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A Globally Convergent Filter Method for MPECs *

SVEN LEYFFER AND TODD S. MUNSON

October 1, 2007

Abstract

We propose a new method for mathematical programs with complementarity constraints that is globally

convergent to B-stationary points. The method solves a linear program with complementarity constraints

to obtain an estimate of the active set. It then fixes the activities and solves an equality-constrained

quadratic program to obtain fast convergence. The method uses a filter to promote global convergence.
We establish convergence to B-stationary points.

Keywords: Mathematical Programs with Equilibrium Constraints, Mathematical Programs with Com-
plementarity Constraints, B-Stationarity, Sequential Linear Programming.

AMS-MSC2000: 90C33, 90C55

1 Introduction

Mathematical programs with equilibrium constraints (MPECS) arise is a wide variety of applicationg (Ferris
and Pang, 1997; Luo et @l., 1996; Pang and Leyffer, 2004), as is evident from the rich set of test problems
(Leyffer,[2000] Dirksg, 2001). MPECs are conveniently expressed as

minimize f(z,y)
x7y

subjectto c¢(x,y) >0 (1.2)
0<y L F(z,y) 20,

wherex € RP, y € RY, p+ q = n, andf, ¢, andF' are smooth functions from Rto R, R™, and R,
respectively. More general constraints are readily includgd i (1.1). For convenience, we also abbreviate the
variables ag = (z,y).

Recently, many authors have suggested nonlinear programming (NLP) methods for solving MPECs,
(Anitescu/ 2005; Benson etlal., 2006; Friedlander éf al., [2005; Fletcher and |_eyffer| 2004; Fletcher et al.,
2006; Leyffer| 2003, 2006; Leyffer et al., 2006; Liu et al., 2005; Raghunathan and Bieglef, 2005). These
methods can be very successful and have enabled us to solve much larger problems than previously possible.
However, the NLP approach does not preclude convergence to spurious stationary points. We have observed
failures of the NLP approach on some large and difficult problems arising in electricity markets (Chen et al.,
2006) that we believe are a manifestation of fundamental shortcomings of the NLP approach. The aim of
this paper is to present a new method that avoids these shortcomings.

*Preprint ANL/MCS-P1457-0907.
TMathematics and Computer Science Division, Argonne National Laboratory, Argonne, |L 68y#&@mcs.anl.gov
fMathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL @0d8%on@mcs.anl.gov
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Our algorithm is motivated by Bouligand stationarity, or B-stationarity; defined as follows, see, for
example|(Scholtés, 2002).

Definition 1.1. A point(z*,y*) is calledBouligand stationaryor B-stationary if d = 0 solves the linear
program with equilibrium constraints (LPEC) obtained by linearizifig:, and F' about(z*, y*),

minidmize g*Td
subjectto c¢* + A" d > 0,
0<y*+d, L F*+B*d>0,

whereg* = Vf(z*,y*), A* = Ve(z*,y*), B* = VF(z*,y*), andd = (d,, d,) is a partition of the step
into its z- andy-components.

Our new method is related to recent sequential linear programming (SLP) methods that involve a second-
order equality-constrained quadratic programming (EQP) step. Such methods were originally proposed by
Fletcher and de la Makza (1989), and have recently received renewed inferest. Chin and| Fletcher (2003)
propose a filter to enforce global convergence,/and Byrd|et al. (2004) consider a penalty function approach.
The latter approach has also been implemente8lAQUE. The key idea of these methods is to solve a
linear program at each iteration to predict the optimal active set. Given this prediction of the active set, an
EQP is solved to ensure fast convergence. These methods are computationally efficient, because there exist
efficient implementations for the solution of both subproblems (LP and EQP). SLP-EQP methods can be
regarded as a computationally efficient implementation of sequential quadratic programming methods.

Our main contribution is to regard the complementarity constraint assersietural constraint not as
a nonlinear equation. We believe this is an important ingredient in the derivation of robust methods for
MPECs. We extend popular SLP-EQP methods to MPECs. At each iteration of our method, we solve an
LPEC inside a trust region. The solution of the LPEC provides a first-order step and an estimate of the
optimal active set. We fix the active constraints predicted by the LPEC and then solve an EQP to ensure fast
convergence. Global convergence is promoted through the use of a three-dimensional filter that splits the
constraint violation into the complementarity constraints and the components corresponding to the general
constraints.

The remainder of this paper is organized as follows. In Segfion 2 we review stationarity concepts and
discuss their respective weakness by providing small examples. In Sgction 3 we define our new filter method
for solving MPECs, and in Sectidr] 4 we establish convergence to B-stationary points. In $éction 5 we
describe how the method can be accelerated by adding an EQP phase.

Notation. We use subscripts to identify components of vectors, or matrices, and supersétisndicate
iterates. Similarly, functions that are evaluated at particular points are denofél as- f(2(*)) and so
forth.

2 Motivation

The past five years have seen exciting algorithmic developments in MPECs. In Particular, a range of new
stationarity concepts has been developed. Coinciding with these developments, NLP methods have been
shown to converge to certain stationary points. Upon closer inspection, however, most of the new stationarity
conditions turn out not preclude the existence of first-order descend directions, making their practical value
guestionable.
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Even worse, NLP solvers do sometimes converge to such spurious stationary points. We have observed
this behavior in an application involving the Pennsylvania-Jersey-Maryland electricity market (Chén et al.,
2006). Surprisingly, the recent SQPEC method by Schaltes [(2004) can also converge to spurious stationary
points, despite the fact that it preserves the complementarity condition as a structural constraint.

