND
tlat>24 AND tlat<30 AND tlon>-98 AND tlon<-82 AND
depth>50)" file:///tmp/client/netcdfsubset/

GridFTP Data Retrieve Request

Figure 5: An Example SQL Query and GridFTP Data Re-
trieval Request Embedding the Query

globus-url-copytool provides a command-line client for request-
ing transfers to, from, or between GridFTP servers, and aupp
rich data transfer functionality by adding different comrddine
parameters. Among these parameters, the source URL irscdlbhde
transfer protocol, the server IP address, the GridFTP porther,
the target file location (obtained from tRéysical Storage Descrip-

ditions. For query based on the variable values, the bitve¢hat
satisfy the current value ranges are read from the disk.r Alfia,
bitwise (logic AND/OR) operations are performed among thiee
bitvectors and the dimension bitvectors. Finally tegsult bitvector

is returned. All 1-bits indicate the data positions thais$athe cur-
rent query. To improve data retrieval efficiency, paralteleéxing
approach is applied, where indices are built separatelgliffarent
data sub-blocks. Details of this optimization method casd®n in
Section 4.3. Thelata readerromponent takes the data position IDs
generated in the previous step as the input, retrieves tiaefiden
the dataset chunk by chunk, and send chunks to the sending que
of the file sender The file sendercomponent dequeues the data
chunks from the sending queue and sends them to the clit-si
Two key optimizations, a performance model-based hybrid &
trieval method and a parallel streaming data transfer ndetten be
applied during this process to improve the efficiency. Theuitkd
description of these two optimizations can be seen in Sex#ol
and 4.2, respectively.

4. SYSTEM OPTIMIZATIONS

This section describes several optimizations implemeintéioe
system.

4.1 Performance Model-Based Optimized Data
Subset Retrieval

Consider processing of walue-basedjuery given by the user.
We can perform bitwise operations over the bitvectors thatew
generated earlier, and generapoint-ID-set specifying the records
that should be retrieved. This step normally does not coesum
much time, because the size of bitvectors is much smallerttat
of the dataset, and fast bitwise operations can be perfoeffed
ciently in memory. However, we next need to read records that
comprise the results of the query. As this step can poténtial
involve a number of distinct and possibly non-contiguou fé-
quests, it can get expensive, and the advantage of sulgsedtinbe
easily undone.

Clearly, initiating a separate read operation for eachrcbtat
needs to be read will most likely be prohibitively expensi@ne
simple optimization that can be applied will be to generair-c
tiguous or almost contiguous segments of records that ageade
by the query. This process is callsdgmentationThus, segments,
instead of individual elements, can be read at any given.tibre
reason why this approach turns out to be quite effective atpr
tice is that for most scientific datasets, neighboring résdend to
have very similar values for any given attribute. Hencedimg
based on segments will greatly decrease the I/O access déintes

tor), and the embedded SQL query. The destination URL contains improve the data reading efficiency.

the path where the data subset file is to be stored at the-clidet
After the server-side receives the data retrieval reqtiestuery

In cases where segmentation is not sufficiently effectivecan
choose to read either the entire dataset or data blockse(ifem-

analysiscomponent takes the request as the input and invokes theory size is not sufficient to hold the entire dataset) fromdrsk,

following modules: firstSQL parserimplemented by making cer-
tain modifications to the parser from SQLitegenerates the parse
tree. Next, themetadata parsetakes the data file name and the
variable name(s) as the input, looks up the correspondingdata
files, finds the data schema and the data layout informatiod, a
loads them into the memory. Finally, tiggiery request generator
is responsible for generating a data subsetting requesbiopio-
ing the SQL parse-tree information with the metadata inftram.
The indexing operationgomponent takes the query request as
the input, performs bitwise operations using the bitmapciesl
and returns all data position identifiers (IDs) that satikfycurrent
query. Recall that there are three types of subsetting tondi
For the subsetting condition based on the dimension idergifind
the coordinate values, dimension bitvectors that satlsége two
query types are dynamically generated (for query over dpatels,
a mapping is first applied to map the coordinate values to the d
mension IDs). Within the dimension bitvectors, the bitshatihe
value 1 satisfy the current dimension and/or coordinateyqoen-

http://www.sglite.org

and then perfornrmemory filteringi.e., apply filtering conditions
on each element in memory. Memory filtering is an alternative
the scheme in which each segment is individually read froen th
disk, which we also refer to as thirect accessnethod. A key
optimization built in our system involves automaticallyodsing
between the two methods at the runtime, so as to minimize the
data access times. This optimization exploits the facthkatsing
bitmap indices, we know the fraction of the data to be reaeraft
bitwise operations, even before performing any /O operati
Intuitively, we can see that if the subsetting percentageles
tively small, directly read the query results from the disKikely
to be more efficient compared to load the entire dataset heo t
memory. In comparison, if a large fraction of the data needset
returned as query results, the direct access method wéllylik-
cur many distinct disk accesses, which can be time consuning
the same time, memory filter will perform fewer (and more con-
tiguous) data accesses, lowering disk 1/0 costs to a leatleven
after memory-based filtering, the total execution time Wwélless.
However, except for the cases where only a very small amdunt o
data or a very large fraction of data needs to be retrieved;tbice

between the two methods depends on the data queries, tlsedata
itself, and the hardware.

