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Modeling without Categorical Variables: A Mixed-Integer Nonlinear

Program for the Optimization of Thermal Insulation Systems*

KUMAR ABHISHEK' , SYEN LEYFFER', AND JEFFREY T. LINDEROTH?

June 21, 2007

Abstract

Optimal design applications are often modeled by usinggoaieal variables to express discrete design
decisions, such as material types. A disadvantage of usitegjarical variables is the lack of continu-
ous relaxations, which precludes the use of modern integgramming techniques. We show how to
express categorical variables with standard integer nrogl#chniques, and we illustrate this approach
on a load-bearing thermal insulation system. The systemistaof a number of insulators of different
materials and intercepts that minimize the heat flow fromtashdace to a cold surface. Our new model
allows us to employ black-box modeling languages and sslaed illustrates the interplay between in-
teger and nonlinear modeling techniques. We present noatesiperience that illustrates the advantage

of the standard integer model.

Keywords: Mixed integer nonlinear programming, modeling with binaayiables, thermal insulation

systems, categorical variables.

AMS-M SC2000: 90C11, 90C30, 90C90

1 Introduction

Recently, researchers have expressed interest in mixed-variable @piimiproblems (MVPs). Problems
of this class involvecategorical variableswhich are constrained to take values from a finite set of non-
numerical values. MVPs have been used to design load-bearing thesuktion systems, where the cat-

egorical variables model the type of material chosen for the insulatokdkfaras et al., 2001; Abramson,
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2004). Categorical variables are a convenient way to move from a simutatib that requires input such
as material properties to an optimization tool. On the other hand, the predesategorical variables pre-
cludes the use of modern integer optimization techniques, because costielaxations of the categorical
decisions are not readily available.

We show how categorical variables can be replaced by standard imtegeting techniques. We illus-
trate our approach on an example of thermal insulation systems and emghasiteraction of integer and
nonlinear modeling techniques. Our approach provides a blueprirgflammnulating other design problems
that involve categorical variables, for example the design of nanomatéfiad® et al., 2005), and in op-
timal sensor placement (Beal et al., 2006). We believe that the concludidhis paper also are relevant
to application scientists who develop simulation tools. In our view it is important tadecoptimization
considerations in simulation tools from the start.

This paper is organized as follows. We start by reviewing the categarécible formulation of a
thermal insulation system. Next, we introduce the integer and nonlinear modedhmgdgees that allow us
to reformulate this model as a standard mixed integer nonlinear programmiiid-fWlimodel. We obtain
three models with varying degree of smoothness and comment on the relatiteeohthese formulations.

Numerical experiments illustrating the benefit of our new approach asemied.

2 Load-Bearing Thermal Insulation Design

We consider the design of a load-bearing thermal insulation system. Thensyses a series of heat
intercepts and insulators to minimize the heat flow from a hot surface to awdéts. The objective is to
minimize the power required to maintain the heat intercepts at certain tempesiutes the cold surface
can be maintained at the required temperature; see Figure 1. The insut@®iafg chosen from a sét
of materials and are modeled as categorical variables.

The model is described in detail by Abramson (2004), who extends thel gigde by Kokkolaras et al.
(2001) by adding load-bearing requirements. Thus, the insulatorssatieahanical supports and must
satisfy certain load-bearing constraints involving quantities such as thexpahsion, system mass, and

stress.

2.1 Model Parametersand Data

The parameters and data of the model are summarized in/Table 1.
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Figure 1: lllustration of the thermal insulation system.
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Table 1: Model Parameters and Data

Parameter Description Value in Case Study Instance

C(t;) thermodynamic cycle efficiency of intercejpsee (2.1)

e(t,m)  thermal expansion of insulatet € M at temperature

F system load 250 kN
k(t,m)  thermal conductivity of insulatar € M at temperature
L system length 10cm
M maximum system mass 10 kg
M set of insulator materials see Table 2
N maximum number of intercepts 10
Tc cold surface temperature 4.2K
Ty hot surface temperature 300K
) maximum thermal expansion 5%
p(m) density of insulatorn € M see Table 2

o(t,m) tensile yield strength of insulater € M at temperature
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The thermodynamic cycle efficiency of intercépg a piecewise constant function of the temperature:
5 ift; <4.2K,
Clti) =94 if42K <t; <7IK, i=1,...,n (2.1)

2.5 ift; > 71K.
The types of insulators are nylon, Teflon, epoxy(normal), epoxy@|a&@063-T5 aluminum, 1020 low-

carbon steel, and 304 stainless steel. Their corresponding densitiesare given in Table 2. Data for the

Table 2: Densities for the Various Insulator Materials

Nylon Teflon Epoxy-normal Epoxy-plane Aluminum Steel Carbon-steel

0.0010 0.0015 0.0018 0.0018 0.0027 0.0078 0.0078

thermal conductivityk (¢, m), tensile yield strengthy (¢, m), and thermal expansion(t, m) are given in
the form of look-up tables for every material € M and a discrete set of temperature valgesAbramson
(2004) and Kokkolaras et al. (2001) have fitted cubic splines to the datavale a smooth approximation
of these functions for every type of material. Our tables are also made ldeadlectronically as AMPL

(Fourer et al., 2003) data files.

2.2 Model Variables

We summarize the definition of the model variables in Table 3. Throughout, dex ithe intercepts by
subscriptsi = 0,...,n + 1, where indexi = 0 corresponds to the cold surface and index n + 1

corresponds to the hot surface. The material types are indexed bgrgibj = 1, ..., |[M|.

Table 3: Model Variables

Variable Description

a; area ofinsulatot = 1,...,n+1
m; materialm; € M of insulatori =1,... ,n+1

n number of interceptsy € {1,2,..., N}

G heat flow from intercepitoi — 1,fori =1,...,n+1
t; temperature at intercept=0,...,n+ 1
Ax; thermal expansion of layér=1,...,n+ 1
Power is applied at each intercepat its cooling temperaturg,i = 1,...,n. The gap between the

intercepts — 1 andji is filled in with insulator of thickness;. The temperature of the hot surface is given
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by t,+1 = Ty and that of the cold surface by = T¢. The insulators used in the system may have
different cross-sectional areas The design of the system involves choosing the number of interegpts
their cooling temperatures, the insulator types;, their thickness:; and the cross-sectional aregs We
include the thermal expansionz;/x; for convenience but note that it is later eliminated from the model.
The presence of categorical variables such as insulator typ@sd the number of insulators make the

model into a mixed-variable program.

