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For solving nonlinear optimization problems, two competing iterative approaches are
available: active set methods and interior-point methods. Current implementations of
interior methods often outperform active set methods in terms of speed. On the other
hand, active set methods are more robust and better suited for warm starts, which are
important for solving integer optimization problems [8, 9]. Consequently, we have recently
become interested in new active set approaches, which are reviewed in this note.

1 Active Set Methods for Quadratic Programs

Consider the quadratic programming (QP) problem

minimize
x

1

2
xT Hx + gT x subject to AT x = b and l ≤ x ≤ u,

where A ∈ IRn×m has full rank and H is symmetric but not necessarily positive definite.
Our new active set approach has two main components.

First, we identify an estimate of the optimal active set by approximately minimizing
the augmented Lagrangian

L(x, y, ρ) :=
1

2
xT Hx + gT x− yT (AT x− b) +

1

2
ρ‖AT x− b‖2,

in the box l ≤ x ≤ u, where y are the multipliers of AT x = b and ρk is the penalty
parameter. This step provides a Cauchy-point xk

c , a first-order multiplier estimate yk
c =

yk − ρk(A
T xk

c − b), and an active set estimate Ak := {i : [xk
c ]i = li or [xk

c ]i = ui}. This
step is similar to the iterates generated by LANCELOT [3].

Next, we solve an equality constraint QP in the remaining inactive variables indexed
by I := {1, . . . , n} A by computing an approximate solution to the first-order conditions[

HI,I −A:,I
AT

:,I

](
∆xI
∆y

)
= −

(
[∇xL(xc

k, y
c
k, 0)]I

AT xc
k − b

)
,

where HI,I is the submatrix of H corresponding to rows and columns of I. We then
perform a backtracking line-search along (xk

c + α∆xI , y
k
c + α∆y) to ensure global conver-

gence. We show that if α = 1, then the two steps are equivalent to a Newton step on the
first-order conditions.
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Global convergence is enforced through the use of a filter [6, 7]. A filter F is a list of
pairs of constraint violation hl := ‖AT xl−b‖ and first order error θl := ‖min (∇xL(x, y) , x) ‖,
where L(x, y) is the Lagrangian of the QP. A new point xk is acceptable to the filter if
hk ≤ βhl, or θk ≤ βθl for all l ∈ F . The backtracking line-search reduces α until an
acceptable iterate is found. This acceptable iterate may be added to the filter.

Traditional proofs for augmented Lagrangian methods use two forcing sequences ηk ↘
0 and ωk ↘ 0 to control progress in hk and θk, respectively, and guide the penalty
parameter. Recently, it has been shown [4] that ηk ↘ 0 is sufficient to ensure convergence
for certain QPs. The filter approach removes the need for any forcing sequence whose
choice may be problematic in practice. Preliminary numerical experience is encouraging,
and we are able to detect the optimal active set in a modest number of iterations.

2 Active Set Methods for Nonlinear Programs

Recently, researchers have expressed renewed interest in sequential linear programming
(SLP) methods for nonlinear optimization problems such as

minimize
x

f(x) subject to c(x) ≥ 0;

see [5, 2, 1]. These SLP methods solve a trust-region LP around the current iterate xk,
given by

minimize
d

gT
k d subject to ck + AT

k d ≥ 0 and ‖d‖∞ ≤ ∆k,

where gk = ∇f(xk), ck = c(xk), and Ak = ∇c(xk)T . The solution of this LP provides
an estimate of the active inequality constraints, which is used to define an equality con-
strained QP to compute a second-order step.

One problematic aspect of this approach is the use of the `∞ trust-region. It has been
observed that while the active constraints corresponding to c(x) ≥ 0 settle down, the
active trust-region bounds do not, and this feature may cause the LP solver to perform
many wasteful pivots even close to the solution.

We propose an alternative trust-region subproblem based on penalizing an elliptic or
`2 trust-region. This gives rise to the following active set identification problem

minimize
d

µgT
k d +

1

2
dT d subject to ck + AT

k d ≥ 0.

It can be shown that the dual of this problem is a bound-constrained QP in the multipliers
y,

minimize
y

1

2
yT AT Ay − (c− µAT g)T y +

µ2

2
gT g subject to y ≥ 0.

Convergence of a filter algorithm along the lines of [2] can be shown. The proof exploits a
piecewise quadratic relationship between the penalty parameter µ and the `2 trust-region
radius ∆.
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3 Conclusions

We have introduced two active set identification strategies for optimization. Both schemes
can be implemented in a matrix-free format, requiring only matrix-vector operations and
iterative linear system solves. We believe that this is an important ingredient for a
successful large-scale active set strategy.
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