50% of the data elements for all different queries. Now, mahg
to Equation 1, the second term calculates the memory fitjeinme,

Thus, we have developed a performance model to choose be-which is the product of average filter time per element artd

tween these two options. Before we explain the details «f thi
model, we note that for both HDF5 and NetCDF data formats, the
data reading methods can be divided into three categoréssi- r
ing theentire datasefor all elements of a variable), reading a data
block, and reading a data point. The time cost associatéteaith

of them can be divided into three parts: theek timeand actual
retrieval time as in the case of any disk operation, and in addi-
tion, before every read operation, both HDF5 and NetCDFkavo
several functions, the time cost of which is referred to apthpa-
ration timeof data reading. For reading the entire dataset (variable)
or a sufficiently large data block, read operation time isdbmi-
nant factor, and in comparison, data seek and read prepatatie

can be ignored. For reading a small data block or a point, e ne
to explicitly include the read preparation time and the déak in

our model.

Table 1: Major Parameters of Auto-Tuning Model

| Identifier | Description |
DS Size of the entire dataset
BN Total number of blocks in the dataset
SS Size of the query results
SN Total number of segments
Tap Average time to load one data block
from disk to memory
Tae Average time to load one data element
from disk to memory
T Average time to filter one data element
in memory
Tseg Time for generating data segments
T Average time to prepare for data read operation
Tau Average time to locate the start position
in the dataset

The complete list of all parameters used in our model is shown
in Table 1. We start our discussion by focusing on the costs-as
ciated with the memory filtering method’, » denotes the cost of
producing the query results using the memory filter method, a
can be calculated as:

TMF:BNX(Tp+le+Tdb)+FSXTml. Q)

FS = MIN (SS,DS — SS).)

Equation 1 can be divided into two parts. Because in mossgase
the actual data size is much larger than the memory, theeatdia
is first logically divided into fix-sized blocks and each tiome data
block is loaded and filtered in memory. Hence, the entire tidk
time is the product of the total number of blocks and the suthef
read preparation time, the data seek time, and the datddrainse
of each block. The data transfer time is much larger thanehd r
preparation time and the data seek time.

The second part of Equation 1 involves the tefifi, which is
the smaller value between the current subset size and thefres
the data size, as shown in Equation 2. With the help of bitmap
indexing, we do not need to apply the filtering conditions ente
record and choose data subset based on that. Instead weeztydi
locate the target data elements based on the point IDs wathin-
ID-set This brings another optimization: when the data subggttin
percentage is smaller than 50%, we can directly locate these
bits to select the data subset in memory; when the data $ungset
percentage is larger than 50%, we can directly locate thdsiesO
and select data elements between each 0-bits pair. Thisweay,
ensure that the in-memory filter operation will be appliedttmnost

Next, we focus on query processing using the direct accass. |
tially, we consider the case when segmentation is not usée T
time for this approach is denoted @% 41 and calculated as fol-
lows:

Tpar = S8 X (Tp + Tar) + S5 X Tge.)

In this case, we have to prepare, seek and read each element
separately. So the total time is the product of the size af dabset
and the sum of the read preparation time, the data seek timle, a
the data transfer time. Alternatively, we can use segmientsand
the resulting cost will be:

Toas = Tseg + SN x (Tp =+ le) + 5SS X Tye. (4)

Using this method, although it has additional point segjauor
cost, the total number of read preparations and seek opesatan
be much less.

Now, the goal of our model is to calculate the likely query-pro
cessing costs using the two approaches, and choose the ffiore e
cient method. We now elaborate on how (and when) all paramete
are obtained. Considering all parameters involved in outehave
can see that the total number of bloc#3/{) and the dataset size
(D.S) are known for each dataset. For each query, after the index-
ing operations, we can also see the size of the query ressi)t the
total number of segments involved V) and the segmenting time
(T'seg). The parameters whose values are not readily available are
the average time to prepare for the read operafigi, the average
seek time T4), the average time to load the data from disk to the
memory - (4, per block, for the memory filter method afid.,
per element, for the direct access method), and the averaged
filter data in memoryT;.:).-

To improve the accuracy of the method, we obtain values of sev
eral of these parameters separately for each method heemeém-
ory filter and the direct access method, and in some cases, eve
for queries with different range of subsetting levels. la tase of
memory filtering method, all data blocks have to be loadeal time
memory first, which implies that the read preparation tiffig)(
and the data block loading tim&,) are constants. Moreover, for
simplicity, the seek timeT(;) is also treated as a constant. The
total in-memory data filtering time is proportional to thenmoer of
target elements (either to be selected or to be skipped)aVdrage
filter time (T,.;) is easy to estimate based on results of an initial set
of queries.

For the direct access method, the parameters that need to be
trained areT,, Ty and Ty.. T, is (almost) identical for differ-
ent queries, wheredk;; andTy. are related to the data subsetting
percentage. Specifically, the average seek tifig) (is inversely
proportional to the subsetting percentage, whereas thageelata
transfer timeT . is proportional to the subsetting percentage. This
is because the average segment length is, in practice, npicopd
to the data subsetting percentage. When the segment leagth b
comes larger, the average data transfer speed increassesd Ba
these observations, we divide the training set of the daecess
method into several buckets, based on subsetting peresrday,
20%-30%, 30%-40%, and so on. The paramefgfsandT;. are
obtained based on execution of several queries from eadtebuc

The training process we use is a combination of off-linentrai
ing and on-line training. When the server is free, we perftinmn
off-line training to estimate the parameters. Otherwise,apply
the on-line training based on users’ real queries, and ivgponr
estimate of different parameters. Specifically, during ttiaging
process{y, Tui, Tae, Tan, andT,,; are continuously updated until
each parameter reaches a relatively stable status.

4.2 Parallel Streaming Data Transfer

Parallel streaming data transfer, as supported in ourrsyste
volves the following: 1) the data subsetting operations e
formed in parallel to improve disk I/O efficiency, 2) the datns-
fer is performed in parallel to improve network transferaéficy,

“~_ Sending Queueo

TCP Stream* So Si

1 0\\ 00
00 0 1
1

Sending Queue!