2.3 Mixed-Variable Optimization Model

We can now state the complete mixed-variable optimization model.

n Ty
o) (2 —1) - (g1 — ¢ 2.2
minimize 30 (1) -l -0 (2.2)
a; ti
subjectto ¢; = —/ k(t,m;)dt, i=1,...,n+1 (2.3)
i Jti
Zp(mi)aimi <M (2.4)
i=1
F . .
— < g, =min{o(t,m;) : ti.1 <t<t;}, i=1,....,n+1 (2.5)
a;

> (5) () =15 @9

Az, Ji et ma)k(t, my)dt

” , i=1,....n (2.7)
Z; ftil k(t, m;)dt
d ai=L (2.8)
i=1
ti—l Stigti_H, izl,...,n (29)
to=T¢c and ther1 =Ty (2.10)
z; >0, a; >0, i=1,...,n+1 (2.11)

The model contains five classes of nonlinear constraints. Equation @i8gsl the heat flow from
intercepti to i — 1, which is governed by Fourier’s law. Equation (2.4) is the mass consthihe system.
The stress of the system must not exceed the specifiedHoadhich is modeled by Equatioh (2.5). The
thermal expansion constraint is modeled by Equation (2.6), with the thernmﬂhcdon% defined by the
constraint/(2.7). In addition, the model contains some linear constraing: d@nstrains the thickness of
the design, (2.9) orders the temperatures, and [(2.10) fixes the tempsraittine cold and hot surface. We

note that the latter two constraints imply that < ¢, < Ty fori=0,...,N + 1.
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Abramson|(2004) uses a different objective function inrtds | ab implementation, namely,

n+1
fo = ZQZ' <C(tz’1)(ng —1)— C(ti)(% - 1)) ~ (2.12)
i=1 v !

We use this objective function from now on for the purpose of modeling@ancbmparing our results with
the work of Abramson.

The integrals in (2.3) and (2.7) are approximated by Simpson’s rule, wenaaterial specific functions
e(t, m;) andk(t, m;) are derived from cubic spline interpolation of tabulated data.

Solving the thermal insulation problem involves evaluating a nonlinear obgefttivction and nonlinear
constraints over a variable space that includes categorical varialblesnddel is solved by using a pattern-
search algorithm (Audet and Dennis, 2004, 2000; Abramson et al4)20Che computational burden of
pattern-search techniques grows with the number of variables, and thimddivates the removal of as
many defined variables as possible. For example, the fixed varigpbbesd ¢, ., are removed. We can
also remove the thermal expansion variatﬁ;éis by substituting((2.7) into (216). In addition, it is argued in
(Abramson, 2004) that the stress constraint must be binding at a soliéoaby implying that,; = 55 and

allowing us to remove the variables.

2.4 Challenges of the MVP Model

The MVP model((2.2)+(2.10) introduces a number of difficulties that appeaake it impossible to employ

standard MINLP techniques to solve the problem:

1. The model contains a number of categorical variables that do not atiotinaous relaxations. For
example, it is not clear how to relax the condition that the materials be chasan\t. Worse, the
variablen appears as the upper limit in the summation, which makes constraints such af2(2)3)
(2.6), and the objective function ((2.2) or (2.12)) discontinuous. Megg by changing:, we also
change the number of variablgsand so forth that appear in the model. In this sense, evelgfines

a different model.

2. There exists no analytic closed-form expression for the integrals3j) §2d (2.7). Instead, the in-
tegrals are evaluated by using Simpson’s rule. Thus, derivativedfiicaltto compute, and hence

derivative-free optimization techniques are used.

3. Constraint (2.5) contains a minimization for which no closed-form espragxists. The presence of

this constraint results in a bilevel optimization problem that is considerabtieh&w solve. We note
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that this constraint can be written equivalently as an infinite set constrgirggiring that

F
— Sai(t,mi), Vit € [ti—luti]7 Vi=1,...,n+ 1.
aj

4. The objective function is discontinuous because of the presence thitimodynamic cycle efficiency

coefficientsC'(¢;); see (2.1). This discontinuity can cause derivative-based NLP sdivéail.

Each of these points is a potential death-blow for standard optimization tegwidVorse, even though
pattern-search techniques can be applied, the discontinuities imply that it istainpmssible to verify the
optimality of a solution returned by the pattern-search method.

Another drawback of pattern-search techniques is the fact that thigyopfathe solution depends on
the definition of the neighborhood for the search. It is not hard to asctsexamples where the MVP

pattern-search (Audet and Dennis, 2000) fails to find the minimum. Consider
minimize q(z) := (s1(cx1 — s12))% + (s2(sx1 — cx2))®  subjecttozy,z integer

where, for examples; = 8, s = 1 are scaling parameters ang= cos(7/8), s = sin(7/8) are rotational
parameters. Figure 2 illustrates this situation: the blue points all correspgaitésn-optimal solutions,

yet clearly only one of them corresponds to the local/global minimun{.of.

Figure 2: Example illustrating failure of MVP pattern-search.

Next, we show how each of these challenges can be tackled by combiniggriated nonlinear mod-
eling techniques. These reformulations result in a standard MINLP thdbreulate in the modeling
language AMPL| (Fourer et al., 2003). The new formulation allows us tweleutting planes and employ
more powerful optimization techniques. In addition, we believe that by usimpdeling language, our

model becomes more transparent, ultimately enabling the design of larger amdontplex systems.
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3 Modeling Categorical Variableswith Binary Variables

We start by showing that the categorical variables can be replaced lggiintariables, and we develop a
derivative-free model of thermal insulation that allows relaxations to bgpcted. We use binary indicator
variablesy; to remove the variable (the number of intercepts) from the summation bound in/(2.4) and
(2.6) and to eliminate the dependence of the number of decision variables dedision variable;; we

use binary decision variables to denote the existence of layer This is a natural reformulation and not
necessarily inefficient in practice, since the maximum number of inter@épsstypically small. For the
specific instance we solve in Section/é,= 20. This reformulation is made by introducing the following

inequality system:

N+1
dyi = n+l (3.13)
i=1
viri < ¥ i=1,....,N (3.14)

y; € {0,1}, i=1,...,N+1.

The inequalities (3.14) order the intercepts and ensure that only caiveeiotercepts in this ordering can
exist. The variable upper bound inequalities (3.15) ensure that therestivg thickness to the layer only
if the layer is chosen to exist. The inequalities (3.15) can be replaced by thesimanger set of inequalities
N+1
d wy<Lys  i=1,...,N+1 (3.16)
Jj=t
In fact, Theorem 3.1 establishes that the inequalities (3.16) are facets obtivex hull of the inequality

system of the reformulation.
Theorem 3.1. Let
P = conv ({(x,y) eRVF BV |y <y i=1,...,N, z <Ly i= 1,...,N+1}).

Then
N+1

Z x; < Ly;
Jj=t
defines a facet af foreachi =1,2,..., N + 1.

Proof. Assume that for each= 1,..., N + 1 there is an inequality’z + 'y < = thatis valid forP and

satisfies

N+1
def ; ;  def »
F, % {(x,y) € P| ) wj =Ly} C{(z,y) € Pla'a+ 'y = mp} = F.

j=i
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In this case, we will show that'z + piy < wg is a scalar multiple of the inequalitS_/fJﬁV:tl x; < Ly; which

implies thatzf:tlxj < Ly; is a facet-defining inequality foP. (See (Nemhauser and Wolsey, 1988),
Theorem 1.4.3.5 for a proof of this result.)

