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Abstract

We consider the global minimization of a bound-constrained function with a
so-called funnel structure. We develop a two-phase procedure that uses sampling,
local optimization, and Gaussian smoothing to construct a smooth model of the
underlying funnel. The procedure is embedded in a trust-region framework that
avoids the pitfalls of a fixed sampling radius. We present a numerical comparison
to three popular methods and show that the new algorithm is robust and uses up
to 20 times fewer local minimizations steps.
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1 Introduction

We consider the global optimization problem

{

minimize
x

f(x)

subject to x ∈ S ⊂ IRn,
(1.1)

where f is sufficiently smooth and S ⊂ IRn is a compact set with simple structure, such
as a bounded box. We require S to be simple for two reasons. The first reason is that
we then can sample a uniform point in S without too much computational effort. The
second reason is that we can use bound-constrained solvers and avoid possible difficulties
caused by the local solver converging to an infeasible point.

Problems of type (1.1) arise in diverse fields, in particular, well-known conformational
problems such as protein folding and atomic/cluster problems. In these applications we
are interested in finding the lower free energy conformation in three-dimensional space. A
box can be defined that eventually will contain all “interesting” molecular conformations.
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If the problem allows the use of a sufficiently efficient local optimization algorithm, a
two-phase procedure is a good candidate for global optimization [16]. Such a procedure
involves sampling coupled with local searches started from the sampled points. We define
the local minimization operator as

L(x) :=

{

minimize
y

f(y) starting from x

subject to y ∈ S.
(1.2)

We note that this operator is implicitly defined and depends on the local minimizer used.
In general, L(x) is a piecewise constant function whose pieces correspond to the basins of
attraction of the local minimizers of f(x).

Clearly, the global optimization problem (1.1) has the same optimal objective value
as the following problem:

{

minimize
x

L(x)

subject to x ∈ S.
(1.3)

We note that the piecewise constant nature of L(x) implies that the minimizers of (1.1)
and (1.3) need not agree. In fact, any global minimizer of (1.1) is also a global minimizer
of (1.3), but not vice versa. Because L(x) is implicitly defined, however, we can simply
record

xmin := LS(x) :=







argmin
y

f(y) starting from x

subject to y ∈ S.
(1.4)

It follows that xmin is also a local minimizer of f(x), and we can recover a global minimizer
of f(x) by solving (1.3) in this way.

Multistart is an elementary example of a two-phase method aimed at minimizing L(x);
in practice, it reduces to a purely random (uniform) sampling applied to L(x). It is in
principle possible to apply any known global optimization method to solve the transformed
problem (1.3), but many difficulties arise. First, function evaluation becomes much more
expensive: we have to perform a local search on the original problem in order to observe
the function L(x) at a single point. Second, the analytical form of L(x) is not available,
and it is a discontinuous, piecewise constant function.

Given these difficulties, most two-phase methods have been designed without exploit-
ing the fact that the true objective function to be minimized is L(x) instead of f(x).
Indeed, many promising two-phase methods (e.g., multilevel single-linkage [14] or simple-
linkage clustering approaches [11, 15]) neglect in some sense the piecewise constant shape
of L(x) and concentrate most of their effort on improvements over the multistart method.
In particular, for clustering methods, improvements over multistart are obtained through
a sequential decision procedure that chooses starting points it deems worthwhile for a local
search. Such strategies are doomed to fail, however, when either the number of variables
is high or the number of local optima is huge, situations that are both extremely common
(e.g., in most molecular conformation problems [5]). It is widely believed that in these
cases the local optimum points are not randomly displaced but that the objective func-
tion f(x) displays a so-called funnel structure. A univariate example of such a function
is given in Figure 1, where the function to be minimized is represented by the solid line
and the underlying funnel structure is given by the dotted line. In general, we say f(x)
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Figure 1: Example of a funnel function

has funnel structure if it is a perturbation of an underlying function with a low number
of local minima. Motivated by examples of this kind, some authors [12, 13, 18] have pro-
posed filtering approaches: if one can filter the high frequencies that perturb the funnel
structure, then one can recover the underlying funnel structure and use a standard global
optimization method on the filtered function (which is much easier to globally optimize)
in order to reach the global optimum.