TCP Stream| So ‘ S

S2

(=il
iﬂ
EL\
[}
Scoc oo

Figure 6: Parallel Streaming Data Transfer

and finally, 3) the data reading and data transfer operadiomper-
formed in a pipeline mode, and thus, the data reading time@-a
tized by the network transfer time. We now elaborate on some o
the key aspects of implementation of this approach.

Figure 6 shows an example of parallel data streaming. The hum
ber of streams in this simple example is 2. Two threads ard use
in each stream, withhreadoo and Threador belonging to the
first stream, an@’hreadio andT hread;1 belonging to the second
stream. Within each stream, one thread is responsible fon-fe
ing data subset chunk by chunk and inserting data chunkgheto
sending queueand another thread is responsible for extracting data
chunks from thesending queuand transferring them to the client-
side through network.

Initially, bitmap operations are performed sequentiaigce they
do not consume too much time. The result of this steppisiat-1D-
set containing the point IDs (bits with the value 1) that satisfe
current query. As an example, in Figure 6, the result bitsetains
17 out of 40 elements.

The next step is crucial for parallel streaming performahtere,
points segmentingnd points partitioningare used. Points seg-
menting groups continuous points into segments to decriase

After the point partitioning, one thread within each streaith
be invoked to perform data read operations, with perforrmanadel
based data subsetting method applied. Also, as one thresatin
stream is responsible for data reads, another thr€aaddadoo in
the first steam an@'hreadso in the second stream) can keep mon-
itoring theSending Queudf the queue is not empty, it will extract
the data chunk at the head of the queue and send it througlethe n
work using the TCP protocol. Chunks in different streams lan
sent in parallel which makes better use of the bandwidth. eMor
over, the network transfer process can be started immégdatter
the first data chunk is ready. This way, the data transfer ata d
reading overlap with each other, which further improvesdffe
ciency.

4.3 Parallel Indexing

This subsection describes parallel bitmap indexing, wikiiak
at least two advantages: First, we are able to improve bakbxin
generation and index retrieval efficiency. Second, ourguerance
model-based data subsetting method can be applied at a farer g
ularity.

During the index generation phase, instead of building amd-c
pressing bitmap indices over the entire dataset, we firstatly
partition one dataset into a collection of data blocks, dreahtini-
tialize multiple processes and make each process build-fawdl
bitmap indices over a set of data blocks. This way, the index g
eration is performed in parallel and achieves a good speedup
global metadata file, which keeps the relationship betwémet
sion boundaries and bitmap indices of each block, is geserat
can be used to locate target index files during query praugssi
the index operation phase, by checking the dimension amdtor
ordinate based query conditions, we are able to know how many
blocks are involved in the current query. By looking up thebgll
metadata, we are able to locate the index files of the cornekspo
ing data blocks. Afterwards, we can invoke multiple proesssnd
perform indexing operations over different index files imghiel.

Besides the obvious advantages of this approach, anoth@r po
to note is that in most cases, data elements within the sabsebt
evenly distributed among different blocks. For data blaitkg do
not contain any data subset element, parallel indexing efmus
skip these blocks. For data blocks that contain a small peage
of elements, we can ugdirect accessnethod to subset the data.
For data blocks that involve a large percentage of data seahse
ements, we can use tmeemory filtermethod to subset the data.

disk read times. This method is used only if the direct access Hence, the performance model-based data subsetting meimod
method is chosen. From Figure 6, we can see that with the helpbe applied to each data block, instead of the entire databiéth

of segmenting, the total number of disk 1/0O accesses is @aaist
of 17. Points partitioning divides the dataset into blocksdad on

the number of streams, with each stream takes care of one dat

block. Here, we have two partitioning optionstraditional par-
tition method would involve dividing the dataset into bleckith
equal size based on the dimensions. This method is straiglafd
to implement, and has no partitioning overheads, but caur ise-
rious load imbalance, as the subset of interest may not bayeve
distributed within each block. Apptimizedpartition method in-
volves counting the total number of elements within the ltdsits
set, and then dividing the dataset into blocks with equal remof
1-bits. This option has additional partitioning cost, babhclearly
obtain much better load balance. We have used the optimized o
tion because the data partitioning based on the resultt fitsing
fast bit-based operations in the memory) is much smaller tha
disk I/0 and the network transfer time. We also use multaids to
perform both points segmenting and partitioning in patatidur-
ther improve the efficiency, which can be divided into twoysts
1) The result bitset is logically divided into intervals tvia fixed
size, and then, all 1-bits within each interval are counted seg-
mented. 2) Merge operations are performed to group inteiad
blocks based on the count of 1-bits, and segments are algpegto
together between intervals. As an example, in Figure 6, \wesea
that the first stream will process the 8 elements in the firstrws,
and another stream will process the left 9 elements in thevoig
three rows. The entire operations in the first two steps asedan
bitmap indices without touching the dataset.

offers more subsetting flexibility and is able to improve thea
reading efficiency.

5. EXPERIMENT RESULTS

In this section, we report results from a number of experisen
conducted to evaluateDQuery DSIWe designed the experiments
with the following goals: (1) To compare the performanceefgu
processing and data transfer times@Query DShgainst GridFTP
default File DSI, for queries involving a range of subsetting ra-
tios, and show that despite indexing operations and pgsaiint-
contiguous accesses, server-side data subsetting isoaibiprtove
data transfer efficiency (the same set of experiments aferperd
with three different network bandwidths). (2) To show that per-
formance model-based selection between direct access amd m
ory filtering is effective (i.e., we can almost always chodise
more efficient approach at runtime). (3) To measure how thalpa
lel streaming with our partitioning approach is able to ioy@ the
data transfer efficiency. (4) To examine how the paralleéxiilg
method improves the efficiency of indexing operations.

