
An Introduction to Mercurial Version
Control Software

LANS Weekly Seminar
October 17, 2006

Satish Balay
balay@mcs.anl.gov

Outline

● Why use version control?
● Simple example of revisioning
● Mercurial introduction

- Local usage
- Remote usage
- Normal user workflow
- Organizing repositories [clones]

● Mercurial at MCS
● [Demo]

What do we use Version Control for?

● Keep track of changes to files
● Enable multiple users editing files simultaneously
● Go back and check old changes:

 * what was the change

 * when was the change made

 * who made the change

 * why was the change made
● Manage branches [release versions vs dev]

Simple Example of Revisioning

main.cmain.c

0 1 2 3File Version

File Changes

Delta

Simple Example Cont.

Repository
Version

-1

main.cmain.c

1 2 3

main.cmain.c

0

main.cmakefile

0 1

310 2

Changeset

Some Definitions

● Delta: a single change [to a file]
● Changeset: a collection of deltas [perhaps to

multiple files] that are collectively tracked.
● Repository: collection of files we intend to keep

track of. This includes the revision history
● Version [or Source] Control Tool: Enables us to

keep track of all the changes [to files] in a
repository

Mercurial

● Distributed version control tool.
● http://www.selenic.com/mercurial
● OpenSource [GPL]
● Active mailing list : mercurial@selenic.com
● Written in python
● Works on linux, windows, and other machines
● Reasonably efficient [handles 9000+ changesets

in PETSc]

Usage: Creating a Repository
● mkdir project
● cd project
● hg init

● Initializes the directory 'project' as a mercurial repo.
● All 'hg' commands are invoked inside the repository
● All commands are in the form 'hg command'. For

example : hg help
● Stores metadata in the subdirectory project/.hg

Usage: Adding/Modifying Files
● cd project

● touch main.c

● hg add main.c

● hg commit

● emacs main.c [edits to file]

● hg commit [alternative: hg ct]

● 'add' indicates the file is now part of the repository.

● 'commit' creates a changeset for the current changes.
[prompts the user to enter comments]

Repository Data vs Working Files
● Repository data is the revision history and graph of all the

changes. Its stored in project/.hg directory

● Working files are the reset of the files in project. User
edits the working files.

● hg tip [show the tip revision of the repository graph]

● hg parent [show the parent revision of the working dir]

Note: Working dir files can correspond to any revision of
the repository. So one has to be careful about this point
[and not assume the parent is always the tip revision]

● hg update REV [update working copy to REV version]

Illustration of Changes

repository

working
files metadata

repository repository
hg commit

file changes

changeset

Checking Status/History

● hg status [list the current modified, unknown files]

● hg diff [list the diff of the changed files in patch form]

● hg log [list the revision history of all changes]

● hg view [extension: GUI tool to check changeset graph]

● hg ct [extension: GUI tool to commit changes]

Note: So far we have delt with local opeations on the repository

Distributed Model
● Peer to Peer: all copies of repositories are equivalent.

● Information flows between repositories as changesets.

● Each operation is between two repositories.

● hg clone /home/balay/old-repo new-repo

● cd new-repo [Local reposiory to invoke cmds]

● hg pull [repo] [get remote changesets and apply locally]

● hg push [repo] [apply local changes to the remote repo]

Notes:

● Every repository has complete revision history [metadata]

● One can switch roles of old-repo & new-repo

● Remote operations between repositories [as oposed to local operations]

URLs
hg help pull [documentation of urls]
● /home/balay/petsc-dev
● ssh://petsc@harley.mcs.anl.gov//home/petsc/petsc-dev
● http://hg.mcs.anl.gov/petsc/petsc-dev [readonly]
● http-old://www.mcs.anl.gov/~petsc/project [readonly]
● https:// [read/write support in newer versions]

Note: 'hg clone' stores the URL for remote repository [in
.hg/hgrc] – so, when push,pull are invoked, url is not
required. [versions 0.9.1 and newer]

Organizing Repositories [clones]

Any to Any
Shared Common

Methods of communicating changes
●clone/push/pull [changesets]
●import/export [email patch]
●bundle/unbundle [email changesets]

The relations are not hardcoded

Syncing Two Repositories with
Changesets to Remote Repository

repository-local

working
files metadata

repository-remote

repository-local repository-remote

repository-local repository-remote

Remote repo has
extra changesets

hg pull

hg update

Syncing Two Repositories with
Changesets to Local Repository

repository-remote

working
files metadata

repository-local

repository-remote repository-local

Local repo has
extra changesets

hg push

Updating Working copy of remote is not necessary.

Syncing Two Repositories with
Changesets to both Repositories

repository-local
working

files metadata

repository-remote

repository-local repository-remoteB

Both repos have
extra changesets

hg pull

A B

repository-local repository-remotehg push

repository-local repository-remoteBA+B
hg commit

repository-local repository-remoteBhg merge
B

A+BA+B

RevisionGraph Change

Initial
A

B
Initial

B
Initial

A

A+B
A

A: local repo changeset
B: remote repo changeset
A+B: merge changeset

B

B

B

A

A

A B

A

A

Normal User Work Flow

● <make changes to working files>
● hg commit [commit local changes]
● hg pull [check & obtain remote changes]
● hg merge [auto merge – if not use external

 merge tool for eg: kdiff3]
● hg commit [commit the merge changeset]
● hg push [push local changesets + merge

 changesets to the remote
repository]

Handling Uncomitted Edits ?

● Uncomited chages present with local changesets
● Uncomited changes present with push/pull
● Uncomited changes present during update/merge

● More things need to be kept track off
[uncommited changes, commits, commits in the
remote repository, merges etc..]

● This is best avoided...

Multiple Users: Communicating
Changesets using a Shared Repository

petsc-dev

balay-clone

User CloneRepos

Shared repository

bsmith-clone

temp-clone-2

external-user

read only, via http

read/write via ssh

temp-clone-1

knepley-clone

Managing Patches to Release
Versions

petsc-dev petsc-release

release-clonedev-clone

Shared Repos

User CloneRepos

1. Apply fix

2. Pull/Merge/Push to shared release repo

3. Pull/merge [from dev-clone]

4. Pull/Merge/Push to shared dev repo

Browsing changes

● hg view
● hg log
● hg annotate filename [REV]
● hg update [REV]
● hg serv [starts a web server]
● Use a web browser to browse changes

Mercurial at MCS

● MCS Linux boxes has mercurial 0.9 installed
● /mcs/mercurial/project can be used for hosting

repositories for web acces
● http://hg.mcs.anl.gov/project is the web url.
● For eg: some of the repositories of the PETSc

project are at http://hg.mcs.anl.gov/petsc