In contrast, we believe that it is better to filter the piecewise linear function L(x)
because it is less oscillatory than f(x); Figure 2 shows L(x) for the simple funnel function
previously presented. This follows the approach of [2], and much of the analysis in [2]
also applies here.

In this paper we make two important contributions to global optimization. First, we
remove the need for the arbitrary parameters in [2] by interpreting these parameters as
a trust-region radius. We embed the algorithm from [2], called ALSO, in a trust-region
framework and show that our new algorithm is more robust than other methods. Second,
we introduce the concept of global quality. This concept is motivated by the fact that the
trust-region framework is essentially a local optimization scheme and therefore requires
modifications to be effective as a global method.

The remainder of the paper is organized as follows. In Section 2 we introduce the
smoothing scheme, in Section 3 we introduce the trust-region framework for global opti-
mization, and in Section 4 we present numerical results for test problems having a funnel
structure.
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Figure 2: Example of the effect of local minimization

2 Gaussian Smoothing for Global Minimization

In this section we introduce a smoothing scheme to solve (1.3). The material of this
section largely follows [2], although we give a different emphasis. We apply smoothing
to L(x) for two reasons. First, L(x) is a piecewise constant function for which descent
directions are difficult to define (first-order derivatives, when defined, are always zero).
Second, we expect the smoothing to provide a more global view of the function.

Given a real-valued function L : IRn → IR and a smoothing kernel g : IR → IR, which is
a continuous, bounded, nonnegative, symmetric function whose integral is one, we define
the g–transform of L(x) as

〈L〉g(x) =
∫

IRn
L(y)g(‖y − x‖) dy. (2.5)

The value 〈L〉g(x) is an average of the values of L(x) in all the domain; in particular, the
closer the points are to x, the higher is the contribution to the resulting value. Another
important property is that 〈L〉g(x) is a differentiable function. Hence we can use standard
smooth optimization methods to minimize it.

The most widely used kernel in the literature is the Gaussian kernel

g(z) ∝ exp
(

−z2/(2σ2)
)

, (2.6)

where we use the symbol ∝ to avoid writing a multiplicative constant that plays no role
in the methods we present here. In Figure 3 we present an example of the resulting
smoothing for different values of the parameter σ. In particular, the smoothing effect is
more evident if the parameter is larger.

We refer to [2] for some theoretical properties of the smoothing function in one di-
mension. In the one-dimensional case we can assume without loss of generality that the
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Figure 3: Gaussian filtering of L(x)

function L(x) associated to a generic funnel function can be written as

L(x) =
N
∑

i=1

Vi 1x∈[ai−1,ai), (2.7)

where a0 = −∞ < a1 < · · · < aN−1 < aN = +∞, and Vi ∈ IR, i = 1, . . . , N , with the
condition that

Vi+1 < Vi i = 1, . . . , ` − 1
Vi+1 > Vi i = `, . . . , N − 1

(2.8)

for an index ` ∈ {1, . . . , N}. Notice that the global minimum value is V`. Here 1x∈[ai−1,ai)

is the indicator function for the interval [ai−1, ai).
Let g(x) be a kernel (which, in particular, is a probability density function). In [2] the

following theorem is proved.

Theorem 1 Let g(x) be a continuously differentiable probability density function whose
support is IR. If g is logarithmically concave (i.e., if log g(x) is concave) and if the step
function L defined in (2.7) satisfies (2.8), then 〈L〉g(x) is either monotonic or unimodal.
If g(x) is strictly log-concave, then the transform has at most a single minimum point.