First note that for each= 1,..., N + 1, the point(0,0) € F;, so also the origir{0,0) € £}, which
implies thatr?(0) + 1 (0) = 7§, or

=0 Vi=1,...,N+1. (3.17)

For anyi > 2, the point(0, e;) € F;. Since this point is also it;, we have thap} = «f, = 0 Vi > 2. For

anyi > 3, the point(0, e; + e2) € F;, sou} + ub = m Vi > 3. Similarly, one can establish that
ph=0 Vi=2,...,N+1, Yk <i—1. (3.18)

Foreveryi = 1,..., N+1the point(Le;, Y }_; e;) € Fi. Thisimplies that for each Lmj+>"_; i} = =,
but by (3.18) and (3.17), this implies that

pi=—Lr! Vi=1,...,N+1. (3.19)

)

Foranyi=2,...,N +1andforanyk =1,...,i — 1, the point

i

k
Le; + ZLej,Zej € Fi,
j=1

J=1

which implies that
k i
LZTI';- + L —|—Z,u§- =0.
j=1 j=1

This, coupled with[(3.18) and (3.17), implies that

=0 Vi=2,....N+1, k=1,...,i—1. (3.20)
J
j=1

Using (3.20) sequentially for = 1,2,...,7 — 1, one can see that
=0 Vi=2,...,N+1, k=1,...,i— 1. (3.21)
Foranyi=1,...,Nandforanyk =i+ 1,..., N + 1, the following three points lie on the fade:
o (Lei, Yoy ¢),
o (Lep, Y5, €j), and

o (L/2e;, L/2ex, 35 €)).
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Since these points also then must lielgrand the relations (3.18) and (3.17) hold, this fact implies that the

equations
Lmi+p; = 0
Lmp+ Y pi = 0
j=1

k
L/2x) + L/2m) + > pi = 0

j=1

hold, which in turn implies that
m=nl Yi=1,...,N, k=i+1,...,N+1 (3.22)

k .
> ph=0 Vi=1,..., N k=i+1,... N+L (3.23)

j=i+1
Using the relation (3.23) witk = ¢ + 1, one can establish thal;iH = 0. Then, using (3.23) subsequently
with k =7+ 2,... N + 1, one can establish that

pi=0 Yi=1,...,N, k=i+1,...,N+1. (3.24)

Collecting the relations (3.17), (3.18), (3.19), (3.21), (3.22), and J3\i& see that indeed the inequality

N+1

wiz 4+ ply < wf is a scalar multiple of the inequaliQ:j:i xj < Ly; foreveryi =1,2,..., N + 1, which

completes the proof. O

Having indicator variableg; representing the existence of layiealso makes it convenient to model
material properties. We let; = 1 if and only if thej** material is chosen for layer(where the ordering
of the material is arbitrary). Otherwise, we sgt = 0. We can use the following constraints to model the

fact that only existing layers choose a material type.

| M|
Zzij:yi, t1=1,....,N+1. (3.25)
j=1

The constraints (2.8), (2.4), and (2.6) that invalvas a summation limit can now be written equivalently
by using the new summation boundand the indicator variablag.
Next, we model the constraints involving data functions such as thermalictwity (¢, m) by observ-

ing that
| M|

k(t,mi) =Y zigh(t,my),
j=1
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where (with some abuse of notatiom); is the material used in layer while m; is the j** material in
M. We can now remove the categorical variables from the mixed-variablelrandelefine the following

mixed-integer model:

™ T T
minimize Z qiYi <C(t¢_1)(t—H —-1)— C’(tz)(t—H - 1)> := CoolingPower (3.26)
P i—1 i
Q; t; M|
subjectto ¢; = x—’/ > zigk(t,mg)dt, i=1,...N+1 (3.27)
i1 T
N+1|M|
Z ijzijaia:i < M, (328)
i=1 j=1
F M|
a—i§6i:rr17fin leija(t,mj) i <t<t;p, 1=1,....,n+1 (3.29)
=
N+1
i < L—, 3.30
¢:1<xi>x_ 100 (3.30)
i M
N Z'j:l‘ zije(t,m;)k(t, m;)dt
— = o M i=1,...,N (3.32)
T Job | 305 igh(t,my)dt
N+1
d wi=1, (3.32)
i=1
xi>ely;, 1=1,...,N+1, (3.33)
N+1
> wmi <Ly, i=1,...,N+1, (3.34)
j=i
ti_ti—lzeyi, 121N+1 (335)
to=Tc (3.36)
ti>Ty-(1-yiy1), i=1,...,N (3.37)
Aminyi < a; < Amaxyi, 1=1...N+1, (3.38)

wheree > 0 is a small constant ang; is the density of thg?" material.

In addition to the constraints (3.34), which ensure that the width of layer = 0, is zero whenever
that layer does not exist, we add a variable lower bound (3.33). Equ&tidn) fixes the temperaturéesof
the layers that do not exist. This constraint ensures that for the ntingleyersj > n + 1, the term in the
objective function is canceled, becadse/t; — 1 =0, forall j > n + 1 (t; = Ty). In addition, we model
the condition that the temperatures at the intercepts are nondecrdasing (1) by insisting that they are

separated by at least a small positive amount (again this helps avoiduspsioioitions) by Equation (3.35).



12 Kumar Abhishek, Sven Leyffer, and Jeffrey T. Linderoth

Finally, the absence of a layer is modeled with (3.38), which sets thesateazero, for any nonexisting
layer,i > n + 2.

Our model is a mixed-integer simulation model, owing to the presence of the inngnization and
the integrals. Below we show that we can further refine this model by dengl@ fully explicit MINLP

model.

4 A MINLP Model for Thermal Insulation Design

In this section we show that the simulation model of the previous section caoribelated as a smooth

MINLP that can be expressed by using standard modeling tools such B AM

4.1 Avoiding Bilevel Optimization Problems

We start by showing that the structure of the data allows us to avoid the bdewstraints/(2.5). It is
argued in (Abramson, 2004) that the relationship betwgend the power applied at an interceggiven
asC(t;) (7;—H — ) - (gi+1 — ¢;)) imply that the constraints (2.5) are always binding and, thus, the area
variables are removed from the model. We are not sure that this arguwlestih general; instead, we
proceed in a different way.