BecauseSDQuery DSlsupports both NetCDF and HDF5 data
formats, our experiments used two large and real datasedsioo
each format. For NetCDF, we used the datasets generatece by th
Parallel Ocean Program (POP) [11]. POP is an ocean cironlati
model, and the execution we used has a grid resolution obappr
imately 10 km (horizontally), and vertically, it has a grigaging
of nearly 10 m near the surface, and reaching 250 m in the deep
ocean. POP generates 1.4 GB data for each variable perlicee-s

and each variable is modeled with three dimensions: lodgitlat-
itude, and depth. The dataset we use hefieg8Pwith 100 time-

disk 1/0 and network transfer in most cases (The only exoapt
to transfer a small amount of data (less than 10%) with hjzged

steps. The size of the dataset is 140 GB. For HDF5, we used the(1Gb) network). Overall, considering that most data trarssbccur

datasets generated by Mediterranean Oceanic Data Base BY\OD
MODB is generated from a simulation for a 34-layer space @ th
Mediterranean Sea. The dataset we use hesalisity. A sample
data file available for downloading has 34 layers, 63 rowd, 6V
columns. Because the real dataset was only of a small sizexwe
trapolated the original data by extending the time dimemsamd
created a dataset of size 105 GB for our experiments.

The majority of our experiments were conducted on a loca-clu
ter (theRl cluster), where every node has 8 cores 2.53 GHz Intel(R)
Xeon(R) processors, with 12 GB RAM and 200 GB local disk
space. Some of our experiments also used another cluster,ar
supercomputing center (tli&enncluster), where every node has 8
cores, 2.6 GHz AMD Opteron(TM) processors, with 64 GB RAM
and 1.9 TB local disk space. We use three server-client,pairs
evaluate our approach with different bandwidths. The fiitsias
tion involves transfers over a local area network (LAN) witGb/s
bandwidth and 0.17 msec round trip time (RTT), the secondsit
tion involves an inter-cluster but intra-campus transf€tQ9 Mb/s
and 24 msec RTT, and the third situation involves a WAN transf
with 20 Mb/s average speed and 60 msec RTT.

5.1 Efficiency Comparison between SDQuery
DSl and File DSI

In this experiment, we examine the performance advantafjes o
SDQuery DSlby comparing it against the default GridFTP imple-
mentation that simply transfers the entire file to the chside, re-
ferred to agile DSI. TheRead & Transfer Timéhat we report for
File DSl includes both the data retrieval time (from the disk) and
the network transfer timeSDQuery DSlexecution time that we
report can be divided into two parts: tiguery Processing Time
and theSubseting and Transfer Tim&he former includes the time
to parse the query, perform indexing operations to gengraitet
ID set, and perform points segmenting and partitioning. [atter
includes the data subset retrieval and network transfes. tifere,
we have used thBirect Access with segmentatiomethod for data
subsetting. Optimizations based on performance modeldedp
data retrieval will be emphasized in the next set of expemise
Two streams were used for both methods in the results wetrepor

Figure 7 compares the efficiency between $i2Query DShnd
the File DSI for the POP Dataset. Here we generated 2000 SQL
queries based on scientists’ real ocean analysis requiter@g.,
different temperaturescopes within specific ocean areas and cer-
tain depths. We also divided queries into 6 categories, hwirie
clude queries with subsetting percentage<d®o, 1%-10%, 10%-
25%, 25%-50%, 50%-75%, and75%, respectively. The execu-
tion time of theFile DSl indicates the time to transfer the entire
data file, as shown in the rightmost bar of each sub-figure.ign F
ure 7, each sub-figure corresponds to one network environrren

over a wide area network where limited bandwidth is furttersd
among a number of transfers, we can expect a large improvemen
from our system. Even with a high bandwidth, our method i sti
useful if less than 50% of the original file needs to be tramstk as
is indeed the case with the applications we described in@e2t
Figure 8 compares the efficiency betwedidQuery DSandFile
DSlfor the MODB (HDF5-based) dataset. We also generated 2000
queries for MODB dataset and divided them into 6 categofibs.
results are very similar. With 1 Gh/s network, our methodexads
better efficiency when the subset percentage is smaller5b&n
and the speedup ranges from 1.16 to 7.91. Our method achieves
better efficiency for all subsetting percentages using tdvead-
widths. The speedup using 200 Mb/s and 20 Mb/s can be as high
as 31.15 and 74.34, respectively.

5.2 Effectiveness of the Performance Model

This subsection evaluates the effectiveness of the pesgfiocen
model-basedhybrid method As explained in Section 4.1, the hy-
brid method automatically chooses between memory filtesimdy
direct access for any given query. Thus, to evaluate thetefée
ness of this method, we compare the performance of the memory
filtering and direct access methods, as well as note whichione
picked by the hybrid method. For completeness, we includk bo
direct access with segmentation and direct access witlegatan-
tation. Parameters of our performance model were obtaisid)u
400 test queries, and another 2000 queries were used fdatiak.

