
1

S02: A Tutorial Introduction to
High Performance Data

Transport

November 16, 2003
SC 2003

Phoenix, AZ

2

William E. Allcock
Argonne National Laboratory

Robert Grossman
University of Illinois at Chicago &
Open Data Partners

Steve Wallace
Indiana University

3

Table of Contents

Ch. 1: Review of Current Transport Protocols. 4-49

Ch. 2: Striped TCP. 50-69

Ch. 3: Reliable UDP Protocols. 70-112

Ch. 4: Beyond TCP. 113-140

Ch. 5: Protocols for moving attribute based data. 141-193

Ch. 6: Data Transport and OGSA. 194-247

Presenter Profiles: 248-251

4

Chapter 1
Review of Current
Transport Protocols

Steve Wallace
Indiana University

5

Outline

1. Review of the TCP/IP stack
2. Overview of TCP
3. TCP performance issues
4. Improvements to TCP
5. Performance of current TCPs
6. Congestion avoidance
7. Overview of UDP
8. Examples of UDP
9. SQL Slammer’s use of UDP

6

Review of the TCP/IP Stack

Presentation

Application

Physical

Session

Transport

NETWORK
Data Link

! The Internet Protocol
(IP) is at the network
layer of the protocol
stack

! IP provides unique,
global addresses for
hosts

! Hosts are located with
their IP addresses

7

Format of an IP Address

! An IP address is 32 bits long and is usually written
in dotted decimal notation.

! Internet routing is based on the leftmost bits of the
destination IP address in a packet.

1 1 0 0 1 1 1 0
206 14

0 0 0 0 1 1 1 0
209

1 1 0 1 0 0 0 1
40

0 0 1 0 1 0 0 0
32 024 16 8

206 . 14 . 209 . 40

8

Transport Protocols

Presentation

Application

Physical

Session

Data Link

TRANSPORT
Network

! Actual conversations
between hosts use a
transport protocol on
top of IP

! These can be reliable
or unreliable, stream-
oriented or message-
oriented

! Most common are
TCP and UDP

9

IP and Transport Protocols

! The protocol field in the IP header specifies which
transport protocol is being used.

! This is an 8-bit field, so there are 256 possibilities.

! TCP is protocol 6, UDP is protocol 17.

PROTOCOL

TOSVersion LengthHLen

FlagsIdent

SourceAddr

DestinationAddr

ChecksumTTL

Offset

10

Port Numbers

!Both TCP and UDP headers include a 16-bit
port number.

!Network applications use “well-known”
port numbers (e.g., HTTP is on port 80).

!A conversation is identified by the
combination of IP address, protocol, and
port number on both the source and
destination hosts.

11

Common Port Assignments

FTP
SSH

SMTP
DNS
TFTP
HTTP

Service Protocol

TCP

UDP or TCP
UDP

TCP
TCP

TCP

21
22
25
53
69
80

Port Number

Transport Protocols for Common Services

12

Overview of TCP

!TCP provides a reliable, stream-oriented
connection between two hosts.

!What this means to applications:
– Reliable: The transport protocol will take care

of transmission and error detection itself.

– Stream-oriented: The data is read in the order it
was transmitted and has no “boundaries” other
than those imposed by the application itself.

13

Three-Way Handshake

! TCP connections
begin with a three-way
handshake.

! This means each TCP
connection takes three
round-trip times
(RTTs) to establish.

! This is the reason for
things like HTTP
“keep-alive”.

Client Server

SYN/ACK

ACK

SYN

Time

14

Sliding Window Algorithm

!The core of TCP is the sliding window
algorithm, which:
– Guarantees reliable delivery of data.
– Guarantees in-order delivery of data.
– Provides mechanisms for flow control.

!This works much better than “send, wait for
ACK, send, wait for ACK…” systems.

!Enhancements to TCP use the properties of
this algorithm to try to “keep the pipe full”.

15

The Send Window

! For the sending part of a connection on a host,
TCP maintains a buffer and three pointers:
– The index of the last byte acknowledged by the remote

host.
– The index of the last byte sent out on the network.
– The index of the last byte written to the buffer by the

application.

Written
Last Byte

Sent
Last Byte

TCP Send Window

Last Byte
Acknowledged

16

The Receive Window

! For the receiving part of a connection on a host,
TCP maintains another buffer and three pointers:
– The index of the last byte read by the application.

– The index of the next byte expected from the network
by TCP.

– The index of the last byte received from the network by
TCP.

Last Byte
Read

Last Byte
Received

Next Byte
Expected

TCP Receive Window

17

Out-of-Order Data

! When the receiver gets
out-of-order data:
– Anything not between

the next byte expected
and end of buffer is
discarded.

– Anything in between
them is kept, but
cannot yet be
acknowledged.

– We do send an ACK
for the existing data.

Last Byte
Read

Next Byte
Expected

Last Byte
Received

End of Buffer

Last Byte
Read

Next Byte
Expected End of Buffer

Last Byte
Received

Before Arrival of Out−of−Order Data

After Arrival of Out−of−Order Data

18

Out-of-Order Packets Cause
Duplicate ACKs

From Net To Net

3

From Net To Net

34 ACK 44

From Net To Net

36 ACK 44 6

From Net To Net

35 ACK 64 5 6

From Net To Net

35 654 ACK 6

Connection has progressed to packet 3.

Packet 4 arrives; receiver ACKs packet 4.

and ACKs packet 4 again (fast retransmit).
Packet 6 arrives out of order; receiver keeps i

Packet 5 arrives out of order; receiver
can now ACK packet 6.

Retransmission of packet 5 arrives; receiver
ACKs packet 6 again.

19

Advertised Windows

! The hosts in a TCP connection inform each other
of their currentreceive window size.

! This is theadvertised window field in the TCP
header; it is 16 bits wide.

SourcePort DestPort

ADVERTISED WINDOW
Acknowledgment

SequenceNum

Checksum UrgentPtr

HLen Flags0

20

Flow Control

!TCP implementsflow control by
maintaining invariants for the send and
receive windows.

!Applications block on aread of an empty
receive window, or awrite to a full send
window.

!The buffer size in the TCP stack does not
change during the connection.

21

Window Size

! The advertised window means, “You can send me
this many bytes before I hear from you again.”

! To keep the pipe full, we want this window to be
equal to thebandwidth-delay product (BT*RTT)

! Examples:
– 10 Mbps, 2 ms" 2.5 KB

– 155 Mbps, 30 ms" 567.6 KB

– 622 Mbps, 100 ms" 7.4 MB

22

Slow Start

!We can’t have the full window open when
we start a TCP connection.
– We don’tknow the end-to-end bandwidth.
– TCP/IP has no direct way oftelling us the

available bandwidth, which can change
anyway.

!We don’t want to start blasting 30 Mbps of
data onto a congested link that can’t handle
the additional traffic.

23

Illustration of Slow Start

! We start with a one-
packet window.

! When the packet is
ACKed, we double the
window to two
packets.

! Then to four packets,
and so on, until we
encounter loss or
reach the buffer size.

Time

...

24

Congestion Control

! All loss is attributed to network congestion.

! To avoid “unfriendly” behavior during congestion,
we multiplicatively decrease the window size.

! We reenter slow start briefly and thenadditively
increase the window size to recover.

Additive
Increase

Loss Occurs

Slow Start

Full Recovery

TIME

W
IN

D
O

W

Multiplicative
Decrease

25

…and much, much more

!TCP is a complex protocol.
– There are 12 states in the state diagram.

– The base RFC for TCP is 172 KB long.

!TCP has been the subject of research and
performance tuning for over 20 years.

!There are very few independent
implementation of TCP.

26

TCP Performance Issues

!For high-performance data transfer, TCP is
not a “fire and forget” protocol.

!There are a number of performance issues
with TCP, especially on high-latency
network connections.

!Many of this issues can be resolved with
proper end-system configuration.

27

“Congestion” Management

!We have seen that all loss in TCP is
attributed to network congestion.
– This has been true for most of the history of

TCP.

!Now we have high-capacity, uncongested
research networks that still have low-level
packet loss.
– This loss comes from cabling problems,

connectors, etc.

28

The Mathis Equation

! This equation states that TCPthroughput is
limited by:
– Themaximum segment size (the amount of data in a

single packet).

– Theinverse of theround-trip time.

– Theinverse of thesquare root of therate of packet
loss.

LossRTT

MSS
<Throughput

29

The Mathis Equation Illustrated

30

What Does This Mean?

!We can improve throughput withlarger
packets, lower latency, or lower packet loss.
– Larger packets require modifications to the

network.
• Over standard Ethernet, MSS is fixed at 1460 bytes.

– Latency on international optical data networks
is characterized by the speed of light.

– Some low-level packet loss is nearly inevitable.

!All three are hard, but the first is easiest.

31

Requirements for 10 Gbps Flows

!To maintain this rate, we can lose only one
packet every five hours.
– This isorders of magnitude less than our very

best wide-area data networks.

!Recovering from a single retransmission
takes around five minutes.

!The target window size with 100 ms latency
is around 120 MB.

32

Other Performance Issues

!The three-way handshake and slow start are
problematic for large numbers of brief TCP
sessions.
– This is the primary characteristic of Web

traffic.

!The default window size on many OSes is
too small for good performance.

!Some TCP implementations are
handicapped by having to copy TCP data
several times.

33

Improvements to TCP

!There are quite a few suggested
improvements to TCP.

!We will take a quick look at a few of them:
– Large MTU

– Large windows

– Faster startup

– SACK

– ETEN

34

Large MTU

!This is not actually an improvement to TCP
itself.

!Standard Ethernet frames are at most 1500
bytes long.
– This has remained constant as Ethernet has

gone from 10 Mbps all the way to 10 Gbps.

!A larger MTU allows for a larger MSS in
the Mathis equation and thus (in theory),
better throughput.

35

Large Windows

!Recall that the advertised window field in
the TCP header is only 16 bits wide.
– The TCP window is thus limited to 64 KB.

