
Globus Data Storage Interface
(DSI) - Enabling Easy Access to

Grid Datasets

Raj Kettimuthu, ANL and U. Chicago

DIALOGUE Workshop

August 2, 2005

2 August 2005 DIALOGUE Workshop 2

What is GridFTP?
  In Grid environments, access to distributed data is

very important
  Distributed scientific and engineering applications

require:
  Transfers of large amounts of data between storage

systems, and
  Access to large amounts of data by many geographically

distributed applications and users for analysis,
visualization etc

  GridFTP - a secure, robust, efficient, standards based
data transfer protocol

  Features
  Standard FTP get/put etc., Third-party control of data

transfer

2 August 2005 DIALOGUE Workshop 3

What is GridFTP?

  Grid Security Infrastructure and Kerberos support

  Parallel data transfer (multiple transport streams
between 2 network endpoints)

  Striped data transfer (1 or more transport streams
between m network endpoints on the sending side
and n network endpoints on the receiving side)

  Partial file transfer

  Manual/Automatic control of TCP buffer sizes

  Support for reliable and restartable data transfer

2 August 2005 DIALOGUE Workshop 4

New GT4 GridFTP Implementation

  NOT based on wuftpd

  Striping support has been added

  Has IPV6 support included (EPRT, EPSV)

  Extremely modular to allow integration with a
variety of data sources (files, mass stores,
etc.)

  Based on Globus eXtensible Input/Output
System (XIO)
  Simple OCRW API for byte-stream IO

2 August 2005 DIALOGUE Workshop 5

New Server Architecture
  GridFTP (and normal FTP) use (at least) two

separate socket connections:
  A control channel for carrying the commands and

responses
  A Data Channel for actually moving the data

  GridFTP (and normal FTP) has 3 distinct
components:
  Client and server protocol interpreters which handle

control channel protocol
  Data Transfer Process which handles the accessing

of actual data and its movement via the data
channel

2 August 2005 DIALOGUE Workshop 6

New Server Architecture

  Protocol Interpreter and Data Transfer Process
can be (optionally) completely separate
processes.

  A single protocol interpreter can have multiple
data transfer processes behind it.
  This is how a striped server works.

  Data Transfer Process is architecturally, 3
distinct pieces:
  Protocol handler, Data Storage Interface and

Data processing module

2 August 2005 DIALOGUE Workshop 7

New Server Architecture

  The protocol handler - talks to the network and
understands the data channel protocol

  The Data Storage Interface (DSI) - provides an
interface to data sources and sinks.

  The data processing module - provides ability
to manipulate the data prior to transmission.
  currently handled via the DSI

  In future we plan to make this a separate
module

2 August 2005 DIALOGUE Workshop 8

The Data Storage Interface (DSI)

  Number of storage systems in use by the
scientific and engineering community
  Distributed Parallel Storage System (DPSS)

  High Performance Storage System (HPSS)

  Distributed File System (DFS)

  Storage Resource Broker (SRB)

  HDF5

  Use incompatible protocols for accessing data
and require the use of their own clients

2 August 2005 DIALOGUE Workshop 9

The Data Storage Interface (DSI)

  It provides a modular pluggable interface
to data storage systems.

  Conceptually, the DSI is very simple.

  DSI consist of several function signatures
and a set of semantics.

  When a new DSI is created, programmer
implements the functions to provide the
semantics associated with them.

2 August 2005 DIALOGUE Workshop 10

The Data Storage Interface (DSI)

  The DSI author is not expected to know the
intimate details involved in a GridFTP transfer.

  There are a set of API functions provided that
allow the DSI to interact with the server itself.

  This API provides functions for reading and
writing data to and from the network.

2 August 2005 DIALOGUE Workshop 11

The Data Storage Interface (DSI)

  DSI could be given significant functionality, such as
caching, proxy, backend allocation, etc..

  DSIs can be loaded and switched at runtime.

  When the GridFTP server requires action from
the storage system (be it data, meta-data,
directory creation, etc) it passes a request to
the loaded DSI module.

  The DSI then services that request and notifies
the server when it is finished.