From this theorem it immediately follows that, for example, if g is a Gaussian kernel, then
the transform always has one and only one minimum point. In [2] it is also shown that if
the variance of the density function g is sufficiently small, then the minimum point occurs
inside the interval corresponding to the bottom step of the objective function. Being
restricted to the one-dimensional case, all these results are of limited usefulness. For the
multidimensional case, however, they motivate the notion of a “path of descending steps
down to the global minimum,” which leads to results similar to those obtained for the
one-dimensional case.
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Clearly, one cannot explicitly apply the smoothing operator as in (2.5) because this
approach requires the approximation of an n-dimensional integral. Instead, we restrict
our attention to a ball of radius ∆ around the current point x (B(x, ∆)) and define

〈L〉Bg (x) =
∫

B(x,∆)
L(y)

g(‖x − y‖)
∫

B(x,∆) g(‖x − t‖) dt
dy. (2.9)

We cannot obtain an analytical expression of (2.9) because of the integral and the fact that
the expression of L(x) is unknown. Nor is a numerical estimate of the integral practical
because we would need to evaluate L(x) at a large number of points.

To solve these difficulties, we construct a discretized version of the smoothing of L(x),

L̂B
g (x) =

K
∑

i=1

L(yi)
g(‖yi − x‖)

∑K
i=1 g(‖yi − x‖)

, (2.10)

where yi, i = 1...K, are samples in B(x, ∆). Under mild assumptions, for a sufficiently
large number of samples, L̂B

g (x) is a good approximation of the original smoothed func-
tion. Even for an arbitrary number of samples, it has interesting properties: it is a
continuous function and a convex sum of the values of the samples. In particular, the
weight associated with each sample is larger if we are closer to the sample point. In other
words, the more confident we are in the sample value, the greater is the weight associated
with it. In [2], the model (2.10) is used to choose the new candidate point x+, starting
from a point (say, xk). The model in the subset of given radius ∆, B(xk, ∆), is solved by
using a constrained optimization procedure. The algorithm, called ALSO, is described in
Algorithm 1.

When a candidate point x+ is found, an unconstrained local optimization of the orig-
inal objective function f(x) is performed because, in general, x+ is not a local minimum
of f(x). This procedure is equivalent to evaluating L(x+). If we obtain an improvement,
the local minimum is taken as a new point, the center of the new region B. Otherwise
the new center is x+.

In contrast to other procedures such as monotonic basin hopping (MBH), see [6] this
model allows us to identify a search direction even when all the samples assume a value
larger than the current record.

The use of a fixed value for ∆ is restrictive for the length of the steps we are allowed
to take. In addition, it is not clear a priori what value ∆ should take. We do know that a
small radius results in small steps and, hence, in slow convergence, but large values of ∆
can result in poor agreement between the model and the function and, hence, in useless
candidate points. Therefore, we propose to embed ALSO within a trust-region framework
that adjusts the radius ∆ automatically. The details of this new framework are discussed
in the next section.

3 Trust-Region Framework for Global Optimization

In this section we show how to embed ALSO in a trust-region framework that adaptively
updates the radius ∆. The motivation for this approach is that it avoids the pitfalls



A Trust-Region Algorithm for Global Optimization 7

Data : ∆, K, N
n = 0, k = 0, M = ∅
x = random uniform point in S
x0=x? = LS(x)
record = L(x?)
while n < N do

repeat
Collect a sample in B(xk, ∆) and add it to K

until a new record is found or | K |< K
if miny∈K L(y) < record then

n = 0
x? = xk+1 = arg miny∈K L(y)

else
n = n + K
Add the samples to M
Construct the model (using samples in M)
Solve x+ = arg minx∈B(xk,∆) L̂B

g (x)
x = LS(x+)
if L(x) < record then

n = 0
x? = xk+1 = x

else
xk+1 = x+

k = k + 1
Set M = ∅

Algorithm 1: ALSO

of unsuitable trust-region radii. Trust-region methods are traditionally used in local
optimization to force convergence to local minima from remote starting points. To extend
the trust-region framework to global optimization, we introduce the concept of global
quality, and we use a model improvement step.

The use of trust-region methods for local optimization dates back to [7]; see the com-
prehensive book [3]. We review the basic idea of a trust-region method for the uncon-
strained local optimization of a smooth function f(x). At a given iterate xk, we construct
a (second order) Taylor series model mk(x). This model is then minimized in the trust
region, usually a ball of radius ∆k around xk. If the new point, x+, improves the objective,
we move to it and construct a new model. Otherwise, we improve the agreement between
f(x) and the model mk(x) by reducing the trust-region radius ∆k. Convergence follows
from the fact that f(x) and mk(x) agree up to first order.