!RFC 1323 describes a TCP extension for
supporting larger windows.

!We interpret the window size in the header
as having been reduced by some factor.

36

Faster startup

!Modifying TCP slow start to have a slightly
larger initial window improves throughput
for brief connections.
– In other words, start with a 2- or 3- packet

windows instead of a 1-packet window.

!This can greatly improve performance for
applications which use many short-lived
connections.
– In other words, the web and web services.

37

SACK

!SACK stands forselective acknowledgment.

!With large windows, there may be multiple
packets lost within the window.
– Standard TCP with a cumulative ACK can only

inform the sender of one packet loss per RTT.

!We can do better by giving the sender a list
of missing segments.

!This is defined in RFC 2018.

38

D-SACK

!This is an RFC 2018-compatible extension
to SACK that uses SACK to report the
reception of duplicate contiguous segments
of data.
– This allows the sender to learn the order in

which packets are received.
– This information can be used to detect out-of-

order packet transmission, ACK loss, and
packet replication.

!This was made official in RFC 2883.

39

ETEN

!ETEN stands forExplicit Transport Error
Notification.

!Covers a variety of approaches:
– Forward or backward error notification

– Per-packet or cumulative error information

!Basic goal is to allow TCP to know what
loss is due to congestion and what loss is
due to the network itself.

40

Performance of Current TCPs

!We say “TCPs” because there are now a
number of research TCP stacks:
– TCP/Tahoe

– TCP/Reno

– TCP/NewReno

– TCP/Vegas

– And others…

!Each of these has different performance
characteristics.

41

Common Properties

!Performance tracks the Mathis equation
reasonably closely.

!Performance is characterized by the worst
hop in the connection.

!Considerable end-system tuning is needed
for best performance.

!Last-mile problems often dominate real-
world performance.

42

Congestion Avoidance

!We can maintain higher aggregate TCP
throughput if we are able to react to
network congestionbefore it happens and
causes us to lose many packets.

!Two main approaches:
– Host-based congestion prediction (TCP-Vegas)

– Router-based detection (RED)

!We will take a quick look at RED.

43

Random Early Detection

! Basic idea: Provide hosts withimplicit notice of
impending congestion by dropping a small number
packetsbefore the router queues are full.

Minimum
Threshold

Drop
Probability Maximum

Threshold

1.0

Average Queue Length

44

Issues with RED

!RED may cause routers to favor “excess”
UDP traffic over “excess” TCP traffic.
– Many UDP-based applications lack any sort of

congestion detection or control.

– The TCP traffic gets punished for being more
intelligent.

! It may be advisable to have different RED
thresholds for different types of traffic.

45

Overview of UDP

!UDP provides abest-effort, datagram-
oriented connection between two hosts.

!What this means to applications:
– Best-effort: Messages may be lost between the

source and destination, and the transport
protocol does not retransmit any data.

– Datagram-oriented: There is no order
associated with messages, and they may arrive
in any sequence.

46

UDP is Simple

! UDP adds onlyport numbers, length, and a
checksum to the IP header.

! Anything more than that is completely up to the
application in question.

! Needless to say, UDPis easy to implement.
(That’s why TFTP exists, for example.)

SourcePort DestPort
Length Checksum

47

Examples of UDP

!UDP is traditionally used for applications
with some special needs:
– Multicast

• connections don’t make sense

– Streaming audio and video
• reliable delivery isn’t necessary

– Brief, low-latency connections
• three-way handshake is time-consuming

– Protocol code that fits in a small amount of
memory

• TCP is complex and difficult to reimplement

48

UDP-based Applications

!Multicast uses UDP because it has to.
!Streaming audio and video use UDP

because some data loss is more acceptable
than retransmission delays.

!DNS uses UDP for most queries in order to
reduce response time and avoid creating
state for client connections.

!TFTP uses UDP because it is easy to
implement in limited space as a bootstrap
loader.

49

SQL Slammer’s Use of UDP

!The infamous “SQL Slammer” worm used
UDP as a transport protocol – why?
– The code for the worm fit entirely within a

single UDP datagram.

– This allowed one-way communication; no
return traffic of any kind was necessary.

– Using TCP would have required a transmission
path back to the infecting host.

– The infecting host could thus be anonymous.

50

Chapter 2
Striped TCP

Bill Allcock
Argonne National Laboratory

51

Definitions
! Logical Transfer

– The transfer of interest to the initiator, i.e. move file foo
from server A to server B.

! Network Endpoint
– In general something that has an IP address. A

Network Interface Card (NIC).

! Parallel Transfer
– Use of multiple TCP streams between a given pair of

network endpoints during a logical transfer

! Striped Transfer
– Use of multiple pairs of network endpoints during a

logical transfer.

52

What’s wrong with TCP?

!You probably wouldn’t be here if you didn’t
know that.

!TCP was designed for Telnet / Web like
applications.

! It was designed when T1 was a fast
network, big memory was 2MB, not 2 GB,
and a big file transfer was 100MB, not
100GB or even Terabytes.

53

AIMD and BWDP

!The primary problems are:
– Additive Increase Multiplicative Decrease

(AIMD) congestion control algorithm of TCP

– Requirement of having a buffer equal to the
Bandwidth Delay Product (BWDP)

– The interaction between those two.

– We use parallel and striped transfers to work
around these problems.

54

AIMD

!To the first order this algorithm:
– Exponentially increases the congestion window

(CWND) until it gets a congestion event

– Cuts the CWND in half

– Linearly increases the CWND until it reaches a
congestion event.

– This assumes that congestion is the limiting
factor

– Note that CWND size is equivalent to Max BW

55

BWDP
!Use a tank as an analogy

! I can keep putting water in until it is full.

!Then, I can only put in one gallon for each
gallon removed.

!You can calculate the volume of the tank by
taking the cross sectional area times the
height

!Think of the BW as the area and the RTT as
the length of the network pipe.

56

Recovery Time

MTU

BW*RTT

RTT
MTU

RTT*BW
2
1

TimeRecovery

RTT

MTU
RecoveryofRate

(BWDP)RTT*BW
2

1
RecovertoBytes

RecoveryofRate

RecovertoBytes
TimeRecovery

2

⇒∝

∝

∝

=

57

Recovery Time for a Single
Congestion Event

!T1 (1.544 Mbs) with 50ms RTT≅ 10 KB
– Recovery Time (1500 MTU): 0.16 Sec

!GigE with 50ms RTT≅ 6250 KB
– Recovery Time (1500 MTU): 104 Seconds

!GigE to Amsterdam (100ms)≅ 1250 KB
– Recovery Time (1500 MTU): 416 Seconds

!GigE to CERN (160ms)≅ 2000 KB
– Recovery Time (1500 MTU): 1066 Sec (17.8

min)

58

How does Parallel TCP Help?

!We are basically cheating…. I mean we are
taking advantage of loopholes in the system

!Reduces the severity of a congestion event

!Buffers are divided across streams so faster
recovery

!Probably get more than your fair share in
the router

59

Reduced Severity from
Congestion Events

!Don’t put all your eggs in one basket

!Normal TCP your BW Reduction is 50%
– 1000 Mbs * 50% = 500 Mbs Reduction

! In Parallel TCP BW Reduction is:
– Total BW / N Streams * 50%

– 1000 / 4 * 50% = 125 Mbs Reduction

!Note we are assuming only one stream
receives a congestion event

60

Faster Recovery from
Congestion Events

!Optimum TCP Buffer Size is now BWDP /
N where N is number of Streams

!Since Buffers are reduced in size by a factor
of 1/N so is the recovery time.

!This can also help work around host
limitations. If the maximum buffer size is
too small for max bandwidth, you can get
multiple smaller buffers.

61

More than your Fair Share

! This part is inferred, but we have no data with
which to back it up.

! Routers apply fair sharing algorithms to the
streams being processed.

! Since your logical transfer now has N streams, it is
getting N times the service it otherwise normally
would.

! I am told there are routers that can detect parallel
streams and will maintain your fair share, though I
have not run into one yet.

62

What about Striping?
! Typically used in a cluster with a shared file

system, but it can be a multi-homed host

! All the advantages of Parallel TCP

! Also get parallelism of CPUs, Disk subsystems,
buses, NICs, etc..

! You can, in certain circumstances, also get
parallelism of network paths

! This is a much more complicated implementation
and beyond the scope of what we are primarily
discussing here.

63

Nothing comes for free…

!As noted earlier, we are cheating.

!Congestion Control is there for a reason

!Buffer limitations may or may not be there
for a reason

!Other Netizens may ostracize you.

64

Congestion Control

!Congestion Control is in place for a reason.

! If every TCP application started using
parallel TCP, overall performance would
decrease and there would be the risk of
congestive network collapse.

!Note that in the face of no congestion
parallel streams does not help

! In the face of heavy congestion, it can
perform worse.

65

Buffer Limitations

!More often than not, the system limitations
are there because that is way it came out of
the box.

! It requires root privilege to change them.

!However, sometimes, they are there because
of real resource limitations of the host and
you risk crashing the host by over-
extending its resources.

66

Cheat enough, but not too much

! If your use of parallel TCP causes too many
problems you could find yourself in trouble.
– Admins get cranky when you crash their

machines

– Other users get cranky if you are hurting
overall network performance.

!Be a good Netizen

67

When should you use Parallel
TCP?

! Engineered, private, semi private, or very over
provisioned networks are good places to use
parallel TCP.

! Bulk data transport. It makes no sense at all to use
parallel TCP for most interactive apps.

! QOS: If you are guaranteed the bandwidth, use it
! Community Agreement: You are given permission

to hog the network.
! Lambda Switched Networks: You have your own

circuit, go nuts.

68

Affect of Parallel Streams
ANL to ISI (n=5)

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35

Number of Streams

B
an

d
w

id
th

(M
b

s) Notes:
1) Error bars represent +/- 1 standard deviation, n=5
2) Variance in the bandwidth decreases with number of streams

- More streams means lower impact per stream
- More streams to spread the lost packets over

3) Nearly linear climb followed by sharp knee is characteristic
- Where the knee is tends to depend on RTT and loss rate
- Higher RTT or Higher loss means more streams to reach the knee
- generally between 2 and 8, with 4 being a good rule of thumb
- As you can see, more streams is not always good.