Figure 9 compares performance of the method over two differ-
ent datasets (POP and MODB) and two different execution-envi
ronments (RI cluster and Glenn cluster). The X axis shows dif
ferent subsetting percentages and the Y axis shows thetexecu
time. To emphasize the difference among the methods, we only
show the data subsetting time (i.e., do not include eitheqtrery
processing or the network transfer time, which are idehfaraall
methods). The left sub-figure shows the subsetting timegusbia
POP dataset on the RI cluster. Thaect Access (pointanethod
does not use segmentation, and we can see that it is veryiasffi
With segmentation, i.eDirect Access (segmentsye have greatly
improved the efficiency. It turns out that the average segieagth
is 300.36 and the speedup compared with the approach witheut
segmentation method is between 1.64 and 3.93. Mémory Fil-
ter method achieves similar subsetting efficiency for all défe
queries. Compared witDirect Access (segments) achieves bet-
ter efficiency when subsetting percentage is larger than 62%

If we look at the use of the performance model, i.e., iydrid
Accessnethod, we can find that in most cases it makes the right
choice between the two methods. The only exception is tbat fr
62% to 70%, memory filtering has better efficiency but our nhode
chooses direct access method. However, as we can see fréigr the
ure, the time difference within this subsetting range igejamall.

the left sub-figure, where we use 1 Gb/s network, we can see tha In other words, the hybrid method either matches the bedtadet

when the data subsetting percentage is smaller than SOQuery
DSl achieves better efficiency thafile DSI, with speedups rang-
ing between 1.26 and 9.41. Otherwiggle DSI achieves better
efficiency. When the query is going to return a large fractibthe
data, and the network bandwidth is very high, the reducticdfaita
transfer time is offset by the query processing time. Paldity,

the disk I/O now becomes a bigger constraint than the network
and retrieving a subset is not likely to be as efficient asendtrg

the entire file. However, if we look at the center sub-figurbeve

or is only very marginally (1%-2% at most) slower.

The middle sub-figure shows the subsetting time for the MODB
dataset on the RI cluster. The direct access method is fiésiter
subsetting percentage is 42% or lower. The data subsetffing e
ciency using the direct access method on this dataset igwioas
what we observed for the POP dataset. The reason is that HDF5
supports more complex storage structure and provides nmwve p
erful subsetting functionality, but it also incurs heavieterhead
for each subsetting operation. Though our implementatioesd

we use 200 Mb/s network, we can see that our method achievesuse advanced HDF5 functions that are able to read multiplesgo

better efficiency thafrile DSl for all six categories, with speedups
between 1.15 and 29.07. This is because the total executierof

a transfer request is now dominated by the network time. Awgsh
in the right sub-figure, where the average network speed 826
network, our method achieves even better efficiency HienDS|,

or hyperslabs together within one function call, still tvedhead is
larger than what we observed for NetCDF. Another reasonais th
for the MODB dataset, the average segment length is onlyl72.2
Thus, we incur more frequent I/O accesses.

Again, we can see that our performance model works well. It

with speedup between 1.21 and 81.32. Moreover, if we compare makes the correct prediction in most cases, with only exzept

the query processing time with data transfer tim&biQuery DS
we can see that in different network environments, the gpesy
cessing over bitmap indices has much smaller time cost than t

being the subsetting percentage varied from 42% to 50%. kewe
as we observed earlier also, this is the range where therpafce
difference between the two methods is negligible. Thusinaga

POP Dataset over le Network POP Dataset over 200Mb Network x10° POP Dataset over 20Mb Network

8000 7F
25008 - SDQuery Subset & Transfer Time| 1 - SDQuery Subset & Transfer Tlme I SDQuery: Subset & Transfer Time|
[SDQuery: Query Processing Time 7000 | [SDQuery: Query Processing Time| 6| | I SDQuery: Query Processing Time

I File: Read & Transfer Time I File: Read & Transfer Time I File: Read & Transfer Time

2000 6000

)

5000
1500
4000

1000 - 3000

Execution Time(sec)
Execution Time(sec)
Execution Time(sec)

2000

500
1000

<1% 19%-10% 10%-25%25%-50%50%-75% >75% FileDSI
Data Subset Percentage

<1% 19%-10% 10%-25%25%-50%50%-75% >75% FileDSI

<1% 1%-10% 10%-25%25%-50%50%-75% >75% FileDSI Data Subset Pi It
ata Subset Percentage

Data Subset Percentage

Figure 7: Efficiency Comparison between SDQuery DSI and Fil®©SI for POP Dataset (Three Different Network Bandwidths)

MODB Dataset over 1Gb Network MODB Dataset over 200Mb Network 10" MODB Dataset over 20Mb Network
T 6000 6 T T T T T T r
2000 q
- SDQUeW SUbse‘ & Transler Time| - SDQuery Subset & Transfer Time| I SDQuery: Subset & Transfer Time|
1800 | I SDQuery: Query Processing Time 1 so0 [sDQuery: Query Processing Time sl [SDQuery: Query Processing Time
I File: Read & Transfer Time Il File: Read & Transfer Time I File: Read & Transfer Time

1600 q
2 1400 & 4000 Sl
& 2 <2
2 1200 g 3
= =4 =

3000 3t

§ 10001 5 s
2 w0 2 3
2 £ 2000 £ of
w 600F w w

400 1000 1k

200

0 [
0 <1% 19-10% 10%-25925%-50%650%-75% >75% FileDSI <1% 1%-10% 10%-25%25%-50%50%~75% >75% FileDSI <1% 1%-10% 10%-25%25%-50%50%-75% >75% FileDSI
Data Subset Percentage Data Subset Percentage Data Subset Percentage

Figure 8: Efficiency Comparison between SDQuery DSI and Fil®©SI for MODB Dataset (Three Different Network Bandwidths)

POP Dataset on RI Cluster MODB Dataset on RI Cluster MODB Dataset on Glenn Cluster
6000 T T T T T T T T T 7000 T T T T T T T T T T T T T T T T T
—=A— Direct Access(points) —=4— Direct Access(points) —=~— Direct Access(points)
5000 Direct Access(segments) 6000 - Direct Access(segments) 6000 Direct Access(segments)
—&— Memory Filter —8— Memory Filter —&— Memory Filter