To extend the trust-region framework to global optimization of L(x), we need to
modify the smooth local trust-region algorithm. Specifically, we have to account for the
fact that L(x) is nonsmooth and that L̂B

g (x) does not agree with L(x) to first order. More
important, we wish to avoid getting trapped in local minima. Clearly, it is not sufficient
to simply reduce the trust-region radius if we reject the step.

At each iteration we construct the model L̂B
g (x) around our current iterate xk. Specif-
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ically, we choose K samples (uniform) inside the current trust-region B(xk, ∆k) and per-
form a local minimization of f(x) from each sample. If we find a new best point during
this phase, we simply move to the new point and construct a new model. Otherwise, we
apply a local minimization to the model inside the trust region and obtain

x+ = argmin
x∈B(xk,∆k)

L̂Bk(x)
g . (3.11)

To decide whether to accept a step, we compute the ratio of the actual to the predicted
reduction, namely,

ρ =
L(xk) − L(x+)

L̂Bk
g (xk) − L̂Bk

g (x+)
, (3.12)

noting that the predicted reduction L̂Bk

g (xk)− L̂Bk

g (x+) is always nonnegative. We accept
the new point x+ if we observe sufficient decrease, that is ρ ≥ η1 > 0. If the step is very
successful, ρ ≥ η2 > η1, and the trust-region is active, ‖xk − x+‖ ≥ ∆, then we increase
the trust region radius for the next iteration. As long as ρ ≥ η1, we refer to the iteration
as successful, otherwise (ρ < η1) the iteration is referred to as unsuccessful. Unsuccessful
trust-region iterations require special attention in the global optimization setting. In
smooth local optimization, reducing ∆ is guaranteed to improve the agreement between
the model and the objective function. The same is not true in the global optimization
context. Hence, we introduce a measure for the global quality of our model L̂Bk(x)

g ,

q(L̂Bk(x)
g ) =

max
i∈M

| {yj : L(yj) = L(yi)} |

M
, (3.13)

where M is the set of collected samples, that is, the largest number of samples with the
same objective value, divided by the total number of samples. Clearly, 0 ≤ q(L̂Bk(x)

g ) ≤ 1,
and a value close to 1 means that a large number of samples have the same function value
and stem from the same “flat region” of L(x). A smaller value of q(L̂Bk(x)

g ) implies that
the samples represent the global nature of the function L(x) better.

In our algorithm, we compute q(L̂Bk(x)
g ) at every unsuccessful iteration. If it is larger

than a fixed value q̄, we remove all but one sample from the largest set, increase the trust-
region radius, and obtain new uniform samples in B(xk, ∆k+1)\B(xk, ∆k). The motivation
for this step is twofold: it improves the global nature of the model L̂Bk(x)

g , and it increases
σ, thus smoothing the model.

The increase of σ arises because we have adopted the following formula for calculating
the smoothing parameter, depending on the trust-region radius ∆ and the number of
samples K:

σ =
∆

K1/n
, (3.14)

where n is the dimension of the problem. The aim of this choice of σ is to cover the trust-
region volume with the Gaussian weights. The largest part of the volume (more than
60%) of a Gaussian is a ball of radius σ and center zero. If we divide the volume of our
trust region, which is proportional to ∆n, by the number of samples, we get the volume
that has to be covered by the Gaussians. Thus, to obtain equal coverage for different
trust-region values, we need K = ∆n

σn , which gives (3.14).
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We can now state the complete global optimization trust-region algorithm. Let 0 ≤
q̄ ≤ 1 be a bound on global quality. Let the trust-region parameters 0 < η1 < η2 ≤ 1
be fixed. Let N be a given upper bound for the number of samples, β1, β2 > 1 and
0 < m ≤ 1. The algorithm is presented in Algorithm 2. Typical values for the parameters
are provided in Section 4.