69

Affect of TCP Buffer Size
(iperf)

0

100

200

300

400

500

600

0 2 4 6 8 10 12 14 16 18

Buffer Size (MB)

B
W

(M
b

s)

0

50

100

150

200

250

300

C
al

cu
la

te
d

R
T

T
(m

s)

1 2 4 8 RTT

70

Chapter 3
Reliable UDP Protocols

Robert Grossman
University of Illinois at Chicago &

Open Data Partners

Yunhong Gu
University of Illinois at Chicago

71

Chapter 3 Table of Contents

1. Background
2. Basic Idea for UDP Data / TCP Control

Protocols
3. Implementations
4. Case Study: SABUL/UDT Protocol
5. Case Study: SABUL/ UDT Experimental

Results
6. Summary

72

3.1 Introduction

73

The Problem
!Johnson’s Law is steeper than Moore Law

– i.e., cost of disk declining faster than cost of cpu’s

!All disk is quickly filled
!TCP simply not effective for many data

intensive applications
! We need something today– cannot wait for

new network infrastructure that some new
protocols require

! This is not just about“big data” but also about
working interactively with remote and
distributed data

74

Trans-Atlantic TCP Performance Poor

!Consider 1 Gbps Chicago to Amsterdam link
– 110ms RTT

!TCP with default settings
– 5Mbps using default 64KB buffer

!TCP with BDP window tuning:
– 30Mbps using turned 12MB buffer (=1Gbps*110ms)

!Parallel TCP
– 300Mbps

– 64 TCP concurrent flows, each using 12MB buffer.

75

Some Reasons for TCP’s Poor
Performance on High BDP Links

!Discover/recover slow on high BDP links
– Increase 1 packet per RTT
– Recovering on 10 Gb/s link can take minutes from

single re-transmitted packet

!Drastic multiplicative decrease in sending rate
!Fairness bias against high BDP flows
!Link error more common in high BDP links

which limits effective throughput via Mathis
Equation

76

Desirable Properties for High
Performance Data Transport Protocol

!Efficiency
– High utilization of the abundant bandwidth either

with single or multiplexed connections

!Fairness (intra-protocol fairness)

!Fair to both low and high BDP flows

! Friendly to TCP flows

! Easy to deploy
– ideally requires no change to network infrastructure

77

3.2 Basic Ideas
for UDP Data / TCP Control

Protocols

78

Separate Data and Control Channels

!Separate data and control channels
!Use UDP channel for data
!Use TCP channel for control - reliability,

congestion control, & flow control
!Rely on many years spent building good TCP

and UDP implementations

UDP Data Channel

TCP Control Channel

79

Advantages

!Fast - effective use of available bandwidth
– no striping required to fill 1 Gb/s links

!Easy to deploy since application level:
– no changes in routers
– no changes in operating systems

!Easy to use since no manual tuning of
windows required
– remember filling the BDP pipe with TCP

requires window tuning

80

Challenges

! Intra-protocol fairness must be established
for new protocols

!TCP-friendliness must be established for new
protocols
– UDP has caused problems in the past

!We know that TCP is not fair to flows with
high BDP

! Conservative community may not accept
new protocols

! Must develop stable implementations

81

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

800

900

1000

Time (s)

T
h

ro
u

g
h

p
u

t(
M

b
p

s
)

to S ta rLight, 40us RTT
to Canarie, 16ms RTT
to S ARA, 110ms RTT

UDP Data/ TCP Control Protocols
Can be Fast

OC-12 link1 Gb/s link

Experiments with
UDT over 1
Gbps & OC-12
links

82

0 10 20 30 40 50 60 70 80 90
0

10

30

50

70

90

T
h

ro
u

g
h

p
u

t(
M

b
p

s
)

0 10 20 30 40 50 60 70 80 90
0

100

300

500

700

900

Time (s)

T
h

ro
u

g
h

p
u

t(
M

b
p

s
)

Bandwidth = 100Mbps, RTT = 1ms

Bandwidth = 1Gbps, RTT = 100ms

UDP Data/ TCP Control Protocols
can Be Fair

10 concurrent UDT flows share 100Mbps and 1Gbps links

UDT simulation
results
demonstrating
intra-protocol
fairness

83

10
-2

10
-1

10
0

10
1

10
2

10
310

-2
10

-1
10

0
10

1
10

2
10

3
0

0.5

1

1.5

2

RTT (ms)Bandwidth (Mbps)

T
C

P
F

rie
n

d
lin

e
s

s
(T

C
P

w
/U

D
T

vs
.T

C
P

w
/T

C
P

)

UDP Data/ TCP Control Protocols
can Be Friendly to TCP Flows

TCP bandwidth share [a/b]: (a) with another TCP, (b) with a UDT flow

UDT simulation
demonstrating
TCP
friendliness

84

UDP Data/ TCP Control Protocols
Can Be Fair, Independent of BDP

10
-2

10
-1

10
0

10
1

10
2

10
3

10
-2

10
-1

10
0

10
1

10
2

10
3

60

70

80

90

100

RTT (ms)Bandwidth (Mbps)

B
a

n
d

w
id

th
U

til
iz

a
tio

n
(%

)

UDT simulation
demonstrating
high BDPs
flows are not
penalized.

85

0
20

40
60

80
100

0.001
0.01

0.1
1

10
100

1000
0

10

20

30

40

50

Time (s)RTT (ms)

T
h

ro
u

g
h

p
u

t(
M

b
p

s
)

UDP Data/ TCP Control Protocols
Can Be Fair, Independent of BDP

7 concurrent UDT flows with different RTTs sharing 100Mbps link

UDT simulation

86

3.3 Implementations of
UDP Data / TCP Control Protocols

87

Multiple Implementations Available

ANLYesNANot
stated

FOBS

UIC -
EVL

Yes680 Mb/sConstant
Rate

RPUDP

IUYes769 Mb/sConstant
Rate

Tsunami

UIC -
LAC

Yes940 Mb/sAIMDSABUL

Research
Group

Open
Source

iGrid 02
Performance

Rate
Control

88

3.4 Case Study
SABUL / UDT

89

SABUL & UDT

SABUL: Simple Available Bandwidth Utilization Library

UDP Data Channel

TCP Control Channel

UDP Data Channel

UDP Control Channel

! UDT: UDP based Data Transfer

90

SABUL/UDT Characteristics

!Reliable, UDP Data / UDP or TCP Control
Protocol

!Can be deployed at application level

!Fair and Friendly:
– intra-protocol fairness

– TCP friendliness

– and RTT independence.

! Implementation: Open source C++ library
available via Source Forge

91

Why Does UDT use a UDP
Control Channel?

!NO TCP connection required

!More flexible and can be implemented on
any connectionless packet switch network.

!Easier to develop friendly protocols that
effectively use bandwidth in all UDP
environments (not mixed UDP and TCP
flows)

92

SABUL Protocol Overview
!Uses both Rate Control (RC) and (window based)

Flow Control (FC)
– ConstantRC interval to remove RTT bias
– Employsbandwidth estimation

!Selective acknowledgement (ACK)
– Reduces control traffic & results in faster recovery

!Usespacket delay as well as packet loss to
indicate congestion

!Slow start
– controlled by FC

93

SABUL/UDT Acknowledgements
!Selective acknowledgement (ACK)

– Generated at every constant interval (same as
SYN) to send back largest continuously
received sequence number of data packets.

– The sender sends back an ACK2 to the
receiver for each ACK (sub-sequence/ack).

!Explicit negative acknowledgement (NAK)
– Generated as soon as loss is detected.
– Loss information may be resent if receiver has

not received the retransmission after some
increasing interval.

– Loss information is compressed in NAK.

94

SABUL/UDT Congestion Control

!Using both Rate Control and (window based)
Flow Control
– Rate control (RC): triggered at everyconstant

interval at sender side.
– Constant RC interval, or synchronization interval

(SYN): 0.01 seconds.
– Flow control (FC): triggered at each received ACK

at sender side.

!UDT is packet based protocol (NOT byte based).
– Packet has the same size as MTU.

95

Congestion Control (cont.)

!Packetdelay is detected and used as one of
the indications of congestion
– The delay increasing trend is detected by

variation of RTT at receiver side and sent back
with a special warning message. No more than 1
warning message is generated in 2 RTTs.

– Reduce loss.

– Reduce persistent queue size.

96

SABUL/UDT Rate Control

!Control theinter-packet time.

!AIMD:
– Increase parameter is related tolink capacity

and current sending rate

– Decrease factor is 1/9, but does not decrease for
all loss events

!Link capacity isprobed by packet pair,
which is sampled UDT data packets.

97

SABUL/UDT Flow Control

!Triggered when receiving an ACK.
!Limit the number of unacknowledged

packets (W).
!W = W*0.875 +AS*(RTT+SYN)*0.125
!AS is the packets arrival speed at receiver

side.
– The receiver records the packet arrival intervals.

AS is calculated from the average of latest 16
intervals after a median filter.

– It is carried back within ACK.

98

SABUL/UDT Slow Start
!Flow window starts at 2 and increases to the

number of acknowledged packets, until the
sender receives an NAK or a delay warning
message, when slow start ends.

!Slow start only occurs at the beginning of a
UDT session.

! Inter-packet time is 0 during slow start phase
and set to the packet arrival interval at the
end of the phase.

99

SABUL/UDT Performance

!Convergence: Discovers bandwidth and
reacts to congestion quickly

!Lightweight: low packet header and
computational overhead

!Avoids congestion collapse

!Selective acknowledgement means less
control traffic

!Robust to network changes

100

SABUL/UDT Fairness

! Intra-Protocol Fairness: All SABUL/UDT
flows should share similar bandwidth.