We introduce a finer piecewise linear approximation of the détam) by adding data points from the

cubic spline interpolation used by Abramson (2004), denoted by
To=T <Ty<...<Tp =Ty, (4.1)

whereD is the number of discretization points (typically 20). Next, we approximate the miaiioizin

(2.5) by requiring that the bound hold at temperatures at each interdaj.\ile introduce the constraints

Fzij < a; <U(Tr,mj) + 7Trs1,my) = 0 T’m])(ti - Tr)> : (4.2)
Tr+1 - Tr
for all materialsj = 1,...,|M|, i = 1,...,N + 1, where the index is such thatl,, < ¢; < T,4;. We

note that for most materials¢, m) is monotonic irt, and we need to enforce this bound only at the upper
end of each intercept. However, the epoxy materials do not have monet@nie), and we must therefore

enforce the bounds at both the lower and the upper intercept. We do tadding the constraints &t ;

o(Try1,m5) — o(T;, my)
Tr+1 - Tr

inj < a; <O’(T7~, mj) + (tifl - Tr)) ’ (43)

for all materialsm; € {epoxy-nepoxy-g andi = 1,..., N + 1, where the index is such thatl; <

t;—1 < T,+1. The presence of the conditional statement involving complicates these constraints.
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A convenient way to model the conditional relationstip< ¢;_1 < T, in (4.2) is as the following

summation.

D
Fzij < a Z (U(Tr,mj) +

r=1
Tr<t;i—1<Tr41

o(Tit1,my) — o(T, my)
Tr+1 - Tr

(t; — T,,)> . (4.4)

Similarly, we replace (4.3) by

D
Fzi; <a; < Z <U(Tr,mj) +

r=1
Tr<ti1<Tr4+1

0(Try1,my) — o(T7, my)
Tr+1 =T

(i — m) . @45)

We note that only a single term in this summation will be active. The resulting eamsits continuous but
not smooth, ag; passes through the breakpoints. However, this honsmoothness dagsprat to cause
any problems for the NLP solvers. In Section 5 we provide a reformulafitilese nonsmooth constraints

that employs integer variables and a finer discretizatidfi.of

4.2 Evaluation of Integrals

The model involves integrals over the data functidfis m) andk(t,m) - e(t,m) in (2.3) and|((2.7). In
(Abramson, 2004) these integrals are evaluated by using Simpson's/hiiddy, is consistent with the piece-
wise cubic spline interpolation of the data. However, Simpson’s rule addmearity and would be difficult
to implement in a modeling language. Instead, we add more data points consisitethie cubic spline in-

terpolation as in (4.1), and we evaluate the integrals using the trapezdilahrthe data points
(T, k(Ty,m;)) and (T, k(T,m;) - e(Tr,m;j)) .

We note that adding more data points does not increase the number ofesirathe model and greatly
reduces the nonlinearity of the constraints, without sacrificing accuescgan be seen from Figure 3,
which shows the cubic spline versus the piecewise linear approximatib(t,gfpoxy-p. The additional
data points clearly improve the fidelity of the piecewise linear approximatiorgrabe seen from the dotted
line that represents a piecewise linear interpolation of the original data points

In general, the temperatures at the interceptsiill not take the values used in the discretizati@i,
which we must take into account when calculating the values of the integradsireH illustrates our
approach. For a given integration rarige 1, t;|, we split the integral into three distinct areas (A, B, and D

in Figure 4) depending on the relative position of the variables ¢; and the discretization poini.. This
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x10° Plot of Thermal Conductivity vs. Temperature for Epoxy-Plane
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Figure 3: Cubic spline versus piecewise linear approximatios(ofepoxy-p.

partition leads to the following disjoint index sets:

B := {1 <r<D-1: [TmTr—i-l] C [ti—l,ti]} (

A= {1 <r<D-1:t;_1€ (Tr,TrJrl) and ¢; ZTT+1} ( (4.6)

Di={1<r<D-1:t;€(T,,Top1) andt,_y <T;} '
(

E={1<r<D—1:(Tp,Trs1) D [ti—1, 4]}

where the sef corresponds to the case whete 1,t;] falls entirely into a single discretization interval.
In each case, we approximate the integrals using the trapezoidal rule.oté/¢hat in case (B), we can

precompute this approximation as parameters

Trt1

Tr+1

K, ; %/ k(t,m;)dt and E, ; x/ k(t,mj)e(t,m;)dt
t:Tr tZTT

for each interva[T;., T,,1] and for all materialsn;.

Next, we introduce notation to denote the trapezoidal approximations in (asd®), and (E). For

some functiory (¢, m;) we denote

g(TTJ m]) - g(TT—lvmj)
TT - Tr—l

1
Ag,mj,ritic1) == = (g(Tr_l,mj) +

- (11 = Troa) 4 9(Tmy) ) (T, =tic1),

gL, mj) — g(Try1,m;)

‘D(gamj77‘7ti) = T *T+1
T T

<9(Tr+17 m;) + (Tr1 — t:) + 9(Tr, mj)> (Tr41 — ti),

N[ —
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Ae(t,m)

| B

Figure 4: lllustration of the integral computation.

and

Trv1,m;)—g(Tr,m;
E(ga mj>ra tz) = % (g(Tr‘amj) + o +1TT:L_:1)_%(T mJ) (tifl - Tr‘)

+9(Tr,my) + g(TTH’T:nfl):%(TTT’mJ) (ti —T») +9(T;, mj)) (Ti — ti—1)

as the trapezoidal approximation in the areas identified by thedkels and€, respectively. Introducing
variablesv;; andw;; that approximate
t; t;
Vij %/ k(t,m;)dt, w;; z/ k(t,m;)e(t,m;)dt,
ti—1 ti—1

we can express;; andw;; as

vij = ZKTJ' + Z A(k,mj, roti—1) + Z D(k,mj, r t;) + ZE(k,mj,r, t;) 4.7

reB reA reD re€

and

Wij = ZETJ' + Z A(/{? Se, My, T, ti_1> + Z D(k -e,mg, T, ti) + ZE(k -e,mj, T, ti). (48)
reB reA reD ref

The introduction ofv;;, w;; allows us to formulate the load-bearing thermal insulation design MVP as a
standard MINLP. Before proceeding, however, we simplify some of grdimear expressions further to
avoid division by zero that can confound standard NLP softwares; e rewrite (2.3) as

M|

q; T; :aiZzijvij, i=1,...,N+1. (4.9)
=1

We introduce a new variable; = Ax;/z; to model the thermal expansion of each layer, and we rewrite

@.7)as
M| M|

uiZzijvij :Zzijwzj, i=1,...,N+ 1. (4.10)
Jj=1 Jj=1
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Thus, we can write (3.30) as
N+1
Z wis < L0 (4.11)
100

This reformulation removes the categorlcal varlabies M from the model and leaves us with a standard

MINLP given as follows.

