
GridFTP and Cluster 
Meltdown 

When No Means 'Maybe Later'  

John Bresnahan 

bresnaha@mcs.anl.gov 

Argonne National Laboratory  

The University of Chicago 



Overview 

  Transfer Architectural Components 
  GridFTP and RFT 

  Subtle intentions of each service 
  How each scales 

  Meltdowns 
  What is one, what isn't one 

  Resource protection   
  Interactions with resources 
  How to determine limits 



Architecture Overview 

RFT 
Client 

VO 1 

RFT 
Service 

GridFTP 
Striped 
Server 

GridFTP 
Client A 

GridFTP 
Server 

GridFTP 
Server GridFTP 

Client B BB 

VO 2 

GridFTP 
Striped 
Server 

GridFTP 
Server 

RFT 

A 



GridFTP Service 

  On demand transfer service 
  When a connection is formed, resources are 

dedicated 
  GridFTP might say “not now” 
  Not a queuing service 

  Transfer data as fast as possible 
  Maximize resource usage 

  Without over heating! 



What GridFTP Does 

  Fast data transfer service 
  Cluster to cluster copy tool 

  Intra-cluster broadcast tool 
  Multi-cast transfers 

  Scalable 
  Need more throughput, add more stripes 



RFT Service 

  Orchestrates transfers on client’s behalf 
  Third party transfers 
  Interacts with many GridFTP servers 

  Sees a bigger picture 
  VO level 

  Queue requests 
  RFT should not say no 

  Retry requests on failure 
  Optimizes its workload 



What RFT Does 

  Reliable service 
  DB backend 
  Recovers from GridFTP and RFT service 

failures 

  Batch requests 
  Light weight sessions 
  Submit a Request 
  Wait for notifications 

  Started, finished, failed, etc 



GridFTP: On Demand Service 

  Resources are limited 
  Data transfers are heavy weight operations 
  Sometimes hardware is too busy 

  Adding another transfer can cause thrashing 
  Collective system throughput goes down 

  GridFTP might say “no” 

  Transfer requests happen immediately 
  We do not queue, or delay transfers 
  An established session means an active 

transfer 



Why Doesn’t GridFTP Queue 

  A GridFTP session is heavy weight 
  Idle sessions consume resources 

  Backward compatible protocol 

  Sometimes less is more 
  Goal: Maximize the collective throughput 

  Sum of all active transfer rates 

  Too many transfers cause thrashing 
  Results in lower collective throughput 

  Avoid overheating system resources 

  It is in the systems best interest 
  We know what’s good for you "



GridFTP Session Resources 

  Even for an idle session 
  Active TCP control channel 

  Part of the 959 protocol. 
  A session is defined by a TCP connection 

  Fork/setuid process 
  Robustness 
  File system/OS permissions 

  OS buffer space 
  Data channels require large TCP OS buffers 

  Active transfers 
  Lots of memory/Net/Disk IO 

  Avoid too small of partitions 



If GridFTP Always Said Yes 

  OOM: the out of memory handle 
  OS optimistic provision of TCP buffers 
  Random processes will be killed 
  Meltdown 

  Shared FS overuse 
  Pushing the I/O throughput beyond optimal 
  Causing OOM on IOD machines 

  Shares of bandwidth too small 
  1 Million transfers at 500b/s each? 
  OR 10 transfers at 100Mb/s each 



Simultaneous Sessions 

  Goal: Collective throughput 
  entire servers bytes transferred / time 

  Not the number of transfers at once 

  Only reasons for more than 1 connection 
  Provide an interactive service for many 
  One session does not use all of the local 

resource 
  The remote side is the bottleneck 

  Hide control messaging overhead in another 
sessions data transfer payload 



Remote Bottleneck 

  Allow more than one simultaneous 
transfer to use all resources 

10G
b/s 



Overhead hiding 

Request 1 

DATA 1 

Request 1 

Request 2 

Request 3 

DATA 1 

DATA 2 

DATA 3 

Single Connection Many Connections 

Request 2 

DATA 2 

Request 3 

DATA 3 



But We Want Queuing! 