!TCP-Friendly: Shares bandwidth with TCP
in low BDP networks where TCP works fine;

!Leaves TCP enough space to increase in high
BDP links where TCP cannot fully utilize the
bandwidth.

! Independent of network delay.

101

UDT Arch.

Rate/Flow
Control

[1] Acknowledged data; [2] Sent but unacknowledged data; [3] Unsent data;
[4] Unwritten buffer; [5] Received and acknowledged data; [6] Received but unacknowledged data.

UDP Channel

DATA

Control

Flag | Seq.No | User Data

Flag | Type | Attr. | Control Info.

Application/Protocol Buffer

Loss List

[1] [2]

[3]

Seq. No. Window

Loss List

Protocol Buffer
[4] [6][5]

Application/Protocol Buffer

Loss List

[1] [2]

[3]

Seq. No. Window

Loss List

Protocol Buffer
[4] [6][5]

ACK Timer

NAK Timer

SYN Timer

EXP Timer

ACK Timer

NAK Timer

SYN Timer

EXP Timer# Pkt. Sending Timer

Pkt. Sending Timer

ReceiverSender

Sender
Receiver

102

3.5 SABUL/UDT
Experimental Results

103

Striped SABUL at iGrid 02

324

MB/s

GridFTP

2712.8
Mb/s

907.1
Mb/s

902.9
Mb/s

902.8
Mb/s

4.36
Mb/s

Striped
SABUL
Stream

SABUL
Stream 3

SABUL
Stream 2

SABUL
Stream 1

TCP
Stream

! Three node cluster in Chicago connected to
three node cluster in Amsterdam connected
with 10 Gb/s link and 110 ms RTT

104

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

0 10 20 30 40 50 60 70 80 90 100
320

322

324

326

328

330

Time (s)

T
h

ro
u

g
h

p
u

t(
M

b
p

s
)

to S tarLight, 40us RTT
to Canarie , 16ms RTT
to SARA, 110ms RTT

UDT Experimental Results
Demonstrating Intra-protocol Fairness

3 concurrent
UDT flows with
different RTTs
sharing 1Gbps

link

105

UDT Experimental Results
Demonstrating TCP Friendliness

0
20

40
60

80
100

UDT1

UDT2

TCP1

TCP2
100

150

200

250

300

350

400

Time (s)

T
h

ro
u

g
h

p
u

t(
M

b
p

s
)

2 TCP and 2 UDT flows coexist on 1Gbps link

106

UDT is TCP Friendly with 500
concurrent TCP flows

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

Number of UDT flows

T
C

P
T

h
ro

u
g

h
p

u
t(

M
b

p
s

)

500 TCP flows with different number of UDT backgrounds

107

3.6 Summary

108

Summary

!UDP Data / TCP Control protocols
– are effective even in high BDP links
– are fair to other UDP/TCP flows
– are friendly to TCP flows

!No change to existing routers or OS
required

!No manual tuning required

109

Summary (cont.)

!There are multiple implementations available

! There are preliminary plans to work on
common code releases

!Open source– No IP restrictions

!Community’s verdict still out

!Meanwhile, use something that works

110

For More Information

! UIC’s SABUL/UDT
–Web site: www.lac.uic.edu
–UDT source code on Source Forge
– www.sourceforge.net (Project Name: DataSpace)
– Linux, BSD and Unix implementations
– NS-2 simulation code available

! IU’s Tsunami
–Web site: www.anml.iu.edu/anmlresearch.html
– open source

111

References (1)
1. D. Katabi, M. Hardley, and C. Rohrs: Internet Congestion Control for Future High Bandwidth-Delay

Product Environments, ACM SIGCOMM 2002, Pittsburg, PA.

2. T. V. Lakshman and U. Madhow: The Performance of TCP/IP for Networks with High Bandwidth-Delay
Products and Random Loss. IEEE/ACM Trans. on Networking, vol. 5 no 3, July 1997, pp. 336-350.

3. Foster, C. Kesselman, S. Tuecke: The Anatomy of the Grid: Enabling Scalable Virtual Organizations.
International J. Supercomputer Applications, 15(3), 2001.

4. W. Feng and P. Tinnakornsrisuphap: The Failure of TCP in High-Performance Computational Grids, Proc.
of SuperComputing 2002.

5. H. Sivakumar, S. Bailey, R. L. Grossman: PSockets: The Case for Application-level Network Striping for
Data Intensive Applications using High Speed Wide Area Networks. Proc. of SuperComputing 2000.

6. B. Allcock, J. Bester, J. Bresnahan, A. L. Chervenak, I. Foster, C. Kesselman, S. Meder, V. Nefedova, D.
Quesnal, S. Tuecke: Data Management and Transfer in High Performance Computational Grid
Environments. Parallel Computing Journal, Vol. 28 (5), May 2002.

7. Hacker, T., Athey, B., and Noble, B.: The End-to-End Performance Effects of Parallel TCP Sockets on a
Lossy Wide-Area Network, Proceedings of the 16th IEEE-CS/ACM International Parallel and Distributed
Processing Symposium (IPDPS) 2001.

112

References (2)
8. D. Clark, M. Lambert, and L. Zhang: NETBLT: A high throughput transport protocol, SIGCOMM '87,

(Stowe, VT).

9. D. Cheriton: VMTP: A transport protocol for the next generation of communication systems, SIGCOMM
'87, (Stowe, VT).

10. Strayer, T., Dempsey, B., and Weaver A.: XTP – the Xpress Transfer Protocol. Addison-Wesley Publishing
Company, 1992.

11. H. Sivakumar, R. L. Grossman, M. Mazzucco, Y. Pan, and Q. Zhang: Simple Available Bandwidth
Utilization Library for High-Speed Wide Area Networks, Journal of Supercomputing, to appear.

12. T. Dunigan, M. Mathis and B. Tierney: A TCP Tuning Daemon, Proc. of IEEE SuperComputing 2002.

13. UDT source code. http://sourceforge.net/projects/dataspace/.

14. HighSpeed TCP. http://www.icir.org/floyd/hstcp.html.

15. Tsunami. http://www.anml.iu.edu/anmlresearch.html.

16. E. He, Leigh, J., Yu, O., and DeFanti T. A.: Reliable Blast UDP: Predictable High Performance Bulk Data
Transfer. IEEE Cluster Computing 2002, Chicago, IL, Sep. 2002.

17. P. Dickens: FOBS: A Lightweight Communication Protocol for Grid Computing. To Appear on Europar
2003.

18. FAST TCP. http://netlab.caltech.edu/fast.

113

Chapter 4
Beyond TCP

Steve Wallace
Indiana University

114

Outline

1. Conditions in R&E networks

2. Parallel / Striped TCP

3. Hybrid protocols

4. Special-case applications

5. Huge MTUs

6. Operating system support

7. What’s in the future?

115

Conditions in R&E Networks

!Different conditions prevail in research and
education networks than in the commodity
Internet.
– The networks are often running far below peak

capacity.
• Abilene’s busiest link is often around 700 Mbps of

data—on an OC-192 circuit.

– Data transfer is seldom billed “by the byte”.

– The challenge is trying to use more of the pipe,
not trying to force application to fit in it.

116

What This Means for TCP

!Recall from Chapter 1 that TCP attributes
packet loss to congestion.

!Uncongested R&E networks have
unavoidable low-level packet loss due to
equipment and cabling.
– This causes TCP congestion control to kick in.
– Throughput collapses.

!The ultra-low levels of packet loss
necessary to support 10 Gbps TCP transfers
cannot be achieved with current technology.

117

Recall the Mathis Equation

! For any single TCP stream, we can improve
performance by:
– Increasing themaximum segment size.

– Decreasing theround-trip time.

– Decreasing therate of packet loss.

! …Or we can try something other than a single
TCP stream.

LossRTT

MSS
<Throughput

118

Parallel / Striped TCP

! Instead of a single TCP stream, run a
number of TCP streams in parallel.

!Although each stream is susceptible to the
problems we’ve explored, at any point in
time, most of the streams should be doing
fine.

!For example, bbFTP and some popular
peer-to-peer file sharing applications take
this approach.

119

Advantages of Parallel TCP

!Easy to implement
– No protocol or OS changes are necessary; the

implementation can lie entirely in user space.

!Uses a well-understood transport protocol.
– The behavior of one of the individual TCP

streams will be fairly predicable.

!Can be used by degree.
– Easy to go from 2 streams to 3, or 4, or …

120

Disadvantages of Parallel TCP

! Concerns about fairness.
– 1,000 concurrent TCP streams generally have 1,000

times as many “votes” as a single stream.

! Greater overhead on end systems.
– Large TCP windows for each connection and possibly

many context switches and disk seeks.

! Every session may collapse simultaneously.
– 1500 bytes is 1µs at 10 Gbps rates.

– An event that causes loss can easily last enough to
affect multiple streams.

121

Hybrid Protocols

!Recall that UDP is much simpler than TCP.
– No flow control.

– No automatic retransmissions.

– No congestion control.

!Except for the addition of port numbers and
a checksum, UDP is just raw IP packets.

!UDP is not sensitive to the restrictions of
the Mathis equation, just the IP stack itself.

122

Why Not Pure UDP?

! If UDP doesn’t share these constraints, why
not base more data transport applications on
UDP?
– Transmitting data reliably with IP requires

administrative overhead: that’s TCP.
– Transmitting data reliably with UDP thus

requires administrative overhead as well.

!We don’t want to throw away TCP and its
20 years of experience and tuning.

123

UDP Data / TCP Control

!Solution: Combine UDP and TCP into a
single transport protocol.
– Use UDP for the (high-bandwidth)application

data.

– Use TCP for the (low-bandwidth)control data.

!UDP carries the payload and TCP carries
error feedback, acknowledgements,
retransmission requests, etc.

124

Hybrid Examples

!SABUL (Grossman, et. al.)

!Tsunami (Wallace, et. al.)

Both of these use the model of a high-speed
UDP flow managed by information
exchanged on a low-speed TCP flow.

