An Introduction to Mercurial Version
Control Software

LANS Weekly Seminar
October 17, 2006

Satish Balay
balay(@mcs.anl.gov



Outline

* Why use version control?
* Simple example of revisioning

* Mercurial introduction
- Local usage
- Remote usage
- Normal user workflow
- Organizing repositories [clones]

e Mercurial at MCS

* |[Demo]



What do we use Version Control for?

* Keep track of changes to files
* Enable multiple users editing files simultaneously
* (Go back and check old changes:

* what was the change

* when was the change made

* who made the change

* why was the change made

* Manage branches [release versions vs dev]



Simple Example of Revisioning

File Changes -

File Version 0 1

Delta



Simple Example Cont.

Repository -1 0 1 5
Version

Changeset



Some Detinitions

* Delta: a single change [to a file]

* Changeset: a collection of deltas [perhaps to
multiple files] that are collectively tracked.

* Repository: collection of files we intend to keep
track of. This includes the revision history

* Version [or Source] Control Tool: Enables us to
keep track of all the changes [to files] 1n a
repository



Mercurial

* Distributed version control tool.

* http://www.selenic.com/mercurial

* OpenSource [GPL]

* Active mailing list : mercurial@selenic.com
* Written 1n python

* Works on linux, windows, and other machines

* Reasonably efficient [handles 9000+ changesets
in PETSc]



Usage: Creating a Repository

* mkdir project
* cd project
* hg init

* Initializes the directory 'project' as a mercurial repo.
* All 'hg' commands are invoked inside the repository

* All commands are in the form 'hg command'. For
example : hg help

* Stores metadata 1n the subdirectory project/.hg



Usage: Adding/Modifying Files
cd project
touch main.c
hg add main.c
hg commit
emacs main.c [edits to file]

hg commit [alternative: Ag ct ]

'add’ indicates the file 1s now part of the repository.

'commit' creates a changeset for the current changes.
[prompts the user to enter comments]|



Repository Data vs Working Files

* Repository data 1s the revision history and graph of all the
changes. Its stored in project/.hg directory

* Working files are the reset of the files 1 project. User
edits the working files.

* hgtip [show the tip revision of the repository graph]
* hg parent [show the parent revision of the working dir]

Note: Working dir files can correspond to any revision of
the repository. So one has to be careful about this point
[and not assume the parent 1s always the tip revision]

* hg update REV [update working copy to REV version]



[1lustration of Changes

changeset

hg commit

file changes



Checking Status/History

* hg status [list the current modified, unknown files]
e hgdiff [list the diff of the changed files in patch form]

* hglog [list the revision history of all changes]

* hg view [extension: GUI tool to check changeset graph]
* hgct [extension: GUI tool to commit changes]

Note: So far we have delt with local opeations on the repository



Distributed Model

* Peer to Peer: all copies of repositories are equivalent.
* Information flows between repositories as changesets.
* FEach operation 1s between two repositories.

* hg clone /home/balay/old-repo new-repo

* cd new-repo Local reposiory to invoke cmds]

* hgpull [repo] [getremote changesets and apply locally]

* hg push [repo] [apply local changes to the remote repo]
Notes:

* Every repository has complete revision history [metadata]
* One can switch roles of old-repo & new-repo

* Remote operations between repositories [as oposed to local operations]



URLs

hg help pull |[documentation of urls]
* /home/balay/petsc-dev
* ssh://petsc@harley.mcs.anl.gov//home/petsc/petsc-dev

* http://hg.mcs.anl.gov/petsc/petsc-dev readonly

* http-old://www.mcs.anl.gov/~petsc/project [readonly

* https:// [read/write support in newer versions]

Note: 'hg clone' stores the URL for remote repository [in
hg/hgrc| — so, when push,pull are invoked, url 1s not
required. [versions 0.9.1 and newer]



Organizing Repositories [clones]

=2 7
o«

"o o

Any to Any

Shared Common

Methods of communicating changes .
eclone/push/pull [changesets] The relations are not hardcoded

*import/export [email patch]
*bundle/unbundle [email changesets]



Syncing Two Repositories with
Changesets to Remote Repository

Remote repo has
extra changesets




Syncing Two Repositories with
Changesets to Local Repository

Local repo has
extra changesets

Updating Working copy of remote 1s not necessary.

hg push




Syncing Two Repositories with
Changesets to both Repositories

Both repos have

extra changesets

e

RevisionGraph Change

A
-i.

A
M

A: local repo changeset
B: remote repo changeset
A+B: merge changeset



Normal User Work Flow

* <make changes to working files>

* hg commit [commit local changes]
* hg pull ‘check & obtain remote changes]
* hg merge ‘auto merge — 1f not use external

merge tool for eg: kdiff3]
* hg commit [commit the merge changeset]

* hg push [push local changesets + merge
changesets to the remote
repository]



Handling Uncomitted Edits ?

* Uncomited chages present with local changesets

* Uncomited changes present with push/pull

* Uncomited changes present during update/merge

* More things need to be kept track off
[uncommited changes, commits, commits 1n the
remote repository, merges etc.. |

* This 1s best avoided...



Multiple Users: Communicating
Changesets using a Shared Repository

Shared repository -

read/write via ssh

read only, via http

User CloneRepos



Managing Patches to Release
Versions

2. Pull/Merge/Push to]shared release repo
4. Pull/Merge/Push tojshared dev repo

@ 1. Apply fix

3. Pull/merge [from dev-clone]



Browsing changes

* hg view

* hg log

* hg annotate filename [REV]

* hg update [REV]

* hg serv [starts a web server]

* Use a web browser to browse changes



Mercurial at MCS

e MCS Linux boxes has mercurial 0.9 installed

* /mcs/mercurial/project can be used for hosting
repositories for web acces

* http://hg.mcs.anl.gov/project is the web url.

* For eg: some of the repositories of the PETSc
project are at http://hg.mcs.anl.gov/petsc