N+1 T T
minimize Z qiYi ( ti—1) —-1)-C(t Z)(t—H — 1)) := Cooling Power

2—1 7

subjectto (3.13), (3.14), (3.16), (3.29), (3.32), (3.29), (3.33
(3.37,(3.39,(3.39), (4.9), (4.10, (4.1])

(4.4),(4.7),(48, Vji=1,... M|, i=1,...,N+1
(4.5, Vm; € {epoxy-nepoxy-p, i=1,...,N+1 (P-0)

to=Tc and tyi1 =Ty
€{0,1}, Vi=1,...,N+1
2ij €{0,1}, Vi=1,....N+1,j=1,...,|M|
Tiy @iy Ui, Vij, Wij, Nyt a; € R
We note that this model contains discontinuous objective coefficients. Wexshow how to reformulate

these discontinuous objective coefficients to arrive at a smoother MINLP

4.3 Modeling a Discontinuous Function with Binary Variables

The discontinuous thermodynamic cycle efficiency coeffic@(t;) in (2.1) can be replaced by a smooth
relationship. We start by introducing additional binary variabigse {0,1}, £ = 1,...,3 to model the

following implications.

t; < 4.2 = sy =1 (412)
42<t; <7l = 89, =1 (4.13)
t; > 71 = s3,=1 (4.14)

Letting e > 0 be a small constant that models the strict inequalitiess in (2.1), we can model theaiops
(4.12) and((4.14) as
t; — (TC —4.2 — G)Sli > 42+4¢ (4.15)

— Ty —Tl+4+¢€)s3; < 71—k, (4.16)
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respectively. Condition (4.13) is equivalent to
So, =0 = t; <42 ort; >T71,

which we model as follows:

s1its2i+s3 = 1 (4.17)
t; + (TH — 4.2)81i < Ty (4.18)
t; — (71 - Tc)sig Z Tc. (419)

Equation((4.17) models the implication that eagls in exactly one interval. The two inequalities (4.18)
and (4.19) fixs;;, € {0, 1} given anyt;, and constrain, for any valid choice of;;, € {0,1}. The approach

presented here is fairly general and applies to other piecewise funasomelI.

4.4 A Piecewise Smooth MINLP Model

The smooth MINLP model is now given as follows.

N+1

T
minimize Y gy ((531,i—1 +4s2i-1 +2.5s3,-1) (tHl - 1>
i=1 -

T
— (5814 + 4s2; + 2.5s3;) (t_H — 1>> := CoolingPower

(2

subjectto (3.13), (3.14), (3.16), (3.25), (3.32, (3.28), (3.33
(3.37), (3.35), (3.39), (4.9), (4.10),
(4.7),(4.8,(4.4, Vi=1,...., M|, i=1,...,.N+1
(4.5, Vm; € {epoxy-nepoxy-p, i =1,...,N +1 (P-1)

(4.19), (4.16), (4.17), (418, (4.19, Vi=1,...,N+1
to=Tc and tyy1 =Ty
y; €{0,1}, Vi=1,...,N+1
2i; €{0,1}, Vi=1,....N+1,j=1,...,|M|,
spie{0,1}, Vi=1,...,N+1,k=1,...,3
Tiy @iy Ui, Vi, Wij, Nyt a5 € R
When we ran this model, we noticed that the objective funafienling Power can become negative,

which is a nonphysical solution. More specifically, solving a relaxatiorPef) at a node in a branch-and-

bound procedure can yield a negative solution. The reason for thas/ioehs that the variables,; now
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have fractional values, and thus the differences

((551,i1 + 4521+ 2.553,-1) (tle — 1> — (5s1; + 4s9; + 2.5s3;) (1;—]:[ - 1)) Vi=1,...,N+1
(4.20)
need not be non-negative. Thus we add the constftainting Power >= 0 to the models.
We note that model (P-1) is nonsmooth as a result of the presence dticnalstatements in constraints
(4.4), (4.5),/(4.7), and (4.8), which include summations that depend darigerature;. These nonsmooth
constraints may cause trouble for standard NLP solvers. We show in$6¢tiat we can solve such models

despite the presence of nonsmooth equations.

5 A Smooth MINLP M odel with Discretized Temperature

In this section we describe an alternative formulation of the thermal insulatiolelntttat assumes that we
select the temperatures at the interceptsrom a discrete set (4.1). This formulation may at first sight
seem more complicated, but it allows us to remove the nonsmoothness [mesedle! (P-1). We envisage
using a large number of discretization points (e.g. at one-degree leved) a¥sumption may seem strong.
However, we note that we can always use the discrete valugstofdiscover the optimal value of the
structure variables; andm; € M and then run an NLP to adjust the temperatures and thickness of the final
design. This simplification is justified by the fact that the solution of a MINLP iglty more sensitive to

the choice of the integer variables than to the choice of the continuous leariab

As before, we model the discrete choice of temperatures by introducigglS@riables,

D D
ti=>» diTy, 1= dip, dyp€{0,1}, Vi=0,...,N+1, (5.1)
r=1 r=1

whered;, = 1 if intercept: is kept at temperaturg., and0 otherwise. We note that the new variablgsare
a SOS-1, and so we need to go only to at megtD) branching levels in the tree, making this an efficient
reformulation.

Introducing a discrete set of temperatures simplifies the MINLP model in a@uofilvays. We start by
simplifying constraints (4.7) and (4.8). We precompute the integralgiofn ;) andk(t, m;)e(t, m;) over
[T, T,] as fixed parameters:

T. T-
Vrj ~ / k(t,mj)dt and WT]' ~ / k:(t,mj)e(t,mj)dt
Tl Tl
forallr=1,...,Dandj =1,...,|M|. Next, we use the identity

ti ti ti—1
Vi = / E(t,m;)dt = / k:(t,mj)dt—/ k(t, m;)dt

t=t;—1 t=T1 t=T1
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and observe that (5.1) implies

ti D

/ k(t,mj)dt = Zdzr/ k(t,m;)dt.
t=T1

Thus, equations (4.7) and (4.8) simplify to the following seliméar equations:
D D
vig = dipVej =Y dii1, Ve Vi=0,... N, j=1,...,|M]| (5.2)

D D
Wi = ZdiTWTj - Zdi_l,rer Vi = O,. . .,N, j == 1,7|M| (53)

r=1

Next, we show how (5.1) simplifies the objective function. First, we obsinae

TH . TH . D ) TH
() (Be) e

We can replace the binary variableg modeling the discontinuous objective coefficients by defining con-
stants
Y if T <4.2

Cri=44 if42K < T, < 71K , (5.5)
2.5 if T, > 71K

which replaceC(¢;) in the objective function. Combining (5.4) and (5.5), we reformulate the tixgec

function as

N+1 D T
Z i (Z i—1,r — dir)Cyr <% - 1)) := CoolingPower.

r=1
The constraints that bound the temperature difference between ctwsdayers, [(3.35), can be ex-

pressed as binary inequalities betwegnandd;_ -

D

D
Zrdir Z Zrdifl,r_kyi’ Vi = 17"'7N+17 (56)
r=1 r=1

which implies that; > ¢;_; by at least one discretization difference. Similarly, we can expresdraaris

(3.37) as a discrete set of constraints:
diD Z (1—yi+1), Vi: 1,...,N. (57)

We next simplify the area stress constraints|(4.4) and (4.5). We startijing the bilevel constraint

(2.5) as an infinite set of constraints:

F <a;o(t,m;), Vte[ti—1,t], Vi=1,...,N+1
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We observe that the discrete range of the temperature variable allows arsnialdte this constraint as a

finite set of inequalities:
F <ajo(Ts,m;), Vs:ti1 <Ts<t;, Vi=1,...,N+1

We introduce the tensile yield strength; := o (T, m;) of each material at all discrete temperature values
to remove the dependence on the categorical variabie
M|
Fgaiz,zijosj, Vst 1 <Ts<t;, Vi=1,...,N+1.
j=1
We formulate the condition : t; 1 < Ty < t; using the SOS variables, as follows. First, we introduce

the following partial sums for notational convenience:

1 ifS:ti_lgTSSti

s s—1
Dis = E di—14 — § dip =
r=1 r=1

0 else
which follows from (5.1). Thus, we can write (2.5) as
| M
F<aiy zjog+(1=pis)Fuax Vs=1,..., D=1 Vi=1,...,N+1, (5.8)
j=1

whereFy,.x iS an upper bound oA

We can further tighten the formulation by modeling the implications

D
dip=1=> dj,=0 Vj=1...i—-1,i=1...N+1,r=1...D

S=r

T
dip=1=> djy=0 Vj=i+1..N+1,i=1...N+1,r=1...D,

s=1

which is modeled as the valid inequalities

i—1 D N+1 r

dis + dis<B(1—dy) Yi=1...N+1,r=1...D, (5.9)
>3 a3
J=1s=r J=1+1 s=

whereB = 2N is an upper bound on the left-hand side of the inequality.

The resulting model is a smooth MINLP, to which standard MINLP solution teci®es can now be
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applied to find a local solution.

N+1

D
~ (T
minimize g i ( E (di—1p — dir)C, <?H - 1)) := CoolingPower
r=1 r

=1

subjectto (3.13), (3.14), (3.16), (3.25), (3.32), (3.28), (3.33
(3.39), (4.9, (4.10, (4.12)
(5.3, (5.2), (5.3
(5.6),(5.7),(5.8), (5.9 (P-2)

to="T¢c and tN+1 =Ty

y; €{0,1}, Vi=1,... N+1
zi; €{0,1}, Vi=1,....N+1,j=1,...,|M|,
dip €{0,1}, Vi=1,....N+1,r=1,...,D,
Tiy Qiy Ui,y Vi, Wij, Nyt a; € R
Model (P-2) has fewer nonlinear constraints than either/ (P-0) o)) @hd is a smooth MINLP. On the
other hand, the additional SOS-1 variablgsmake the model larger.

6 Solution Methodology and Computational Results

We have experimented with three models with different smoothness propétiesodels are available in
AMPL (Fourer et al., 2003) from the authors upon request. The maiactaistics of the three models for
N = 10 are summarized in Table 4. The problem size is roughly line&¥,iand the model withV = 20

has about twice as many variables and constraints as the modeVwith 0.

Table 4. Comparison of MINLP Models fa¥ = 10

# Variables # Constraints

Model (bin/SOS/int/cont) (nonlinear/linear) Smoothness

MVP discontinuous objective & constraints
(P-0) 144 (88/0/1/45) 212 (115/97) discontinuous objective

(P-1) 174 (118/0/1/55) 262 (115/147) nonsmooth constraints
(P-2) 3696 (3596/11/1/99) 6715 (3281/3434) smooth as a whistle

We employ standard solution techniques for the solution of the MINLP maded$, (fP-1), and (P-2)
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such as branch-and-bound method (Dakin, 1965; Gupta and Ravji®&b), and the LP/NLP-based branch-
and-bound method (Quesada and Grossmann, 1992); see Gros2@Rnfér a recent survey of solution

techniques for MINLP problems.

We note that the models (P-0), (P-1), and (P-2) are nonconvex, miakiagd to solve these models to
global optimality. We employ a standard nonlinear branch-and-bouretdlsdver, MINLP-BB (Leyffer,
1998), for solving these models. The main idea behind branch-andili®tmsolve continuous relaxations
of the original problem and to divide the feasible region, eliminating the fraatisolution of relaxed
problem. Continuing in this manner yields a tree of problems that is searchédefanteger optimum.
The NLP subproblem solved at a node provides a valid lower bounddasithproblems in the descendant

nodes. An integer feasible solution when found provides an uppeiddouthe problem.

We resort to the strategy of multistarts for solving the nonconvex madel} 4ReD(P-1). The strategy
of multistarts involves solving a problem at a node a number of times from &estanting points. For every
node of the branch-and-bound tree, we store a logical switch that tedigéghether to perform multiple
starts. Initially, this switch is set to true, and we perfoRt= 5) restarts from randomly generated starting
points and select the best solution value obtained as the solution of that Halkeruns give the same
solution value, then we set the logical switch to false for this node and fisalhildren. Otherwise, the
switch remains true for all child nodes. Thus, for convex problems, weme a multistart only at the root

node.

We also set priorities on the integer variables in the model for MINLP-BB tiop@ branching. For the
model (P-0), the integer variableis given the highest priority, so that the solver branches on a fractional
value of the variable:,, before branching on other variables. The variabldsave the next highest priority,
since they are dependent an The variables for the choice of materialg, are accorded the next highest
priority, since they are dependent on batAndy;. For the model (P41), the variables for the discontinuous
objective coefficientss;; are given the least priority.

We ran these models on a Beowulf cluster of computers consisting of 128 0b6@4-bit AMD Opteron
microprocessors. Each of the nodes has a CPU clockspeed of 1.8h@$12,GB RAM, and runs on the
Fedore Core 2 operating system. The models were run without any time limits, withrthof letting the
branch-and-bound enumeration run to completion. For the model (Pe@)idiwo different runs, choosing
the parametelN, the maximum number of intercepts in the system, té®and20. The results of the runs
for N = 10 and N = 20 are summarized in Table 5. By increasing the number of intercepts, welare ab
to improve the solution obtained by Abramson (2004) frof623 to 1.039 and0.988 for N = 10 and
N = 20, respectively.
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Table 5: Results for runs for model (P-0)