125

Special-Case Applications

!UDP and TCP offer two different transport
models for applications:
– Best-effort and message-oriented

– Reliable and stream-oriented

!What about other possibilities?
– Best-effort and stream-oriented

– Reliable and message-oriented

!Are these categories of meaning or value?

126

Best-Effort and Stream-Oriented

!This is easy to simulate with UDP and an
extended packet header.

!Think of multicast applications, streaming
audio and video data, and so forth…

127

Reliable and Message-Oriented

!Consider the properties of a file transfer
from disk to disk:
– The size of the file is known in advance.
– The file is easily divided into blocks.
– Each end host has random access to any part of

the file.

!So out-of-order delivery is irrelevant if the
blocks are tagged with their sequence
number – we don’tneed a stream!

!Can be simulated with a hybrid protocol.

128

Huge MTUs

! As Ethernet speed has improved, the maximal
packet size has not increased.

! The chart below shows the length of the MTU in
transmission time and what the MTUwould be if
it had scaled with speed.

ms1.2

ms0.12

us12

1.2 us

1500−byte Transmission Time

Mbps10

Mbps100

1 Gbps

10 Gbps

Ethernet Speed

KB15

KB1.5

KB150

MB1.5

MTU with Scaling

129

Advantages of a Larger MTU

!We get higher maximum throughput,
according to the Mathis equation.

!We devote a smaller proportion of our
bandwidth to packet and frame headers.

!We use less CPU time in processing the
same amount of application data.

!We reduce the number of interrupts
generated by incoming packets.

130

Disadvantages of a Larger MTU

! Requires support at every hop between the end
hosts.

! Larger packets require more (expensive) buffer
memory in routers.
– If MTU had scaled, a 10-packet queue on a 10-Gbps

interface is 15 MB!

! Jitter increases as packets are longer in duration.

! If errors are randomly distributed point events,
each packet is more likely to hit one in proportion
to its size.

131

Support for Large MTUs

!Ethernet jumbo frames: 9,000 bytes

! IPv4 packet size limit: 65,536 bytes

! IPv6 includes, as part of the standard,
support for “ jumbograms”
– Jumbograms can be up to 4 GB in size.

132

Operating System Support

!Most modern Unix/Unix-like systems
support large windows and SACK.

!Windows 95 (without Winsock 2) and
Windows NT 4.0 do not support large
windows and SACK.

!Windows 98, 2000, and XP include SACK
support—and large windows, if you edit the
registry.

133

What’ s in the Future?

!We can only speculate.

!Nevertheless, there are new ideas and trends
that it would be a good idea to keep an eye
on...

134

Storage-Conscious Transport
Protocols

!The most difficult part of tuning a high-
performance, high-volume transport
protocol is the interaction between the
network and disk subsystems in the OS.

!Look for transport protocols that are
conscious of this interplay and optimized
for disk-to-disk data transfers.

135

More Self-Tuning

!Today, getting good transport protocol
performance depends on tuning the end
systems.

!This task can demand considerable
expertise in what may be an unrelated field.

!Expect to see a trend toward more
intelligent, “ self-tuning” network stacks.

136

Divergence of Transport Protocols

!The R&E networking world and the
commodity networking world are becoming
increasingly different.

!Moving 10,000 TB of high-energy physics
data is not a common application of the
commodity Internet.

!Expect to see transport protocols
appropriate only for use on R&E-type
networks.

137

Connection Retermination and
Hop Elimination

!Some applications can get better throughput
by terminating a TCP connection at a
“network coupler” at some point within the
network.

!We can’ t propagate signals faster than c,
but we can get closer by eliminating hops.
– This is a central idea of “lambda networking” .

138

The Possible End of AIMD

!AIMD is the TCP-like behavior of additive
increase, multiplicative decrease of window
size in response to congestion.

!We have seen that the “AI” part can lead to
very long recovery times.

!Expect to see transport protocols that use
MIMD (or some logarithmic intermediary).

139

Composable Protocol Fragments

!Future transport protocols may not be a
monolithic entity like TCP.

! Imagine constructing a transport protocol
appropriate to your particular application by
composing “protocol fragments” that
implement different features.

140

Lambda Networking

!Meaning of the term in the context of R&E
Networks

!Current implementations

!Coordination occurring internationally

!Currently developing more precise
definitions

141

Chapter 5
Protocols for Moving Attribute

Based Data

Robert Grossman
University of Illinois at Chicago

Open Data Partners

Yunhong Gu
University of Illinois at Chicago

142

Chapter 5 Table of Contents

1. Background

2. Web Services & SOAP/XML

3. Case Study: Web Services for Data using
DSTP

4. High Performance Web Services

5. Case Study: High Performance Web
Services for Data using Open DMIX

6. Summary

143

5.1 Introduction

144

What is the Problem?

! Data is different than bits
! Data has attributes, data has metadata, data

has keys, data can be merged, etc.

! By using specialized protocols for accessing
& integrating data, data intensive
applications can be built more easily

! With these protocols, distributed data
mining applications are also easier to build

145

Central Role of Web Services

! Web services have emerged as the underlying
infrastructure for a number of different
distributed middleware platforms.

! Natural to develop high performance web
services for data and to integrate web services
and grid services

Web Services

K. Grids Data Webs Semantic WebData Grids

High Perf. WS OGSA/DAI

146

Basic Idea - Layers

! diverse global applications
! few core services

global
applications

local operating
system

UDDI

WSDL

SOAP

TCP

IP
web service
application

core services

147

Observe Current Web Services do not
Scale to Large Data Sets

Discovery UDDI

Description WSDL

Packaging XML

Transport SOAP/HTTP

Network Protocol TCP

These layers have
trouble scaling for
large data sets and
for data over links
with high BDPs

148

5.2 Web Services &
SOAP/XML

149

Web Services Definition

“A Web service is a software application
identified by a URI, whose interfaces and bindings
are capable of being defined, described, and
discovered as XML artifacts. A Web service
supports direct interactions with other software
agents using XML based messages exchanged via
internet-based protocols.”

- www.w3.org

150

Service Based Architecture

! Platform independent software component published
via a directory or registry by a service provider

! Distributed computing paradigm that differs from
DCE, CORBA, & Java RMI by exploiting internet
protocols & XML

Service
Provider

Service
Requestor

Discover Publish

Bind

Registry

151

Web Service Elements

!UDDI: Discover and locate the web services
– Universal Description, Discovery and Integration:

!WSDL - Describe the web services
– Web Services Description Language

!XML - Package data

!SOAP - invoke the web services

!TCP - transport the query and request

! IP – relies on IP’s unique, global addresses

152

HTTP,
SMTP, … 1

2
3

4

4. Invoke Service: Using the WSDL of
the service, construct the soap
messages and invoke the service on
the provider

5.XML parameter data and
response data are exchanged
in SOAP

5

3. Retrieve Service Description:
The requester get the WSDL of the
service from the provider using
SOAP messages

1. Service Registration: provider
formatted information according to
service WSDL, uses SOAP invoke the
UDDI register service and puts an
entry in UDDI database

2. Service Discovery: Requester
uses SOAP to send a query and
invoke the UDDI discovery service
to get the location of the service
WSDL

Web Service Conversation

Source: Based in part on material
from Isabel Cruz

Service
Requestor

Service
Provider

Registry

153

Web Services Provide a Framework
for Variety of Data Protocols
Discovery UDDI

Description WSDL

Packaging XML

Transport SOAP/HTTP

Network Protocol TCP

1. SOAP/XML

2. DSTP*

3. OGSA DAI**

* DSTP is compliant with web services and OGSA

** DAI is data access and integration

154

Web Services: A Better RPC
Architecture

!Compared with other distributed computing
platforms (CORBA, DCOM, and Java RMI) web
services are:
− Loosely coupled & can be invoked at run time
− Communication endpoints can be URLs
− Text based SOAP is wire protocol
− XML used for payload

!Many consider to be easier to deploy and more
flexible.

155

SOAP

! XML messaging provides an application and
platform independent means of sharing data

! SOAP is a good mechanism for sending XML
messages

! Focus to date is on using SOAP for sending
XML-RPCs over HTTP

!SOAP messages consists of
– SOAP envelope
– SOAP header
– SOAP body

156

XML Messaging

! XML good for metadata

! XML good for small data

XML-RPC

SOAP

HTTP Post/Get

157

Example: Google SOAP
XML Query

<SOAP-ENV:Envelope
xmlns:SOAPENV="http://schemas.xmlsoap.org/... >

<SOAP-ENV:Body>
<ns1:doGoogleSearch xmlns:ns1="urn:GoogleSearch" … ">
<key xsi:type="xsd:string">XXXXXXXXXXXX</key>
<q xsi:type="xsd:string">data </q>
<start xsi:type="xsd:int">0</start>
<maxResults xsi:type="xsd:int">10</maxResults>
<filter xsi:type="xsd:boolean">true</filter>
…
</ns1:doGoogleSearch>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

data

158

Example: Google SOAP
XML Response

<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope xmlns:SOAP-

ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/1999/XMLSchema">

<SOAP-ENV:Body>
<ns1:doGoogleSearchResponse xmlns:ns1="urn:GoogleSearch" SOAP-

ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<return xsi:type="ns1:GoogleSearchResult">
<documentFiltering xsi:type="xsd:boolean">true</documentFiltering>
<estimatedTotalResultsCount

xsi:type="xsd:int">32</estimatedTotalResultsCount>
…
<searchTime xsi:type="xsd:double">0.124633</searchTime>
<resultElements xmlns:ns3="http://schemas.xmlsoap.org/soap/encoding/"

xsi:type="ns3:Array" ns3:arrayType="ns1:ResultElement[10]">
<item xsi:type="ns1:ResultElement">
…

159

5.3 Case Study – Web Services for
Data Using the DataSpace
Transfer Protocol (DSTP)

160

Data Space Transfer Protocol (DSTP)
!Designed to

– Simplify working with remote data

– Simplify working with distributed data

!Views data as geographically distributed
collection of keys & attributes

!Works with data in
– flat files

– databases

– proprietary formats (HDF, PDB data, etc.)

