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What is GridFTP? 
  In Grid environments, access to distributed data is 

very important 
  Distributed scientific and engineering applications 

require: 
  Transfers of large amounts of data between storage 

systems, and 
  Access to large amounts of data by many geographically 

distributed applications and users for analysis, 
visualization etc 

  GridFTP - a secure, robust, efficient, standards based 
data transfer protocol 

  Features 
  Standard FTP get/put etc., Third-party control of data 

transfer 
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What is GridFTP? 

  Grid Security Infrastructure and Kerberos support 

  Parallel data transfer (multiple transport streams 
between 2 network endpoints) 

  Striped data transfer (1 or more transport streams 
between m network endpoints on the sending side 
and n network endpoints on the receiving side) 

  Partial file transfer 

  Manual/Automatic control of TCP buffer sizes 

  Support for reliable and restartable data transfer 
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New GT4 GridFTP Implementation 

  NOT based on wuftpd 

  Striping support has been added 

  Has IPV6 support included (EPRT, EPSV) 

  Extremely modular to allow integration with a 
variety of data sources (files, mass stores, 
etc.) 

  Based on Globus eXtensible Input/Output 
System (XIO) 
  Simple OCRW API for byte-stream IO 
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New Server Architecture 
  GridFTP (and normal FTP) use (at least) two 

separate socket connections: 
  A control channel for carrying the commands and 

responses 
  A Data Channel for actually moving the data 

  GridFTP (and normal FTP) has 3 distinct 
components: 
  Client and server protocol interpreters which handle 

control channel protocol 
  Data Transfer Process which handles the accessing 

of actual data and its movement via the data 
channel 
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New Server Architecture 

  Protocol Interpreter and Data Transfer Process 
can be (optionally) completely separate 
processes. 

  A single protocol interpreter can have multiple 
data transfer processes behind it. 
  This is how a striped server works. 

  Data Transfer Process is architecturally, 3 
distinct pieces: 
  Protocol handler, Data Storage Interface and 

Data processing module 
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New Server Architecture 

  The protocol handler - talks to the network and 
understands the data channel protocol 

  The Data Storage Interface (DSI) - provides an 
interface to data sources and sinks.  

  The data processing module - provides ability 
to manipulate the data prior to transmission. 
  currently handled via the DSI 

  In future we plan to make this a separate 
module 
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The Data Storage Interface (DSI) 

  Number of storage systems in use by the 
scientific and engineering community 
  Distributed Parallel Storage System (DPSS) 

  High Performance Storage System (HPSS) 

  Distributed File System (DFS) 

  Storage Resource Broker (SRB) 

  HDF5 

  Use incompatible protocols for accessing data 
and require the use of their own clients 
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The Data Storage Interface (DSI) 

  It provides a modular pluggable interface 
to data storage systems. 

  Conceptually, the DSI is very simple. 

  DSI consist of several function signatures 
and a set of semantics. 

  When a new DSI is created, programmer 
implements the functions to provide the 
semantics associated with them. 
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The Data Storage Interface (DSI) 

  The DSI author is not expected to know the 
intimate details involved in a GridFTP transfer.   

  There are a set of API functions provided that 
allow the DSI to interact with the server itself. 

  This API provides functions for reading and 
writing data to and from the network. 
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The Data Storage Interface (DSI) 

  DSI could be given significant functionality, such as 
caching, proxy, backend allocation, etc.. 

  DSIs can be loaded and switched at runtime. 

  When the GridFTP server requires action from 
the storage system (be it data, meta-data, 
directory creation, etc) it passes a request to 
the loaded DSI module.  

  The DSI then services that request and notifies 
the server when it is finished. 
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Developer Implemented Functions 
typedef struct globus_gfs_storage_iface_s 

{ 

    int                                 descriptor; 

    /* session initiating functions */ 

    globus_gfs_storage_init_t           init_func; 

    globus_gfs_storage_destroy_t        destroy_func; 

    /* transfer functions */ 

    globus_gfs_storage_transfer_t       list_func; 

    globus_gfs_storage_transfer_t       send_func; 

    globus_gfs_storage_transfer_t       recv_func; 

    globus_gfs_storage_trev_t           trev_func; 

    /* data conn funcs */ 

    globus_gfs_storage_data_t           active_func; 

    globus_gfs_storage_data_t           passive_func; 

    globus_gfs_storage_data_destroy_t   data_destroy_func; 

    globus_gfs_storage_command_t        command_func; 

    globus_gfs_storage_stat_t           stat_func; 

    globus_gfs_storage_set_cred_t       set_cred_func; 

    globus_gfs_storage_buffer_send_t    buffer_send_func; 

} globus_gfs_storage_iface_t; 
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Striped Data Transfer 
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Master and Slave DSI 
  If you wish to support striping, you will need two 

DSIs 

  The Master DSI will be in the control process or front 
end.  

  Usually, this is relatively trivial and involves minor 
processing and then “passing” the command over 
the IPC channel to the slave DSI 

  The slave DSI does the real work.  It typically 
implements the following functions: 
  send_func: This function is used to send data 

from the DSI to the server (get or RETR) 
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Master and Slave DSI 
  recv_func: This function is used to receive data 

from the server (put or STOR) 
  stat_func: This function performs a unix stat, 

i.e. it returns file info.  Used by the list function 
  command_func:  This function handles simple 

(succeed/fail or single line response) file system 
operations such as mkdir, site chmod, etc. 

  The master should implement all functions.  
Besides the above functions, it implements: 
  active_func:  This is for when the DSI will be 

doing a TCP connect.   
  The master figures out who gets what IP/port info and then 

passes it through.   
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Master and Slave DSI 

  passive_func: The counter-part to the 
active_func when the DSI will be the listener 

  list_func: This should be passed through and 
will handle LIST, NLST, MLST, etc.. 

  There are also some utility functions the 
master should implement: 
  trev_func: This handles the restart and 

performance markers, but should be a simple 
pass through 
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IPC Calls 

  These calls are how the master DSI “passes” 
the call to the slave DSI 

  These calls implement an internal protocol to 
transfer the necessary structures between the 
front end and the back end. 

  The IPC receiver receives the message and 
then invokes the appropriate DSI call.   
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Helper Functions that should be used 

  When implementing the DSI functions, the 
following helper functions should be called: 
  <function>_finished: This tells the server that a 

specific function (such as recv) has completed 

  register[read|write]: This is how file data is 
transferred between the DSI and the server. 

  bytes_written: This should be called anytime the 
DSI successfully completes a write to its own 
storage system.  This allows performance and 
restart markers to be generated. 
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Helper Functions that should be used 

  get_blocksize:  This indicates the buffer 
size that you should exchange with the 
server via the register_[read|write]. 

  get_[read|write]_range: This tells the DSI 
which data it should be sending. 
 This handles striping (this DSI only needs to 

send a portion of the file), and partial files. 
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Existing DSIs 

  DSIs do exist for: 
  File systems accessible via standard POSIX 

API 

  Storage Resource Broker (SRB) 

  High Performance Storage System (HPSS) 
and  

  NeST from the Condor team 



2 August 2005 DIALOGUE Workshop 21 

Summary 

  DSIs confer benefits to both the keepers of 
large datasets and the users of these 
datasets.  

  Dataset providers would gain a broader 
user base, because their data would be 
available to any client.  

  Dataset users would gain access to a 
broader range of storage systems and 
data. 