  May I offer you something in an RFT? 
  RFT says yes 
  Server side retries 

  Light weight sessions 
  GridFTP does the heavy lifting 
  Queues up requests of pending transfers 
  Notification upon completion 
  Scalability 

  Manages/Optimizes access to GridFTP 
Servers 



GridFTP 
dst 

GridFTP 
src 

RFT Session Interactions 

RFT 

GridFTP 
src 

GridFTP 
dst 

Client 
Request 

Notification 



Scalability 

  GridFTP 
  Connection rejection is a feature 

  It SHOULD say no 

  Intended to scale to system transfer rates 
  Not beyond them 
  T

o 
s
c
ale up add more nodes as stripes (dynamic backbends)‏ 

  Use faster NICs 

  RFT 
  Intended to scale to memory 

  It should not say no 



GridFTP Broke My Cluster! 

  GridFTP will push hardware as hard as it is 
allowed 
  But not harder 

  sudo rm –rf / 
  Did sudo break the FS? 

  ssh –u root host1 fork.bomb 
  Did sshd take down the host? 

  globus-url-copy –tcp-bs 100GB <src> 
<dst> 
  Did GridFTP break the cluster? 



Resource Protection 

  Limits need to be in place to protect 
  Knowing it is ok to say ‘no’ is step 1 

  What will hardware allow? 
  How fast are my disks? 
  How fast is my NIC? 
  How fast is can I send data while using the 

NetFS? 
  How many WAN transfers can I support with 

system memory? 
  How many simultaneous transfers can are 

reasonable to sustain? 



Fast Transfer Resources 

  CPU  
  Packet switching 

  Memory 
  OS buffers (BWDP)‏ 
  User space buffers 
 

W
A
N needs much more 

  System bus 
  Disk 

  Shared FS? (net also)‏ 

  Network 
  Router and LAN 

TCP Buffers 
CPU 

Bus 



Cluster Components 

  Disk 
  Shared I/O servers 

  Net 
  Backplate bandwidth 

  Systems 
  CPU/Memory 
  Are IODs and 

GridFTP servers co 
located? 

Shared IO Servers 

GridFTP Backends 

GridFTP Frontends 



Connection Caps 

  As a function of system memory 
  Cap = |mem| / (2MB + avg(BWDP))‏ 
  Never more than |mem| / 4MB 

service gsiftp 
{ 
         instances               = 20 
         socket_type             = stream 
         wait                    = no 

 env                     += GLOBUS_LOCATION=… 
         env                     += LD_LIBRARY_PATH=… 
         server                  = /usr/local/globus-4.0.1/sbin/globus-gridftp-server 
         server_args             = -i -p 2811 

 disable                 = no 
} 

% globus-gridftp-server –connection-max 20 



Connection Caps 

  As a function of system bandwidth 
  Cap = 

min(FS.
B
W, Net.BW) / (Target average transfer rate)‏ 

  As a function of my gut 
  20 - 50 
  Best guess based on personal experience 


T
ypically this is where collective BW plateaus 



System Buffer Limits 

  Limit the amount of OS space per 
conneciton 
  Auto tuning 
  16MB - 64MB 

% sysctl -w net.core.rmem_max=<value> 
% sysctl -w net.core.wmem_max=<value> 

% cat /proc/sys/net/ipv4/tcp_wmem 
4096 16384 4194304 

% cat /proc/sys/net/ipv4/tcp_rmem 
4096 16384 4194304 



GFork Memory Manager 

  Dynamically rations memory 
  10% of the allowed connections get 90% of 

the memory 
  Remaining session get half of available 

memory 

  Allows for high connection limits 
  |mem| / 2MB 



Future Work 

  RFT Improvements 
  Observe and react to GridFTP workloads 

  Current transfer rates 
  Requested TCP buffer sizes 

  Dynamic connection limits 
  More GFork memory algorithms 
  Base on current throughput 

  Queuing Service 
  Mainly for use by RFT 
  Eliminates possible starvation 

  Formal Study 



Conclusions 

  GridFTP is an on demand service 
  OK to say no 

  RFT is a VO level queuing service 
  please use it 

  http://www.gridftp.org 
  gridftp-user@globus.org 