= — % — Hybrid Access 5 5000 | = * —Hybrid Access 5 5000F | — * —Hybrid Access
§ 4000 2 2
@ T T
E E 4000 £ 000}
F F F
g 3000r < <
] S 3000 5 3000~
5 5 5
3 i 3 3
2 2000 X =~ o e 3 £
u 5 W' 2000 W 2000

1000 K 1000} o B e I S N

P4 % A
0 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 0 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 0 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Data Subset Percentage Data Subset Percentage Data Subset Percentage

Figure 9: Data Retrieval Based on Performance Model: Diffeent Datasets and Platforms

have shown that our performance model either chooses the bes5.3 Improving Efficiency with Parallel Stream-
method, or results in performance that is only 1%-2% slolvant ing

the best method. | o _ The next experiment was designed to evaluate how data éransf
The right sub-figure shows the subsetting time using MODB ' oiciency can be improved with the help of parallel streamiAs
dataset on the Glenn cluster.. Th.e switch point petween the .dl we discussed in Section 4.2, parallel streaming not onlg paeal-
rect access and the memory filtering method is with a subgetti o Tcp streams (to make better usage of the bandwidth), Isat a
percentage of 36%. The memory filtering method becomes more o ,pjes parallel data retrieval, and overlap between Mtk;eval
efficient even for a smaller subsetting percentage bechasglenn and transfer. The results we report here are from experaneith
cluster has faster disk transfer speed, though the seek imethe 6 \O0DB dataset only, as the results from the POP dataset are
same. Again, the hybrid method makes the right choice in simo yery similar. To highlight the benefits of the streaming noethwe

all cases. : . ; .
. . . also implemented &lon-overlappingnethod. In this version, the
To summarize, the relative performance of direct accesseam- data subset is retrieved (and possibly filtered), and the tiahs-

ory filtering methods depends not only on the subsettinggmefc for taes place only after the data subset is ready. Becdtbe o

age of the query, but also the data format, the dataset, iesedfor memory limit for theNon-overlappingnethod, we use a 10.5 GB
the execution environment. By obtaining parameters fromtaf dataset here. The network speed is 200 Mb/s.

initial or training queries specific for the data format ahd envi- Figure 10 shows the performance of our method with different
ronment, we are able to tune our model, and almost alwayssehoo ,;mper of streams. We again generated 2000 queries anedivid
the best method for the given query. them into 4 categories. The Y axis shows the execution tirhiiw

©
=3
S

I Non-overlapping
I 1 Stream
12 Streams
13 streams
[4 Streams
I 5 Streams

@
S
S

~
=3
=]

e
@
S
S

Execution Time(sec)
w B o
g & 8
3 8 8

N
o
S

=
o
S

5}

<25%

25%-50%
Data Subset Percentage

50%-75% >75%

Figure 10: Efficiency Improvements with Parallel Streaming

includes both data subsetting time and network transfez.tFinom

the figure we can see that, for all different categories ofigae
although thel streammethod does not apply any parallel opti-
mization, it greatly improves the total efficiency because data
read time is effectively overlapped by the data transfeetimihe
speedup compared witon-overlappingmethod is from 1.19 to
1.52, and the majority time is spent on data transfer. Magov
parallel streaming can further improve the efficiency. Careg
with 1 stream, the speedup using 2 streams for all categanees
from 1.36 to 1.47, the speedup using 3 streams ranges frobn 1.5
to 1.73, the speedup using 4 streams ranges from 1.57 toand5,
the speedup using 5 streams ranges from 1.54 to 1.71. Codnhpare
with 1 stream, use of 2 streams is able to obtain over 40% more
bandwidth. Use of 3 or 4 streams does result in more bandidth
but the gains become smaller. After reaching a certain numbe
streams (5 streams in this case), the efficiency is not ingatovhis

is because the bandwidth has been fully utilized (around 86%
age in this case), and increasing the stream number leadert®® m
seek time during data retrieval. The appropriate humbeaddlp

lel streams depends on both network bandwidth and RTT, and th
range is from 2 to 16 in most cases.

5.4 Benefits of Parallel Indexing

This experiment was designed to show the performance advan-

tages of parallel indexing. Although query processing tismauch
smaller compared with the data read and data transfer ttroani
also be optimized to improve the overall efficiency, esfdciathe

condition where the dataset is extremely large. In this empnt,

we use the POP dataset of size 140 GB.

Figure 11 shows the scalability of parallel indexing witfiefient
number of processes. Here, we first logically divide the sktta
into a collection of blocks. Each process takes care of irfilex
that correspond to a separate set of data blocks. This weglleda
indexing not only decreases the index file loading time, st a
reduces the time for bitwise indexing operations. From theré,
we can see that there is a good speedup as the number of g®cess
increases. Compared with the use of only 1 process, the gpeed
on 2 processes varies from 1.55 to 1.69, the speedup on 4sgasce
varies from 2.38 to 2.43, and the speedup on 6 processes varie
from 3.14 to 3.24.

6. RELATED WORK

600

@

S

S}
T

Index Operation Time(sec)

100

>75%

50%-75%
Data Subset Percentage

<25% 25%-50%

Figure 11: Indexing Time with Different Number of Processes

study on supporting HDF5 data subsetting and visualizati®n
ing GridFTP. However, their tool only supports dimensiaséd
queries. Compared to our effort, it did not support NetC Dt
include support for value-based queries, and did not appjyoh
the optimizations we have included here.

Our work has several similarities with the NoDB approach [1]
(previously also presented as automatic data virtuatinaf29]),
where database-like operations are supported withouirigathta
into a database. The distinct aspect of our work is apptinatif
this approach on NetCDF and HDF5 formats, and integratidh wi
a data movement protocol.