Data : ∆, K, N
n = 0, k = 0, M = ∅, ∆k = ∆
x = random uniform point in S
xk=x? = LS(x)
record = L(x?)
while n < N do

repeat
Collect a sample in B(xk, ∆k) and add it to K

until a new record is found or | K |< K
if miny∈K L(y) < record then

n = 0 and set M = ∅
x? = xk+1 = arg miny∈K L(y)

else
n = n + K
Add the samples to M
Construct the model (using samples in M)
Solve x+ = argminx∈B(xk,∆k) L̂Bk(x)

g

Evaluate ρ
x = LS(x+)
if ρ ≥ η1 then

n = 0 and set M = ∅
x? = xk+1 = x
if ρ > η2 and StepLenght ≥ ∆ then

∆k+1 = ∆kβ1

else
xk+1 = xk

if q(L̂Bk(x)
g ) ≤ q̄ then

∆k+1=∆k/β2 (only every two consecutive steps)
else

Throw away all but one sample with same value
∆k+1 = ∆kβ1

k = k + 1
Algorithm 2: TRF

We conclude this section with a few remarks on our trust region. We have a pool
of samples M that is used to collect measures. If we do not achieve good agreement,
we collect new samples, and we add them to the set M (with the old ones). We use the
following strategy for improving model agreement. If the global quality is low, we increase
the trust-region radius and throw away part of the samples; in particular, we delete all
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but one of the samples with the same value that determined the poor global quality. The
aim of this strategy is to increase the diversity between samples and avoid the region
around the center xk from becoming flat. We decrease the radius only if the agreement
is poor and the global quality is sufficient. We note that reducing the trust-region radius
can be considered dangerous for a global optimization strategy because it restricts the
method to a local search. Hence, we take a conservative approach: we reduce the trust
region only every two consecutive steps of poor agreement with good global quality.

We note that, in case of poor agreement, we update the trust-region parameters and
keep the old points only if we do not move to a new point. If we do move, the new point
can be far away from the old point, and the information on the latter—in particular, the
samples collected—may be useless for the former.

4 Numerical Results

To evaluate the computational performance of our algorithm, we tested it on several func-
tions from the literature. The test problems we chose have the following characteristics:
they are box unconstrained, their dimension can be chosen, the global optimum is known,
they possess a very high number of local optima, and they have a funnel structure.

As a reference, we give the test problems with their relative boxes and the value of
the global minimum:

Rastrigin [19]

Ras(x) = 10n +
n
∑

i=1

x2
i − 10 cos(2πxi) (4.15)

with xi ∈ [−5.12, 5.12] , f ? = 0.0

Levy [8]

Levy(x) = 10 sin2(πx1) +
n−1
∑

i=1

(xi − 1)2(1 + 10 sin2(πxi+1)) + (xn − 1)2 (4.16)

with xi ∈ [−10, 10] , f ? = 0.0

Ackley [1]

Ack(x) = −20 · exp(−0.2

√

√

√

√

1

n
·

n
∑

i=1

x2
i ) − exp(

1

n
·

n
∑

i=1

cos(2πxi)) (4.17)

with xi ∈ [−32.768, 32.768] , f ? = −20.0 − e

Schwefel [17]

Sch(x) =
n
∑

i=1

−xi sin(
√

|xi|) (4.18)

with xi ∈ [−500, 500] , f ? = −418.9829n

We also tested our method on
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Scaled Rastrigin

ScaledRas(x) = 10n +
n
∑

i=1

(αixi)
2 − 10 cos(2π(αixi)) (4.19)

with xi ∈ [−5.12, 5.12] , f ? = 0.0

where αi = 1 if bi/10c ≡ 0(mod 2) and otherwise αi = 2 (i.e., αi = 1 for the first ten
variables, then 2 for the next ten variables, and so on). This test function was introduced
in order to check the behavior of the method in presence of asymmetric level sets.