Results forN = 10 Results forN = 20

Number of interceptsa: 10 Number of intercepta: 20

Objective solution valug™*: 1.039 Objective solution valug™*: 0.988

Number of nodes 3979 Number of nodes 13515

Number of QPs solved1559347 Number of QPs solved6229783

Time taken (in seconds)29894.38 Time taken (in seconds)283034.29
o]t T a; Zik ti T a; Zik
0 [ 4.2 4.2
1 |4.21 1.00 3.102 | EPOXYP | 4.21 1.00| 3.102| EPOXYN
2 | 7.78 8.01 3.102| EPOXYN | 5.78 3.99| 3.102 | EPOXYN
3 | 13.58 | 945 3.101| EPOXYN | 7.92 4.29] 3.102| EPOXYN
4 | 2269 | 11.15 | 3.100| EPOXYN | 10.53 | 4.74| 3.101 | EPOXYN
5 139.24 | 13.99 | 3.093| EPOXYN | 13.91 | 5.17| 3.101| EPOXYN
6 | 70.88 | 16.01 | 3.029| EPOXYN | 18.19 | 5.54| 3.100| EPOXYN
7 |71 1.05 2.913| EPOXYP | 23.68 | 6.23| 3.099 | EPOXYN
8 | 122.21| 13.003| 3.101| EPOXYN | 31.34 | 7.29| 3.091 | EPOXYN
9 | 174.15| 8.807 | 3.734| EPOXYN | 41.05 | 7.17| 3.060| EPOXYN
10| 179.26| 1.00 3.809| EPOXYP | 54.66 | 7.97| 3.022| EPOXYN
11| 300 16.522| 4.474| EPOXYN | 70.99 | 7.66 | 2.964 | EPOXYN
12 71 1.00| 2.912| EPOXYP
13 91.63 | 5.42| 2.928| EPOXYN
14 120.99| 5.95| 3.091| EPOXYN
15 146.8 | 4.54 | 3.363| EPOXYN
16 173.31| 4.40| 3.721| EPOXYN
17 204.29| 4.86 | 4.133| EPOXYN
18 228.38| 3.57| 4.340| EPOXYN
19 261.37| 4.50| 4.472| EPOXYN
20 291.3 | 3.61| 4.478| EPOXYN
21 300 1.00| 4.478| EPOXYN

23
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We note that solving the model witN = 20 intercepts is computationally intensive. In order to solve
these models faster, we solve the models with the number of intercéiged atn = 1,. .., 29. This allows
us to also fix the indicator variables, reducing the number of variables and the solution time significantly.

Figure 5 shows the value of objective functigras a function of the number of intercepts, We see that

2.8 T T T T T
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Figure 5: Plot showing objective function value for (P-0) with

the objective function value first drops sharplyrais increased and then stablizes as the valuelzsdcomes
larger. Clearlyn = 10 is not the optimal number of intercepts.

We performed a similar set of experiments for the model P-1. The resulteattis forNvV = 10
and the best solution found by our runs are summarized in Table 6. Thosadbtained by solving the
MINLP models|(P-0) and (P-1) are similar to or better than the ones obtajnéramson (2004). Also, by
increasing the number of intercepts in the model, we are able to obtain bettégwrsothan the model with
at mostl10 intercepts. The MINLP model formulated makes it possible to search in ther Isindp-space of
all the possible materials at an intercept. Thus, we are able to obtain solutiens different materials are
used as insulators in different layers in the same configuration. We debelraaterial chosen in the final
configuration is either epoxy(normal) or epoxy(plane).

The addition of new binary variables,; to model the discontinuous objective function coefficients
makes the NLP easier to solve in terms of the number of QP’s that are neesleldémer NLP. Table|7
shows the average number of QP’s solved per NLP for the madels (Rd0)Pal). We observe that this
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Table 6: Results for runs for model (P-1)

Results forN = 10 Best Solution Found for (P-1)
Number of intercepts: 10 Number of intercepts: 21
Objective solution valug™*: 1.02165 | Objective solution valug*: 0.98305
Number of nodes 382540 Number of nodes 244985
Number of QPs solved7049146 Number of QPs solved2360693
Time taken (in seconds)28778.95 | Time taken (in seconds)74283.38
ot T a; Zik ti x; a; Zik
0 |42 4.2
1 (421 1.00 | 3.102| EPOXYN | 4.21 1.00 | 3.102| EPOXYN
2 | 7.78 8.19 | 3.102| EPOXYN | 5.71 3.75| 3.102 | EPOXYN
3 | 13.58 | 9.66 | 3.101| EPOXYN | 7.61 4.07 | 3.102| EPOXYN
4 | 2266 | 11.41| 3.100| EPOXYN | 10.03 | 4.41| 3.101 | EPOXYN
5 139.17 | 14.32| 3.093| EPOXYN | 13.05 | 4.78 | 3.101| EPOXYN
6 | 70.99 | 16.49| 3.029| EPOXYN | 16.79 | 5.17| 3.101| EPOXYN
7 |71 1.00 | 2.913| EPOXYP | 21.43 | 5.62| 3.000| EPOXYN
8 | 112.92| 9.73 | 3.034| EPOXYN | 27.41 | 6.19| 3.096| EPOXYN
9 | 154.38| 7.37 | 3.461| EPOXYN | 34.57 | 6.13| 3.076| EPOXYN
10 | 201.53| 7.66 | 4.108| EPOXYP | 43.12 | 6.09| 3.048| EPOXYN
11| 300 13.16| 4.474| EPOXYN | 55.46 | 7.06 | 3.014| EPOXYN
12 70.99 | 6.78 | 2.961| EPOXYN
13 71 1.00| 2.912| EPOXYN
14 91.10 | 5.21| 2.927| EPOXYN
15 109.95| 3.96 | 3.013| EPOXYN
16 128.48| 3.44 | 3.162| EPOXYN
17 147.06| 3.21| 3.367 | EPOXYN
18 165.84| 3.12| 3.616| EPOXYN
19 184.96| 3.09 | 3.890| EPOXYN
20 206.75| 3.40 | 4.157| EPOXYN
21 233.52| 3.95| 4.371| EPOXYN
22 300 8.50| 4.475| EPOXYN

25
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number remains almost constant for (P-1), while it increases in a near-liaghion for|(P-0). For the
largest models we observe an order of magnitude reduction in the numi@f'efsolved per NLP. We

believe that this effect is due to the lack of continuity in model (P-0).

Table 7: Results showing the average number of QP’s solved per NI(P-@y and/(P-1)
(P-0) | (P-1) | n | (P-0) | (P-1)
26.6 25.15| 9 | 388.36| 29.34
49.77 | 33.20| 10 | 407.48| 30.26
124.77| 34.70| 19 | 512.43| 32.30
209.97| 42.25| 21 | 522.03| 38.20
247.01| 35.16| 23| 528.14| 41.05
300.07| 33.21| 25| 532.64| 43.32
300.15| 29.32| 28 | 544.19| 47.26
342.64| 32.23

0o N o o0~ W N PSS

The discretized model (P-2) is smooth as a result of the modeling of tempeaitintercepts using
discrete variables. Even though the nonlinearity in the model has been eaididreduced, it is still
nonconvex. It also has a large number of variables and constraintsattéfapted to solve this model
using MINLP-BB but observed excessive solution times. Hence, wertrdpe solution statistics only
for (P-2) with FiIMINT (Abhishek et al., 2006), a linearizations-basetvesofor mixed-integer nonlinear
programs. FiIMINT uses MINTO (Nemhauser et al., 1994) for its MILPnisfaand-cut framework, and
filterSQP |(Fletcher et al., 2002), an active-set solver for solving nealiprograms. It implements the
LP/NLP algorithm in a branch-and-cut framework. We refer the resml@uesada and Grossmann (1992)
and Abhishek et al. (2006) for the details of the algorithm. For noncopraxems, the solution methodol-
ogy can be seen essentially as a heuristic. FIIMINT advanced MILP &satuake it possible to obtain good
upper bounds quickly which help the solution scheme for the problem. Footheonvex model (P-2), we
use the basic version of the LP/NLP algorithm, because linearizations #mltieel model may cut off the
feasible region.