Several other tools have also been developed for scientfe d
management. OPeNDAP [7] provides data virtualizationugho
a data access protocol and data representation. We had @ampa
an earlier implementation of our approach [25, 28] (beftsdri-
tegration with GridFTP) against OPeNDAP and demonstrdtatl t
our approach has better efficiency, because it does notrectdiia
transformation to another format. In other efforts relatedci-
entific data management, SciHadoop [5] enhances the mapeed
framework with a data partitioning method suitable for stific
datasets. Fastbit [30] and FastQuery [6] apply bitmap imdeand
parallel indexing to support efficient value-based subsgtScien-
tific Data Manager (SDM) [19] employs the Metadata Managemen
System (MDMS) and provides a programming model to abstract
low-level parallel I/O operations for complex scientifiopessing.
NCO and its parallel implementation SWAMP [27] support data
query and data computation over NetCDF datasets. Neithibenf
supports flexible data subsetting or includes integratitth avdata
transfer protocol. In-situ analysis has been a topic of minoebs-
tigation in recent years, with ADIOS project providing a ovat
implementation of this approach [15].

7. CONCLUSIONS

This paper has describ&DQuery DSla GridFTP plug-in which
supports flexible server-side data subsetting over HDFNet@DF
data formats. We have shown how a schema can be constructed
using metadata from HDF5 and NetCDF formats, and structured
queries can be issued to specify subsets of interest to éne.usn-
other contribution of the work is in designing the systemeaibed
by existing GridFTP servers without reinstallation. We énalso
provided several optimizations to help improve the perfamoe.

We have extensively evaluated our implementation. We sheav t

Scientific data management has been widely studied. Here, wesubsetting at the server-side is effective, despite soreeheads

first compare our effort with the work that has been in the exint
of Globus GridFTP (DSl implementation), and then discuesealy
related other efforts.

By default, Globus GridFTP has its own File DSI [8] to sup-
port data fetching on POSIX systems. Several other DSIs [12]
have also been widely used, including the Storage ResouateB
(SRB) DsI, the High Performance Storage System (HPSS) DSI,
and NeST DSI. MAPFS DSl is designed to support parallel data
transfer on MAPFS system, which is a parallel and multi-adjen
system for clusters [23]. Hans-Christiah al. [10] did an initial

of indexing-related operations, with only exception beivizere a
query outputs a large fraction of the original and the nekvionand-
width is also very high. We have evaluated each of our opttion
methods and have demonstrated their effectiveness.

Acknowledgements

This work was partially supported by NSF grants [1S-0916196
CCF-1319420, and ACI-1339757.

8.
[1]

(2]

(3]

[4]

(5]

[6]

[7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

REFERENCES

loannis Alagiannis, Renata Borovica, Miguel BrancaaBis
Idreos, and Anastasia Ailamaki. NoDB: efficient query
execution on raw data files. Proceedings of the 2012 ACM
SIGMOD International Conference on Management of Data
pages 241-252, 2012.

W. E. Allcock, |. Foster, and R. Madduri. Reliable Data
Transport: A Critical Service for the Grid. lroceedings of
the Workshop on Building Service Based Gyi2i304.

G. Antoshenkov. Byte-aligned bitmap compressionData
Compression Conference (DC@gge 476. IEEE, 1995.
Andrew Baranovski, Keith Beattie, Shishir Bharathisdoa
Boverhof, John Bresnahan, Ann Chervenak, lan Foster, Tim
Freeman, Dan Gunter, Kate Keahey, Carl Kesselman,
Rajkumar Kettimuthu, Nick Leroy, Michael Link, Miron
Livny, Ravi Madduri, Gene Oleynik, Laura Pearlman, Robert
Schuler, and Brian Tierney. Enabling petascale sciencta Da
management, troubleshooting, and scalable science ssrvic
Journal of Physics: Conference Serié@25, 2008.

J. Buck, N. Watkins, J. LeFevre, K. loannidou, C. Maltaah
N. Polyzotis, and S. Brandt. Scihadoop: Array-based query
processing in hadoop. International Conference for High
Performance Computing, Networking, Storage and Analysis
(SC) 2011.

Jerry Chou, Kesheng Wu, O Rubel, Mark Howison, Ji Qiang,
Brian Austin, E Wes Bethel, Rob D Ryne, Arie Shoshani,

et al. Parallel index and query for large scale data analysis
International Conference for High Performance Computing,
Networking, Storage and Analysis (S@ages 1-11. IEEE,
2011.

P. Cornillon, J. Gallagher, and T. Sgouros. Opendap:
Accessing data in a distributed, heterogeneous environmen
Data Science JournaR(0):164—174, 2003.

lan Foster and Carl Kesselman. The globus toolKite grid:
blueprint for a new computing infrastructuyrpages

259-278, 1999.

Thomas J Hacker, Brian D Athey, and Brian Noble. The
end-to-end performance effects of parallel tcp sockets on a
lossy wide-area network. Ib6th International Parallel and
Distributed Processing Symposium (IPDPg3ges 434-443.
IEEE, 2002.

Hans-Christian Hege, Andrei Hutanu, Ralf Kéhler, Addr
Merzky, Thomas Radke, Edward Seidel, and Brygg Ulimer.
Progressive retrieval and hierarchical visualizatioraofié
remote dataScalable Computing: Practice and Experience
6(3), 2001.

PW Jones, PH Worley, Y. Yoshida, JB White Ill, and

J. Levesque. Practical performance portability in the pera
ocean program (poponcurrency and Computation:
Practice and Experien¢d 7(10):1317-1327, 2005.
Rajkumar Kettimuthu, Michael Link, John Bresnahand an
William Allcock. Globus data storage interface
(dsi)—enabling easy access to grid datasetBirbt

DIALOGUE Workshop: Applications-Driven Issues in Data
Grids, 2005.