!Compliant with W3C web services & OGSA

161

DSTP: Key Concepts

!DataSpace - data distributed over a global
computational grid or web

!Data organized into records with attributes

!Support for data & metadata

!Data can be integrated using distributed keys
– Universal correlation keys - UCKs k[i]

– correlate data (k[i], x[i]) on one server

– with data (k[j], y[j]) on another server

162

Key DSTP Services

1. Data & metadata access (DSTP, SQL)
– using XML metadata, range queries & sampling

2. Data transport (DSTP)
– DSTP and XML/SOAP

3. Data integration by universal key
– globally unique UCKs for joining distributed data

4. Data analysis and mining (PMML)
– using algorithms for clustering, regression, etc.

163

1. DSTP Selects & Accesses Data

DSTP selects data:

• metadata browsing

•selecting attributes

• range queries on records

• SQL queries

• sampling …

164

2. DSTP Transports Data
! DSTP servers support:

– XML/SOAP services for transporting metadata &
small data sets

– streaming data transport services for data sets and
their subsets

! Larger data and more complex data sets need
specialized transport mechanisms as we will see
in the next section

165

3. DSTP Integrates Data

!Each attribute x[j] is associated with a
(distributed) key k[i]

!Each k[i] is associated with a GUID

!Two distributed attributes x[i] and y[j]
which share the same k[i] can be integrated
by the DSTP servers

!Works well in practice – much simpler than
ontologies

166

UCKs Join Distributed Attributes

k[i], x[i]

k[j], x[j]

x[i], y[i]

join use k[i]’ s GUIDs

167

4. DSTP Supports Templated Data
Mining Operations

! PMML is an XML mark up language for
statistical and data mining models

! PMML has models for clustering,
regression, association rules, neural
networks, etc.

! DSTP requests can execute PMML
supported data mining queries

! DSTP is not designed to support arbitrary
grid like computations

168

Outline of Sample DSTP Session

! Use UDDI to discover DSTP server
containing appropriate data

! DSTP client connects to DSTP server

! retrieve data set XML metadata using TCP

! select data set

! retrieve attribute metadata using TCP

! retrieve 25 columns of data and 20% subset of
rows using SABUL/UDT

169

Exploring Data with DSTP

170

DSTP Supports Metadata

171

Browse or Download Data

172

Graph Data

173

Graphing Data (cont’d)

174

Execute Templated
Data Mining Operations

El Nino Data at NCAR Cholera Data at WHO

175

5.4 High Performance
Web Services

176

How to Scale Web Services?

Discovery UDDI

Description WSDL

Packaging XML

Transport SOAP/HTTP

Network Protocol TCP

1. Standard web
services using
XML/SOAP/TCP

2. What should
replace
XML/SOAP/TCP?

177

Performance Issues with
SOAP/XML

!SOAP/XML cannot transport binary data
directly
– Low efficiency for format conversion

– Increased data size in ASCII format

– Data may be encrypted and is not expected to be
exposed to others

!Transport layer inefficiency
– TCP is poor for bulk data transfer over long haul

links

178

Three Methods to Scale
SOAP/XML

1. Modify SOAP to include support for binary
data
– Direct Internet Message Encapsulation (DIME)

– Not a standard now.

– Does not solve the TCP inefficiency problem

2. Send data as MIME attachment
– Header overhead/inconvenience/memory

allocation problem/complexity

179

Three Methods to Scale SOAP/XML

3. Use SOAP for control and a separate channel
for data
– Pros:

• Support multiple transport methods

• Fast

• Can use regular transport method if the
negotiation to start a binary data channel fails

– Cons:

• Incompatibility with existing standard

180

High Performance Web Services
using “SOAP+”

!Data can be in “streaming formats” in
addition to XML

!Separate control and data channels:
– Commands, control information, and metadata

are transferred using SOAP/TCP.

– Data can also be sent using a high performance
data transport protocols over a separate channel

181

Streaming Formats for Data

!Compressed XML

!X-Scan: Process XML of the incoming data
streams in real time

!SMIL: Synchronized Multimedia
Integration Language

!DSTP: DataSpace Transfer Protocol (DSTP)

182

5.5 Case Study – High
Performance Web Services for

Data Using Open DMIX

183

Scaling Web Services with SOAP+

Discovery UDDI

Description WSDL

Packaging XML

Transport SOAP/HTTP

Network Protocol TCP

1. Standard web
services using
XML/SOAP/TCP

2. High performance
web services using
SOAP+

184

Open DMIX

!Standards based web services for data mining,
data integration and data exploration

! Use SOAP/XML for control channel and
small data

! Uses “SOAP+” for large data
– streaming formats such as compressed XML or

DSTP
– high performance data transport such as

SABUL/UDT
! Open source implementations available on

Source Forge

185

Experimental Study 1
Using Open DMIX

!Web service request for geospatial data
service in Amsterdam from a client in
Chicago
– < 5Mbps on a regular SOAP/XML/TCP

architecture

– 600Mbps (limited by disk write speed) on
SOAP+ (TCP control; UDT data in DSTP
format)

186

Experimental Study 2
Using Open DMIX

! medium data set - 10 million rows of data

! 320 MB

! Chicago to Amsterdam (110 ms RTT)

302 sec163 secRange query

634 sec81 secSelect *

SOAP/XMLSOAP+/DSTP

187

Experimental Study 3
Using Open DMIX

! Merge two data streams in real time by their UCKs

! 1 Gb/s link, 110 ms RTT

! Goal: process data at line speed by best effort algorithm

670713310000

655792010000

630821010000

60092210000

Speed (Mbps)Match (%)Random (%)window size
(records)

188

5.6 Summary & Conclusion

189

Summary

! More research is required to develop
effective protocols and services for data
grids, data webs & data mining grids

!We need high performance protocols both to
– move files of bits and

– collections of data records with attributes

! Web services emerging as common
framework for several different approaches

190

Summary (cont’d)

!Active research with open source
implementations for:
– SOAP/XML
– OGSA DAI
– Open DMIX

! Initial work on developing high performance
web services
– SOAP for control and metadata
– Use separate high performance data channel

191

For More Information

!LAC web site:
– http://www.lac.uic.edu

!DataSpace Software
– http://sourceforge.net/projects/dataspace

192

References
1. Robert Grossman, and Marco Mazzucco, DataSpace - A Web Infrastructure for the Exploratory Analysis and

Mining of Data, IEEE Computing in Science and Engineering, July/August, 2002, pages, 44-51.
2. Web Service. http://www.w3.org/2002/ws/
3. Kenneth Chiu, Madhusudhan Govindaraju, Randall Bramley, Investigating the Limits of SOAP Performance

for Scientific Computing, Indiana University. Accepted for publication in the Proceedings of HPDC 2002.
4. Simple Object Access Protocol. http://www.w3.org/TR/SOAP/.
5. R. L. Grossman, Y. Gu, D. Hanley, X. Hong, D. Lillethun, J. Levera, J. Mambretti, M. Mazzucco, and J.

Weinberger, Experimental Studies Using Photonic Data Services at IGrid 2002, FGCS, 2003.
6. Marco Mazzucco, Asvin Ananthanarayan, Robert L. Grossman, Jorge Levera, and Gokulnath Bhagavantha

Rao, Merging Multiple Data Streams on Common Keys over High Performance Networks, Proceedings of
Supercomputing 2002, IEEE and ACM.

7. Robert van Engelen, Pushing the SOAP Envelop With Web Services for Scientific Computing, ICWS03.
8. Semantic Web. http://www.w3.org/2001/sw/.
9. Open Grid Service Architecture. http://www.globus.org/ogsa/.
10. Vijayshanker Raman, Inderpal Narang, Chris Crone, Laura Haas, Susan Malaika, Tina Mukai, Dan Wolfson

and Chaitan Baru. Data Access and Management Services on Grid. www.cs.man.ac.uk/grid-
db/papers/dams.pdf.

11. Hongsuda Tangmunarunkit, Stefan Decker, Carl Kesselman (University of Southern California): Ontology-
based Resource Matching - The Grid meets the Semantic Web.
http://www.isi.edu/~stefan/SemPGRID/proceedings/7.pdf.

193

References (cont.)
12. Shu-Ching Chen, Chengcui Zhang, Sheng-Tun Li, Hung-Chi Chen, Mei-Ling Shyu: Streaming SMIL

Presentations via a Multimedia Semantic Model. JCIS 2002: 919-922.
13. A. Szalay, J. Gray, A. Thakar, P. Kuntz, T. Malik, J. Raddick, C. Stoughton. J. Vandenberg,“The

SDSS SkyServer – Public Access to the Sloan Digital Sky Server Data,” ACM SIGMOD 2002, MSR
TR 2001 104.

14. “TerraService.NET: An Introduction to Web Services ,” Tom Barclay, Jim Gray, Eric Strand, Steve
Ekblad, Jeffrey Richter, MSR TR 2002-53, pp 13, June 2002 .

15. Z. Ives, A. Levy, and D. Weld. Efficient evaluation of regular path expressions on streaming XML
data. Univ. of Washington Tech. Rep. CSE000502.

194

Chapter 6
Data Transport and OGSA

William (Bill) E. Allcock

Argonne National Laboratory

195

A Story of Evolution
! The concept of Grid Computing has been around

since the 1960s
! Definition of Grid problem has been stable since

original Globus Project proposal in 1995
– Though we’ve gotten better at articulating it

! But the approach to its solution has evolved:
– From APIs and custom protocols…
– to standard protocols…
– to Grid services (OGSA).