We note that the full 1-degree discretization that we do for model (P-2timeécessary, because we
can be reasonably sure that the intercepts close to the cold end will rhiglvtemperatures, and vice
versa. We reduce the discretization level of temperature for an interbgptestricting the intercept to lie

in a smaller intervalT;,, T,,,] than from[T7, Tp], wherel;, u; € [1, D]. This implies modeling the SOS-1
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variablesd;, as
Uq u;
ti:zdirTr, 1:Zd"’ dir €{0,1}, Vi=0,...,N+1. (6.1)
r=l r=I

This reduces the number of integer variables in the model and makes tHerpreasier to solve. This
procedure of choosing different temperature inter{iBls 7., | is essentially a heuristic with great flexibility.
We base our discretization reduction strategy around the solution of m@&#€sand|(P-1). Fon = 10,

Table 8 shows the temperature intervals that we allow for different interesgpart of our strategy.

Table 8: Table showing the discretization reduction strategy for (P-2) fer10

Intercept: | Temperature Range Intercept; | Temperature Range
1 [1,81] 6 55, 135]

2 [1,81] 7 (55, 135]

3 [1,81] 8 82, 189]

4 [1,81] 9 82,189

5 [1,81] 10 (163,243

We also restrict the choice of materials in the model to epoxy-plane and eoryal. This is a rea-
sonable assumption because we see that the solution obtained for mo@glan@{P-1) have only these
materials in their final configuration. To better handle the nonconvex eonisty we employ the strategy of
adding linearizations as local cuts in some of our runs. Hence, the cutsaget at some node are added
only to the subtree rooted at that node, instead of the default FiIMINT gyrédeadding these linearizations
globally on all open nodes. For nonconvex problems, this heuristic hetpslirting the feasible region that
can be cut off. The results of the runs fr= 10 with the mentioned discretization reduction strategy and

of the runs using local cuts are shown in Table 9.

We note that the solution obtained in our runs is only a little worse compared tds{&de) and/(P-1).
We see that local cuts help in reducing, to a large extent, the feasible fegmomeing cut off, thus letting
the branch-and-cut enumeration visit more nodes and find better feasiblons. We also see that the
average number of QP’s is still small for the smooth madel (P-2) compared gz of the model. We use
the solution of the model (P-2) to obtain the value of the discrete variablasdm,; € M, and we rerun

an NLP to adjust the values of the structural variables. The results\ae igi Table 10.
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Table 9: Results for runs for model (P-2) far = 10 using FilMINT

Best Solution forl (P-2) with Global Cut]

s Best Solution for (P-2) with Local Cuts

Number of intercepts: 10

Number of intercepts: 10

Objective solution valug™*: 1.281264

Objective solution valug™*: 1.212189

Number of MILP nodes 5411

Number of MILP nodes 15111

Number of LP’s solved 6279 Number of LP’s solved 27357
Number of NLP’s solved 5 Number of NLP’s solved 7102
Number of QP’s solved 158 Number of QP’s solved 286392

Average number of QP’s per NLP31.6

Average number of QP’s per NLRL0.32

Time taken (in seconds)5712.02

Time taken (in seconds)72007.67

ot | a Zik ti | @ a; Zik

0 | 4.2 4.2

1 |16 | 25.21| 3.106| EPOXYN 6 554 | 3.103| EPOXYN
2 |40 | 21.40| 3.104| EPOXYN 7 1.99 | 3.104| EPOXYN
3 |41 | 1.00 | 3.029| EPOXYP 8 1.85 | 3.105| EPOXYN
4 |71 | 15.95| 3.025| EPOXYN 9 1.73 | 3.105| EPOXYN
5 |72 | 1.00 | 2.908| EPOXYN 15 | 8.91 | 3.106| EPOXYN
6 | 137 | 12.59| 3.248| EPOXYN 67 | 40.56| 3.105| EPOXYN
7 |138] 1.00 | 3.259| EPOXYN 72 | 3.86 | 2.917| EPOXYN
8 |191| 7.89 | 3.976| EPOXYN 124 | 10.75| 3.116 | EPOXYN
9 |192|1.00 | 3.989| EPOXYN 160 | 5.73 | 3.537| EPOXYN
10| 204 | 1.61 | 4.136| EPOXYN 174 | 2.49 | 3.736 | EPOXYP
11| 300 | 11.33| 4.483| EPOXYN 300 | 16.58| 4.483| EPOXYN
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Table 10: Results for model (P-0) after fixing discrete variables usif) (P

Results forn = 10
Objective Solution Valug*: 1.097219
Number of QPs Solved508
1|t T; a; Zik ) t; T; a; Zik
0|4.2 6 | 28.79 | 8.83 | 3.099| EPOXYN
11421 |1.01|3.102| EPOXYN | 7 |41.03 | 895 | 3.071| EPOXYN
21644 | 509 3.106| EPOXYN |8 |71 16.23| 3.022| EPOXYN
31959 | 570| 3.102| EPOXYN | 9 | 134.2 | 16.33| 3.221| EPOXYN
4| 13.91| 6.38| 3.101| EPOXYN | 10 | 155.48| 4.02 | 3.476| EPOXYP
5| 19.75| 7.13| 3.100| EPOXYN | 11 | 300 20.33| 4.475| EPOXYN

7 Conclusions

We use mixed integer nonlinear programming techniques to model the loadgo#earmal insulation prob-
lem. We use integer variables to model the categorical variables, so that ¢ mow allows continuous
relaxations and can be solved by using standard MINLP solution tectmidide develop facet-defining
inequalities for a relaxation of this reformulated MINLP model. We evaluate riakedpy adding more data
points consistent with the cubic interpolation of the data and using trapezoidal We also avoid the
second-level optimization in the problem by introducing a finer piecewiserlaygaoximation of the data

and by enforcing the bounds at temperatures for each intercept.

Our reformulations give rise to three models with varying degrees of smesghand we comment on
the relative merits of the formulations. Our computational results indicate thafitieP formulations
obtain better results than previous results by Abramson (2004). In dartiby increasing the number of

intercepts froml0 to 20, we are able to reduce the cooling power by 4%.

The modeling of mixed variable problems as MINLPs allows us to apply morenhahviechniques, such
as branch-and-bound, outer approximation, and branch-andathierthan a heuristic search technique.
Engineering or modeling insight is included into the MILP model by using prieriiethe integer variables
or by restricting temperature ranges for the intercepts. We believe that dgingptechniques shown here
are very general and can be used as a blueprint for modeling otHgngeeblems that have categorical

variables.
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