The trust-region algorithm is run with the following parameter values. The initial
trust-region radius ∆ is taken from results in the literature and is different for every run.
The decrease factor for ∆ is β1 = 1.11 and the increase factor is β2 = 1.2. The global
quality threshold is q = 0.6. The parameters for step acceptance, and trust-region increase
are η1 = 0.001, η2 = 0.75, respectively.

We compare our results with the ones obtained with ALSO. We report as reference
the results of the tests using MBH, even if in the majority of the cases ALSO outperforms
it. We test all algorithms for a range of initial trust-region radii. The initial radii were
chosen to optimize the performance of MBH. In other words, our new algorithm competes
against “optimal ∆ values” of the other methods. In practice, it is unlikely that a user
knows a good value for ∆, and in our examples the “optimal” ∆ is the result of numerous
tests.

Both reference methods, ALSO and MBH, have no strategy to adapt the radius ∆.
To our knowledge the only adaptive version of MBH is proposed in [10]. We describe
the strategy for updating the radius using the same notation used in the description of
MBH method (see Algorithm 3). Let N̄ be a positive integer, l ∈ (0, 1) and set the radius
∆̃ = ∆. Then, every N̄ steps, evaluate the fraction p of iterations for which zk 6= xk (that
is the candidate point is different from the center of sampling ball), and update ∆̃ using
the following strategy:

if p = 1.0

{

∆̃ > ∆, then ∆̃ = ∆̃ − ∆

∆̃ ≤ ∆, then ∆̃ = ∆̃/2
(4.20)

if p < 1.0

{

∆̃ ≥ ∆, then ∆̃ = ∆̃ + ∆

∆̃ < ∆, then ∆̃ = 2∆̃.
(4.21)

We have introduced this radius update in our MBH procedure and refer to the resulting
method as AMBH (adaptive MBH). In this way we can use the same local search procedure
for all the methods presented and perform tests with the same randomly generated starting
points. The parameters N̄ and l are chosen as in [10]; that is, N̄ = 10 and l = 0.8. We
test AMBH for all the radius values used for the other methods.

For each test function (different dimensions are considered as different tests) 1, 000
trials from randomly generated points inside the domain are performed. The stopping
criterion is the same for all the methods presented. We consider a local search unsuccessful
if there is no global improvement for the objective function. After 1, 000 consecutive
unsuccessful local searches we stop the algorithm. Every time a global improvement is
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Data : ∆, N
n = 0, k = 0
x = random uniform point in S
x0=x? = LS(x)
record = L(x?)
while n < N do

yk = random uniform point in B(xk, ∆)
zk = LS(yk)
if L(yk) < record then

n = 0
x? = xk+1 = zk

else
n = n + 1

k = k + 1
Algorithm 3: MBH

obtained, we restart the count of unsuccessful local searches. The local searches are
performed with the L-BFGS algorithm [9].

The results are given in Appendix A. Every test function is presented in a separate
table. For each method we report the percentage of successes and the average number of
local searches for each success. For trials without success the number of local searches for
success is set to ∞. The average number of local searches for success is a measure of the
computational effort needed for finding the global optimum.

The most notable difference between the trust-region scheme and ALSO is the number
of local searches for success. For ALSO, this number is very sensitive to the initial trust-
region choice and typically varies by one or two orders of magnitude. For instance, for
Ackley (n = 50) it varies from 288 to 48, 433; for Levy (n = 50) from 47 to 1, 412; and
for Schwefel (n = 5) from 4, 056 to 2, 235. The variance of the number of local searches
for our method is much more modest. Clearly, the new trust-region method is far less
sensitive to the choice of the initial radius.

We also observe that the new trust-region algorithm uses far fewer local searches than
does ALSO. In some cases, ALSO uses up to 20 times the number of local searches used
by our trust-region framework. This is an important improvement: it relates directly to
the amount of time a user needs to wait for the global minimum.

At the same time, the total number of successes does not deteriorate with the new
trust-region algorithm compared to ALSO. We suspect the reason is that ALSO is a
nonmonotone method that continues to move the center of the trust-region even during
unsuccessful iterations. In this way it appears to be more suitable for global exploration.
We are experimenting with a new nonmonotone version of our method.