! Driven by experience implementing and deploying
the Globus Toolkit, and building real applications
with it

196

But Along The Way…

!Heterogeneous protocol base was hurting us

! Increasing number of virtual services that
needed to be managed

!Moore’s Law had time to work

!Network speeds increasing faster than
Moore’ s Law

!Web services (WSDL, SOAP) appeared

197

Web Services

! At the heart of Web services is:
– WSDL: Language for defining abstract service

interfaces

– SOAP (and friends): Binding from WSDL to bytes on
the wire

! Web services appears to offer a fighting chance at
ubiquity (unlike CORBA)

! But Web services does not go far enough to serve
a common base for the Grid…

198

Transient Service Instances
! “Web services” address discovery & invocation of

persistent services
– Interface to persistent state of entire enterprise

! In Grids, must also support transient service instances,
created/destroyed dynamically
– Interfaces to the states of distributed activities
– E.g. workflow, video conf., dist. data analysis, subscription

! Significant implications for how services are managed,
named, discovered, and used
– In fact, much of Grid is concerned with the management of

service instances

199

Standard Interfaces & Behaviors:
! Naming and bindings

– Every service instance has a unique name, from which
can discover supported bindings

! Lifecycle
– Service instances created by factories
– Destroyed explicitly or via soft state

! Information model
– Service data associated with Grid service instances,

operations for accessing this info
– Basis for service introspection, monitoring, discovery

! Notification
– Interfaces for registering existence, and delivering

notifications of changes to service data

200

OGSI Grid Service
Specification

!Defines WSDL conventions and GSDL
extensions
– For describing and structuring services
– Working with W3C WSDL working group to drive

GSDL extensions into WSDL

!Defines fundamental interfaces (using WSDL)
and behaviors that define a Grid Service
– A unifying framework for interoperability &

establishment of total system properties

201

GT2 Evolution To GT3

! What happened to the GT2 key protocols?
– Security: Adapting X.509 proxy certs to integrate with

emerging WS standards
– GRIP/LDAP: Abstractions integrated into OGSI as

serviceData
– GRAM: ManagedJobFactory and related service

definitions
– GridFTP: Unchanged in 3.0, but will evolve into OGSI-

compliant service in 2004

! Also rendering collective services in terms of
OGSI: RFT, RLS, etc.

202

GT-OGSA Grid Service Infrastructure

OGSI Spec Implementation Security Infrastructure

System-Level Services

Base Services

User-Defined Services

Grid Service Container

Hosting Environment

Web Service Engine

203

OGSI Core

204

The Specification Defines how Entities can Create,
Discover and Interact with a Grid Service

Service
data

element

Service
data

element

Service
data

element

Service Implementation

GridService
(required) … other interfaces …

(optional) Optional:
- Service creation
- Notification
- Registration
- Service Groups

+ application-
specific interfaces

Required:
- Introspection
(service data)

- Explicit destruction
- Soft-state lifetime

GT3 Core:
OGSI Specification

Includes 0 or more Grid Service Handles (GSHs)
Includes 0 or more Grid Service References (GSRs)

Service locator

205

GT3 Core:
OGSI Implementation

!GT3 includes a set of primitives that implement
the interfaces and behaviors defined in the latest
version of the OGSI Specification

!The implementation supports a declarative
programming model in which GT3 users can
compose OGSI-Compliant grid services by
plugging the desired primitives into their
implementation

206

GT3 Core:
OGSI Specification (cont.)

GridService portType

!Defines the fundamental behavior of a
Grid Service
– Introspection

– Discovery

– Soft State Lifetime Management

!Mandated by the Spec

207

GT3 Core:
OGSI Specification (cont.)

Factory portType

!Factories create services

!Factories are typically persistent services

!Factory is an optional OGSI interface

(Grid Services can also be instantiated by other
mechanisms)

208

GT3 Core:
OGSI Specification (cont.)

Notification portTypes

!A subscription for notification causes the
creation of a NotificationSubscription service

!NotificationSinks are not required to implement
the GridService portType

!Notifications can be set on Service Data
Elements

!Notification portTypes are optional

209

GT3 Core:
OGSI Specification (cont.)

Service group portTypes

! A ServiceGroup is a grid service that maintains
information about a group of other grid services

! The classic registry model can be implemented with the
ServiceGroup portTypes

! A grid service can belong to more than one ServiceGroup

! Members of a ServiceGroup can be heterogeneous or
homogenous

! Each entry in a service group can be represented as its
own service

! Service group portTypes are optional OGSI interfaces

210

GT3 Core:
OGSI Specification (cont.)

HandleResolver portType

! Defines a means for resolving a GSH (Grid Service
Handle) to a GSR (Grid Service Reference)
– A GSH points to a Grid Service

(GT3 uses a hostname-based GSH scheme)

– A GSR specifies how to communicate with the Grid Service
(GT3 currently supports SOAP over HTTP, so GSRs are in WSDL

format)

! HandleResolver is an optional OGSI interface

211

Client

A Service
Creation Scenario*

Registry

* The scenarios in this presentation are offered as examples and are not prescriptive

1. From a known
registry, the client
discovers a factory
by querying the
Service data of the
registry

212

Client

A Service
Creation Scenario

Registry

2. The client calls the
createService
operation on the
factory

Factory

1. From a known
registry, the client
discovers a factory
by querying the
Service data of the
registry

213

Client

A Service
Creation Scenario

Registry

1. From a known
registry, the client
discovers a factory
by querying the
Service data of the
registry

2. The client calls the
createService
operation on the
factory

Factory

Service

3. The factory
creates a
service

214

Client

A Service
Creation Scenario

Registry

2. The client calls the
createService
operation on the
factory

Factory

Service

3. The factory
creates a
service

4. The factory
returns a locator

1. From a known
registry, the client
discovers a factory
by querying the
Service data of the
registry

215

Client

A Service
Creation Scenario

Registry

2. The client calls the
createService
operation on the
factory

Factory

Service

3. The factory
creates a
service

4. The factory
returns a locator

5. The client and service interact

1. From a known
registry, the client
discovers a factory
by querying the
Service data of the
registry

216

Notification
Sink

A Notification Scenario

1. NotificationSink calls the
subscribe operation on
NotificationSource

Notification
Source

217

Notification
Sink

A Notification Scenario

1. NotificationSink calls the
subscribe operation on
NotificationSource

Notification
Source

Notification
Subscription

2.Notification
Source creates
a subscription
service

218

Notification
Sink

A Notification Scenario

1. NotificationSink calls the
subscribe operation on
NotificationSource

Notification
Source

Notification
Subscription

2.Notification
Source creates
a subscription
service

3. Notification
Source returns a

locator to the subscription
service

219

Notification
Sink

A Notification Scenario

1. NotificationSink calls the
subscribe operation on
NotificationSource

Notification
Source

Notification
Subscription

2.Notification
Source creates
a subscription
service

3. Notification
Source returns a

locator to the subscription
service

4.b The NotificationSink and
Subscription service interact
to perform lifetime management

4.a deliverNotification
stream continues
for the lifetime of
NotificationSubscription

220

Notification
Sink

A Notification Scenario

1. NotificationSink calls the
subscribe operation on
NotificationSource

Notification
Source

Notification
Subscription

2.Notification
Source creates
a subscription
service

3. Notification
Source returns a

locator to the subscription
service

4.b The NotificationSink and
Subscription service interact
to perform lifetime management

4.a deliverNotification
stream continues
for the lifetime of
NotificationSubscription

The sole mandated
cardinality: 1 to 1

subscribe

221

Data Services in OGSA

Note: This is still evolving and will
likely change. Tracking the GGF

DAIS Working Group is the best way
to stay current

222

Background
! The current GGF DAIS (Data Access and Integration

Services) specification focuses on data access to databases
– DAIS Goal: It must be possible to support existing un-modified

data systems using the proposed interfaces through additional code

! The OGSA Data Services proposal (August 2003) has been
produced in order to:
– Incorporate DAIS requirements and general approach

– Supports a broad, flexible, and extensible definition of "data
service", beyond just the relational and XML database access
interfaces that are being considered by DAIS (e.g. file systems,
streams, devices, programs)

– Exploit OGSI v1.0 (e.g. use service lifetimes to model client
sessions rather than separate mechanisms)

223

Data Service Definitions [1]
! Data virtualization: An abstract view of some data, as defined

by operations plus attributes (which define the data’ s structure
in terms of the abstraction) implemented by a data service.
Examples: A file system, JPEG file, relational database,
column of a relational table, random number generator

! Data interface (base): DataDescription, DataAccess,
DataFactory, and DataManagement define mechanisms for
inspecting, accessing, creating, and managing data
virtualizations, respectively. They are expected to be extended
to provide virtualization-specific interfaces.

– An interface is a WSDL portType comprised of a set of
operations

224

Data Service Definitions [2]
! Data service: An OGSI-compliant Web service that

implements one or more of the four base data
interfaces, either directly, or via an interface that
extends one or more base data interfaces, and thus
provides functionality for inspecting and manipulating
a data virtualization.

! Data set : An encoding of data in a syntax suitable for
externalization outside of a data service, for example
for communication to/from a data service. Examples:
WebRowSet XML, JPEG encoded byte array, ZIP
encoded files

225

Data Service Definitions [3]

! Data source: A necessarily vague term that denotes the
component(s) with which a data service’ s implementation
interacts to implement operations on a data virtualization.
Examples: A file, file system, directory, catalog, relational
database, a sensor, a program.

! Resource manager: The logic that brokers requests to
underlying data source(s), via a data virtualization, through the
data interfaces of a data service. Examples: An extension to, or
wrapper around, a relational DBMS or file system; a specialized
data service.