2 August 2005 DIALOGUE Workshop 12

Developer Implemented Functions
typedef struct globus_gfs_storage_iface_s

{

 int descriptor;

 /* session initiating functions */

 globus_gfs_storage_init_t init_func;

 globus_gfs_storage_destroy_t destroy_func;

 /* transfer functions */

 globus_gfs_storage_transfer_t list_func;

 globus_gfs_storage_transfer_t send_func;

 globus_gfs_storage_transfer_t recv_func;

 globus_gfs_storage_trev_t trev_func;

 /* data conn funcs */

 globus_gfs_storage_data_t active_func;

 globus_gfs_storage_data_t passive_func;

 globus_gfs_storage_data_destroy_t data_destroy_func;

 globus_gfs_storage_command_t command_func;

 globus_gfs_storage_stat_t stat_func;

 globus_gfs_storage_set_cred_t set_cred_func;

 globus_gfs_storage_buffer_send_t buffer_send_func;

} globus_gfs_storage_iface_t;

2 August 2005 DIALOGUE Workshop 13

Striped Data Transfer

FTP Client

Data
Channel

Protocol
Interpreter

Master
DSI

Data
Channel

Slave
DSI

IPC
Receiver

IPC Link

Master
DSI

Protocol
Interpreter

Data
Channel

IPC
Receiver

Slave
DSI

Data
Channel

IPC Link

2 August 2005 DIALOGUE Workshop 14

Master and Slave DSI
  If you wish to support striping, you will need two

DSIs

  The Master DSI will be in the control process or front
end.

  Usually, this is relatively trivial and involves minor
processing and then “passing” the command over
the IPC channel to the slave DSI

  The slave DSI does the real work. It typically
implements the following functions:
  send_func: This function is used to send data

from the DSI to the server (get or RETR)

2 August 2005 DIALOGUE Workshop 15

Master and Slave DSI
  recv_func: This function is used to receive data

from the server (put or STOR)
  stat_func: This function performs a unix stat,

i.e. it returns file info. Used by the list function
  command_func: This function handles simple

(succeed/fail or single line response) file system
operations such as mkdir, site chmod, etc.

  The master should implement all functions.
Besides the above functions, it implements:
  active_func: This is for when the DSI will be

doing a TCP connect.
  The master figures out who gets what IP/port info and then

passes it through.

2 August 2005 DIALOGUE Workshop 16

Master and Slave DSI

  passive_func: The counter-part to the
active_func when the DSI will be the listener

  list_func: This should be passed through and
will handle LIST, NLST, MLST, etc..

  There are also some utility functions the
master should implement:
  trev_func: This handles the restart and

performance markers, but should be a simple
pass through

2 August 2005 DIALOGUE Workshop 17

IPC Calls

  These calls are how the master DSI “passes”
the call to the slave DSI

  These calls implement an internal protocol to
transfer the necessary structures between the
front end and the back end.

  The IPC receiver receives the message and
then invokes the appropriate DSI call.

2 August 2005 DIALOGUE Workshop 18

Helper Functions that should be used

  When implementing the DSI functions, the
following helper functions should be called:
  <function>_finished: This tells the server that a

specific function (such as recv) has completed

  register[read|write]: This is how file data is
transferred between the DSI and the server.

  bytes_written: This should be called anytime the
DSI successfully completes a write to its own
storage system. This allows performance and
restart markers to be generated.

2 August 2005 DIALOGUE Workshop 19

Helper Functions that should be used

  get_blocksize: This indicates the buffer
size that you should exchange with the
server via the register_[read|write].

  get_[read|write]_range: This tells the DSI
which data it should be sending.
 This handles striping (this DSI only needs to

send a portion of the file), and partial files.

2 August 2005 DIALOGUE Workshop 20

Existing DSIs

  DSIs do exist for:
  File systems accessible via standard POSIX

API

  Storage Resource Broker (SRB)

  High Performance Storage System (HPSS)
and

  NeST from the Condor team

2 August 2005 DIALOGUE Workshop 21

Summary

  DSIs confer benefits to both the keepers of
large datasets and the users of these
datasets.

  Dataset providers would gain a broader
user base, because their data would be
available to any client.

  Dataset users would gain access to a
broader range of storage systems and
data.