Comparing our results with AMBH, we conclude that, in general, we are more suc-
cessful, but our algorithm seems to be less effective on Ackley and Levy. In particular,
the number of local searches is in general larger. One reason for the better performances
of AMBH is that the trust-region radius is chosen in such a way as to optimize the perfor-
mances of MBH. Another reason is probably related to the different way of updating the
radius: in AMBH the radius is updated by adding/subtracting a constant, whereas our
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algorithm multiplies/divides the trust-region radius. AMBH can find the optimal value
of the trust-region radius for MBH more easily.
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Figure 4: Performance profile of the success rate

The detailed results of Tables 1–10 are summarized in the performance profiles (see [4])
in Figures 4 and 5. The plots are generated by regarding every initial trust-region radius
and every problem as a separate run. We form the ratio of the performance measure
perf(s, r) of solver s on run r divided by the best performance for problem s, and take its
base 2 logarithm:

log2





perf(s, r)

min
s

perf(s, r)



 .

By sorting these ratios in ascending order for every solver, the resulting plot can be
interpreted as the probability distribution that solver s performs within a given multiple
of the best solver.

Figure 4 compares the success rates of the four solvers. To apply the performance
profile, we take the reciprocal of the success rates in Tables 1–10 and set 1/0 to 108. In
this way, the data is consistent with the performance profile idea that smaller values are
better. We can interpret the plots in Figure 4 as a probability distribution that a solver
has a success rate at worst a factor 2−x of the best solver. We observe that ALSO and
TRF are more robust and have better success rates than do AMBH and MBH. TRF is
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Figure 5: Performance profile of the average number of local searches

slightly more robust than ALSO, a result that shows that embedding ALSO within a
trust-region framework did not deteriorate robustness of the solver.

In Figure 5 we compare the average number of local searches per successful solve. The
plot represents a probability distribution that a solver solves a problem within a factor of
at most 2x of the fastest solve. The plot clearly shows that the new TRF outperforms all
other solvers. We also observe that ALSO is faster than AMBH, which in turn is faster
than MBH.

5 Conclusions

We presented a two-phase procedure for the global optimization of funnel functions. The
approach builds on ALSO [2] and combines sampling with local searches. ALSO con-
structs a local smooth model from the samples by applying Gaussian smoothing. We
demonstrated how to embed ALSO within a trust-region framework that adaptively up-
dates the sample radius.

To extend the trust-region framework to global optimization, we introduced the con-
cept of global quality, which triggers a model improvement step. Global quality measures
the largest number of samples that have the same objective value and stem from the same
basin of attraction. If global quality is large, then a model improvement step removes all
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but one sample from the largest set and generates a new set of uniform samples.
We compared our algorithm to ALSO and variants of monotone basin hopping (MBH).

The new algorithm is more robust than ALSO and MBH on a range of test problems, and
up to 20 times faster in terms of the number of local searches it requires per successful
run.
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A Tables of Numerical Results

Table 1: Rastrigin, n = 20
Percentage of Successes Average Local Searches

∆ MBH AMBH ALSO TRF MBH AMBH ALSO TRF
1.0 0.0 0.6 100.0 77.8 ∞ 188833 1776 652
1.2 75.8 89.1 100.0 83.4 3020 1960 1079 602
1.4 99.8 92.5 100.0 84.3 510 916 475 577
1.6 98.2 87.3 98.2 80.8 596 987 513 591
1.8 32.1 15.2 73.9 87.5 3027 7711 864 519

Table 2: Rastrigin, n = 50
Percentage of Successes Average Local Searches

∆ MBH AMBH ALSO TRF MBH AMBH ALSO TRF
1.8 0.0 0.0 99.0 48.0 ∞ ∞ 6060 2952
2.0 83.0 49.2 91.4 46.6 2444 6459 2174 4363
2.2 94.5 74.5 58.0 51.5 1223 2644 2249 2173
2.4 18.7 4.2 15.2 49.6 12010 63048 10059 3940
2.6 0.0 0.0 2.7 50.6 ∞ ∞ 59198 7026