! DAIS-WG: GGF Working group that is producing the Data
Access and Integration specification

! DAIS: Data Access and Integration Services specification

226

Data Service Overview

Resource manager:
implements the data virtualization

& manages access to data sources

G
ridS

ervice

D
ataD

escription

D
ataA

ccess

D
ataF

actory

D
ataM

anagem
ent

GSH

Underlying
data sources

Data service
implementation

… …

Perhaps other
interfaces

Data service
interfaces

Grid service
handle

227

Base Data Service Interfaces [1]
! DataDescription: defines OGSI service data elements

that describe the data virtualization supported by a
particular data service
– E.g. RelationalDescription, RowSetDescription,

FileSystemDescription, FileDescription, JPEGDescription

! DataAccess: provides operations to access and modify
the contents of a data service’ s data virtualization
– E.g. SQLAccess, CursorRowSetAccess, StreamAccess,

FileAccess, BlockAccess, TransferSourceAccess,
TransferSinkAccess

228

Base Data Service Interfaces [2]
! DataFactory: supports a request to create a new data

service whose data virtualization is derived from the data
virtualization of the parent data service (the one that
implements the DataFactory)
– E.g. FileSelectionFactory, SQLFactory, TransferFactory,

CollectionSelectionFactory
– Some parallel the DataAccess specializations

! DataManagement : provides operations to manage the
data virtualizations (and indirectly the data sources that
underlie them) of a data service

229

Interface Inheritance

GridServic
e

Factory

Agreement

Data
Access

Data
Factory

Data
Management

Base data
interfaces

OGSI Agreement
interfaces

A data service implements
1+ data interfaces; perhaps
also other OGSA interfaces

… …xxxx zzzz

AgreementProvider

OGSI interfaces

Data
Description

yyyy

Data interfaces are
typically extended to

data-virtualization-
specific forms, e.g.,

RelationalDescription
& SQLAccess

Data
Acces

s

SQLAccess

Data
Description

Relational
Description

GridServic
e

Agreement

230

Data Virtualization and Data Sources
! Flexible mappings between data virtualizations and

underlying data sources and services. Examples:
– one-to-one: A Data Service corresponds to a DB2 system instance

that supports SQL.

– one-to-many: A Data Service corresponds to a federated view of two
or more underlying databases.

– many-to-one: A Data Service offering XPath access to an XML File
and SQL access to the same file though DB2 Data Federation.

– many-to-many: Different views, each represented as a Data Service,
of the one-to-many federation.

231

Multiple Virtualizations Example

FrameFrame

File system

Collection
of files

Relational
database

Collection
of files

Data
sources

File
system

Movie Frame Database
DB

view

Filter

Derived
quantities

Data
virtualizations

232

Data Virtualization and Naming
! Each Data Virtualization (as a Grid Service) is represented

by a GSH (Grid Service Handle)
! Each constituent data source has its own local namespace

that describes the virtualization
– Operations against a Data Service may use names (e.g., table

names, file names) that can only be interpreted within the context
of the service, in particular the data virtualization, to which the
operation is directed.

– If a global name is needed, you should use DataFactory to create a
new virtualization (and thus GSH) that is appropriately scoped for
your needs

! Data Virtualization implementation is responsible for
directing requests to appropriate data sources.
– Implementation = Resource Manager

233

Data Virtualization and Service Lifetimes
! Data services can endure for either:

– The lifetime of the Resource Manager
• Example: To hold the data underlying the virtualization for the

duration of the data service, independent of any particular
clients. The associated DataFactory request may have the side
effect of starting a resource manager such as a database system
instance

– The lifetime of the relationship between a resource manager and a set
of clients (perhaps just one) interested in that data virtualization

• Example 1: To create a virtualization containing a view of the
parents’ virtualization, to be shared with other clients

• Example 2: To enable the processing of an SQL select where the
result sequence is returned an item at a time

234

(OGSI-) WS-Agreement

! Recall key criteria of a Grid:
– Coordinates resources that are not subject to centralized

control …
– using standard, open, general-purpose protocols and

interfaces …
– to deliver non-trivial qualities of service.

! Implies need to express and negotiate agreements that
govern the delivery of services to clients
– Agreement = what will be done, QoS, billing, compliance

monitoring

! All interesting Web/Grid services interactions will be
governed by agreements!

235

WS-Agreement Contents

! Standard agreement language
– A composition of a set of terms that govern a service’ s

behavior with respect to clients
– Agreement language uses WS-Policy (currently)
– Standard attributes for terms that express current state of

negotiation
– Other groups define specific terms

! Standard agreement negotiation protocol
– Establish, monitor, re-negotiate agreement
– Expressed using OGSI GWSDL interfaces
– Each agreement represented by a service

236

WS-Agreement Interfaces
! AgreementProvider Interface:

– extends the OGSI Factory interface
– defines how the Factory CreateService operation is used with the

agreement language to instantiate an agreement with a service
provider;

! Agreement Interface:
– extends the OGSI GridService interface:

• The OGSI GridService interface provides operations for managing the
lifetime of a service (and thus the agreement)

– implemented by the service created by an AgreementProvider
– provides operations for the monitoring and re-negotiation of the

terms of the agreement.

237

Agreement Overview

Agreement
Initiator

Agreement
Provider

Data Service

Consumer
Data Service

Provider

AgreementProvider

(extends OGSI factory)

Agreement I/F

(extends GridService I/F)

DataFactory

(extends AgreementProvider)

Agreement

DataAccess

(extends Agreement I/F)

[1]

[4]

[2]

[3]

Steps (Operations):
[1] Create Agreement
[2] Create Data Service
[3] Access Data Service
[4] Monitor Agreement

Policy

238

Agreement and Service Lifetimes

! Agreement Life Time
– The agreement selection is made at data service create time.
– The selected agreement can be redefined at any time within the

scope of the selected agreement.

! Some Data Services (e.g. those associated closely with a
Resource Manager) may have general agreements that
apply to all clients, e.g.,
– All data returned will be at most 5 minutes old

! Some Data Services may have individual agreements by
client. They may be derived from some pre-defined base
agreements, e.g.,

• Platinum: 1 sec response time max
• Gold: 5 sec response time max
• Silver: 20 sec response time max

239

OGSI Compliant Transport Today
! Via the Reliable File Transfer Service
! Accepts a TransferRequest

– SOAP Message
– Defines Default transfer parameters such as TCP Buffer

Size, parallelism, etc.
– List of Source/Destination URL pairs
– Defaults can be over-ridden per pair, if desired
– URLs can be a directory and it will move the entire

contents of the directory

! Service is OGSI compliant, executes a standard
(non-OGSI compliant) 3rd Party GridFTP transfer

240

RFT in Action

Registry

* The scenarios in this presentation are offered as examples and are not prescriptive

1. A Grid Service
Container is
started up; It
contains an RFT
Factory service;
The RFT Factory
service registers
itself

RFT Factory

Grid Service Container

241

Client

RFT in Action

Registry

* The scenarios in this presentation are offered as examples and are not prescriptive

2. From a known
registry, the client
discovers a factory
by querying the
Service data of the
registry

RFT Factory

Grid Service Container

242

Client

RFT in Action

3. The client
calls the
createService
operation on the
factory and
passes in a
TransferRequest

RFT Factory

Grid Service Container

* The scenarios in this presentation are offered as examples and are not prescriptive

243

Client

RFT in Action

RFT Factory

Grid Service Container

RFT Service Instance
- Start the Instance
- Deserialize XML to Java
- Write Request via JDBC
- Persist Service State

4. The instance
is started, and
the factory
returns a
locater

* The scenarios in this presentation are offered as examples and are not prescriptive

244

Client

RFT in Action

RFT Factory

Grid Service Container

RFT Service Instance
- Start the Instance
- Deserialize XML to Java
- Write Request via JDBC
- Persist Service State

5. Client calls
Start(),
subscribes to
notifications,
etc.

* The scenarios in this presentation are offered as examples and are not prescriptive

245

RFT in Action

! Service is OGSI
compliant

! Uses existing GridFTP
(non-OGSI) protocols
and tools to execute
3rd Party Transfer for
the user

! Provides extensive
state transition
notification

GridFTP
Server

GridFTP
Server

RFT Service
Instance

* The scenarios in this presentation are offered as examples and are not prescriptive

246

OGSI Transport Tomorrow
!This is evolving and could change
!EVERYTHING will have a service

interface.
!Transport will be negotiable
! Ideally, there will be autonegotiation based

on proximity
– Same process space: Shared memory
– Same host: IPC
– WAN: GridFTP

247

OGSI Transport

! Interface to transport services such as RFT
will be via OGSI-Agreement

!ALL resources are represented as services.
This includes files, file systems, databases,
etc.

!Under the covers, likely that DataServices
will have put() / get() interfaces on their
DataAccess Interfaces.

248

Biographical Information
for Presenters

249

William (Bill) E. Allcock

Bill Allcock is the technology coordinator and evangelist for GridFTP
within the Globus Alliance. Bill has a BS in Computer Science and
an MS in Paper Science. In his 15 years work experience he has been
involved in a wide array of areas including computer networking,
distributed systems, embedded systems, data acquisition, process
engineering, control system tuning, and colloidal chemistry.

Bill’ s current research focus involves applications requiring access to
large (Terabyte and Petabyte sized) data sets, so called DataGrid
problems. He is also heavily involved in the Global Grid Forum. Bill
has presented several previous tutorials on the Globus Toolkit(R),
primarily on GridFTP use and development libraries. He also has
lead tutorials on Introduction to Grids, as well as IO and security in
the Globus Toolkit.

250

Robert Grossman

Robert Grossman is the Director of the Laboratory for Advanced
Computing (LAC) and the National Center for Data Mining (NCDM) at
the University of Illinois at Chicago (UIC). Robert Grossman became a
faculty member at the University of Illinois at Chicago in 1988 and is
currently Professor of Mathematics, Statistics, and Computer Science.
He received a Ph.D. from Princeton in 1985 and a B.A. from Harvard in
1980. He is the Founder and President of Open Data Partners LLC,
which provides consulting and outsourced data services. He is also the
spokesperson for the Data Mining Group (DMG), an industry
consortium responsible for the Predictive Model Markup Language
(PMML), an XML language for data mining and predictive modeling,
and the WS-DMX web services for data mining standard. He has
published over 100 papers in refereed journals and proceedings.

251

Steven Wallace is the director of Indiana University's
Advanced Management Lab. The lab specializes in network
visualization, security, performance, and wireless
management. Before creating the lab three years ago, Steven
managed the engineering activities of the Abilene Network
Operations Center as well as serving as a technical advisor to
Indiana University’ s CIO. Steven has twenty year experience
in software development and network management. Steven is
a graduate of Indiana University

Steven Wallace