Rajkumar Kettimuthu, Alex Sim, Dan Gunter, Bill Alicke
Peer-Timo Bremer, John Bresnahan, Andrew Cherry, Lisa
Childers, Eli Dart, lan Foster, Kevin Harms, Jason Hick,
Jason Lee, Michael Link, Jeff Long, Keith Miller, Vijaya
Natarajan, Valerio Pascucci, Ken Raffenetti, David Resgma
Dean Williams, Loren Wilson, and Linda Winkler. Lessons
learned from moving earth system grid data sets over a 20
gbps wide-area network. Broceedings of the 19th ACM
International Symposium on High Performance Distributed
Computing (HPDC 2010)Jun 2010.

Ezra Kissel, D. Martin Swany, and Aaron Brown. Imprayin
GridFTP performance using the Phoebus session layer. In
Proceedings of SONovember 2009.

Scott Klasky, Hasan Abbasi, Jeremy Logan, Manish
Parashar, Karsten Schwan, Arie Shoshani, Matthew Wolf,
Sean Ahern, llkay Altintas, Wes Bethel, et al. In situ data

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

processing for extreme-scale computingSkientific
Discovery through Advanced Computing Program
(SciDAC’11) 2011.

T. Kosar and M. Livny. Stork: Making Data Placement a
First Class Citizen in the Grid. IRroceedings of
International Conference on Distributed Computing System
(ICDCS) 2004.

Wantao Liu, Brian Tieman, Rajkumar Kettimuthu, and lan
Foster. A data transfer framework for large-scale science
experiments. I19th ACM International Symposium on High
Performance Distributed Computing (HPD@ages
717-724. ACM, 2010.

D. Lu, Y. Qiao, P. A. Dinda, and F. E. Bustamante. Modglin
and Taming Parallel TCP on Wide Area Networks. In
Proceedings of the 12th International Parallel and
Distributed Processing Symposium (IPDPA&pril 2005.

B. Ludascher, I. Altintas, C. Berkley, D. Higgins, E edgr,

M. Jones, E.A. Lee, J. Tao, and Y. Zhao. Scientific workflow
management and the kepler syst&@oncurrency and
Computation: Practice and ExperiencE8(10):1039-1065,
2006.

S Narayanan, TJ Madden, AR Sandy, Raj Kettimuthu, and
Michael Link. Gridftp based real-time data movement
architecture for x-ray photon correlation spectroscopheat
advanced photon source. 8th IEEE International
Conference on E-Science (e-Scienpages 1-8. IEEE,
2012.

P. O'Neil and D. Quass. Improved query performance with
variant indexes. IMCM Sigmod Record/olume 26, pages
38-49. ACM, 1997.

Lili Qiu, Yin Zhang, and Srinivasan Keshav. On indivalu
and aggregate tcp performance Seventh International
Conference on Network Protocols (ICNPages 203-212.
IEEE, 1999.

Alberto Sanchez, Maria S Pérez, Pierre Gueant, Jes(s
Montes, and Pilar Herrero. A parallel data storage interfac
to gridftp. InProceedings of the 2006 Confederated
international conference on On the Move to Meaningful
Internet Systems: CooplS, DOA, GADA, and
ODBASE-Volume Part Jlpages 1203-1212. Springer, 2006.
Michael Stonebraker, Jacek Becla, David Dewitt, K-
Lim, David Maier, Oliver Ratzesberger, and Stan Zdonik.
Requirements for science data bases and scidboiierence
on Innovative Data Systems Research (CIDRhuary 2009.
Yu Su and Gagan Agrawal. Supporting user-defined
subsetting and aggregation over parallel netcdf datdsets.
12th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (CCGrid)pages 212-219. IEEE, 2012.
Yu Su, Gagan Agrawal, and Jonathan Woodring. Indexing
and parallel query processing support for visualizing alien
datasets. Id1th IEEE/ACM International Conference on
Parallel Processing (ICPR)ages 249-258. IEEE, 2012.
Daniel L Wang, Charles S Zender, and Stephen F Jenks.
Clustered workflow execution of retargeted data analysis
scripts. In8th IEEE International Symposium on Cluster,
Cloud and Grid Computing (CCGridpages 449-458.

IEEE, 2008.

Yi Wang, Yu Su, and Gagan Agrawal. Supporting a
light-weight data management layer over hdf518th
IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGrid)IEEE, 2013.

Li Weng, Gagan Agrawal, Umit Catalyurek, Tahsin Kurc,
Sivaramakrishnan Narayanan, and Joel Saltz. An approach
for automatic data virtualization. IRroceedings of the
Conference on High Performance Distributed Computing
(HPDC), June 2004.

K. Wu, W. Koegler, J. Chen, and A. Shoshani. Using bitmap
index for interactive exploration of large datasets1%th
International Conference on Scientific and Statistical
Database Managememntages 65-74. IEEE, 2003.

[31] K. Wu, E.J. Otoo, and A. Shoshani. Compressing bitmap
indexes for faster search operations1#h International
Conference on Scientific and Statistical Database
Managementpages 99-108. IEEE, 2002.

[32] K. Wu, K. Stockinger, and A. Shoshani. Breaking the eurs
of cardinality on bitmap indexes. @0th International
Conference on Scientific and Statistical Database
Managementpages 348-365. Springer, 2008.

[33] Kesheng Wu, W. Koegler, J. Chen, and A. Shoshani. Using
bitmap index for interactive exploration of large dataskts
15th International Conference on Scientific and Statistica
Database Management, 200%ges 65— 74. IEEE, July
2003.