Table 3: Levy, n = 20
Percentage of Successes Average Local Searches

∆ MBH AMBH ALSO TRF MBH AMBH ALSO TRF
0.8 30.4 76.2 100.0 99.2 2900 34 451 120
1.0 98.9 82.5 100.0 99.3 1028 31 320 110
1.2 100.0 93.5 100.0 100.0 99 25 96 80
1.4 100.0 99.8 100.0 100.0 33 20 33 32
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Table 4: Levy, n = 50
Percentage of Successes Average Local Searches

∆ MBH AMBH ALSO TRF MBH AMBH ALSO TRF
1.0 26.8 38.4 36.5 98.3 755 60 1412 331
1.2 30.4 39.1 47.9 99.0 1330 51 1539 293
1.6 95.5 55.8 98.6 99.2 1240 45 970 169
2.0 100.0 97.1 100.0 100.0 47 22 47 45

Table 5: Ackley, n = 20
Percentage of Successes Average Local Searches

∆ MBH AMBH ALSO TRF MBH AMBH ALSO TRF
1.0 0.0 88.0 100.0 100.0 ∞ 381 7844 654
1.4 100.0 99.6 100.0 100.0 793 374 791 693
1.8 100.0 100.0 100.0 100.0 293 346 293 292
2.2 100.0 100.0 100.0 100.0 274 345 275 274
3.5 11.5 100.0 69.1 100.0 7926 338 1329 578

Table 6: Ackley, n = 50
Percentage of Successes Average Local Searches

∆ MBH AMBH ALSO TRF MBH AMBH ALSO TRF
1.4 0.0 67.5 99.8 100.0 ∞ 511 48433 2167
1.8 56.6 69.5 100.0 100.0 68965 538 19035 781
2.2 100.0 100.0 100.0 100.0 601 517 601 600
3.5 100.0 100.0 100.0 100.0 282 490 288 282
3.9 81.5 100.0 99.9 100.0 1013 498 654 613

Table 7: Schwefel, n=5
Percentage of Successes Average Local Searches

∆ MBH AMBH ALSO TRF MBH AMBH ALSO TRF
80 0.1 0.2 2.8 11.9 305582 3500 23714 1076

140 4.8 2.7 32.7 11.5 2688 667 1179 748
160 4.4 2.7 49.8 12.5 1953 778 981 656
220 9.8 4.1 77.4 10.6 1342 537 807 623
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Table 8: Schwefel, n=10
Percentage of Successes Average Local Searches

∆ MBH AMBH ALSO TRF MBH AMBH ALSO TRF
160 0.1 0.1 1.3 4.5 751440 44000 22359 3156
220 0.0 0.1 6.6 3.7 ∞ 49000 5767 2378
280 0.3 0.1 18.7 3.0 30444 49000 4056 2667

Table 9: Scaled Rastrigin, n = 20
Percentage of Successes Average Local Searches

∆ MBH AMBH ALSO TRF MBH AMBH ALSO TRF
0.6 0.0 0.0 57.2 1.0 ∞ ∞ 7644 76400
0.8 0.0 0.0 52.8 0.3 ∞ ∞ 4873 265333
1.0 0.0 0.0 0.3 1.4 ∞ ∞ 444273 46143
1.2 0.0 0.0 0.6 5.2 ∞ ∞ 202572 9981
1.4 0.0 0.0 3.1 8.1 ∞ ∞ 34112 6148
1.6 0.0 0.0 5.8 13.2 ∞ ∞ 20014 4303

Table 10: Scaled Rastrigin, n = 50
Percentage of Successes Average Local Searches

∆ MBH AMBH ALSO TRF MBH AMBH ALSO TRF
1.6 0.0 0.0 8.1 12.0 ∞ ∞ 87546 59117
1.8 0.0 0.0 1.6 11.3 ∞ ∞ 346525 63522
2.2 0.0 0.0 0.0 12.3 ∞ ∞ ∞ 44325
2.6 0.0 0.0 0.0 11.8 ∞ ∞ ∞ 49415