2.1 The Alphabet Soup of MPEC Stationarity

Many stationarity concepts have been proposed for MPECS; see Scheel and Scholtes (2000). Here, we argue
that all but one of these definitions are misleading, because they do not preclude the existence of descend
directions.

MPEC stationarity is defined in terms of the following first-order conditions.

Definition 2.1. A pointz* = (z*,y*) is called weakly stationary if there exist multipliexsyu, andv such

that
T T 0
g-— A" A\— B* ,u—( >—0,
v

0<c¢* L A>0, (2.1)
0<y* L F*>0,
y; >0 = p; =0, and F' >0 = v; =0, Vj=1,...,q.

This weakest form of “stationarity” is tightened by considering the index set of degenerate complemen-
tarity conditions:

D(z):={i:y; =0=Fi(2)} (2.2)

Clearly, weakly stationary points allow trivial descend directions; ik 0 or v; < 0 for somei € D*. Un-
fortunately, only strong stationarity precludes the existence of such descend directions. All other stationarity
concepts allow trivial descend directions and are, in our view, useless.

Definition 2.2. Letz* = (z*,y*), andD* := D(z*) be the set of degenerate indices.
1. (z*,y*) satisfying[(2.]L) is calledtrongly stationaryf
w; >0, and v; >0, Vi € D*. (2.3)
2. (z*,y*) satisfying[(2.11) is called\-stationaryif

w; >0 or v; >0, Vi e D*. (2.4)

3. (z*,y*) satisfying[(2.11) is calle€-stationaryif
wiv; > 0Vi € D*. (2.5)

4. (z*,y*) satisfying[(2.]1) is callet-stationaryif

(1 >0 and v; > 0) or pv; =0, Vi € D*. (2.6)
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Figure 1: Relationships among MPEC stationarity concepts.

We visualize the relationships among these (confusing) stationarity concepts in[Hidure 1. Scheel and
[Scholtes|(2000) have shown that strong stationarity implies B-stationarity. However, the reverse is true only,
if the MPEC satisfies an MPEC linear independence constraint qualification (see remark following Defini-
tion[4.1) or if D* = (. If D* = (), then all stationarity concepts are equivalent. However, in the interesting
case where®* £ (), it follows that A-, C- and M-stationary points allow trivial descend directions, making
these stationarity concepts too weak to be useful.

The first example, due fo Scheel and Scholtes (2000), illustrates the failure of C-stationarity to exclude
descend directions. Consider

minimize (z — 1)% + (y — 1)*> subjectto0 <z L y >0,
:I:?y

and observe that0, 0) is a C-stationary point. Since the multipliers= ¢ = —2 < 0, however, the
objective can clearly be reduced by increasing either y; see Figuré]2 (left).
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Figure 2: Example with a C-stationary point with two descend directions (left), and example with an A- and
M-stationary point with two descend directions(right).

Similarly, one can construct trivial examples showing that A- and M-stationary points do not preclude
trivial descend directions. Consider

minimize (z —1)* + 4> +y* subjectto0 <z L y > 0. (2.7)
x’y



A Globally Convergent Filter Method for MPECs 5

In this case, the origin is A- and M-stationary, but again there exists a trivial descend direction, namely,
(1,0), that reduces the objective by increasingee Figure|2 (right).

Remark 2.1. We refer to so-called A-, C-, and M-stationary pointsspsirious stationary pointbecause
they do not exclude the existence of first-order descend directions.

In the remainder of this section, we show that many popular methods for solving MPECs are attracted
to such spurious stationary points, motivating the development of new methods that avoid this pitfall.

2.2 Failures of the NLP Approaches

The NLP approach to MPECs reformulates the complementarity constraint as a set of nonlinear inequalities:

y=0
s—F(z,y) =0
s>0

yl's <0.

0<y L F(z,y) 20 & (2.8)

There exists a range of other formulations that repiglce < 0 by a system of inequalities or various NCP
functions, see, for example, (Leyffér, 2006). Our observations generalize to these other NLP approaches.
The introduction of the slack variablesis necessary to avoid convergence to nonstationary points; see
(Fletcher et al., 2006, Example 7.2). Similarly, the complementarity condition < 0 should not be

written as an equation’ s = 0, which would degrade the speed of convergence of SQP methods to strongly
stationary points.

Next, we consider how NLP solvers behave when applied to the examples of the previous subsection.
We start by considering an SQP method applied to the first example and statted at= (1, 1), the
unconstrained minimum. We observe that SQP generates the seuéhcg®)) = (%, #) that converges
linearly to the spurious stationary poitt, 0), while the multipliers diverge to infinity.

The second example shows that SQP methods may converge to so-called A- or M-stationary points.
Propositior] 2./1 below shows that starting(a, yo) = (0,¢) for any¢ > 0, SQP generates a sequence of
iterates that converges quadratically to the spurious stationary (90t

In general, replacing the structural complementarity constraint by a set of equations prevents the solvers
from “seeing around corners.” Thus, without modification, the NLP approaches are doomed to converge
to spurious stationary points. One could imagine remedies that monitor the sign of the complementarity
multipliers, but they would require sophisticated active-set strategies that may interfere with the performance
of the NLP solvers and are not readily implemented.

2.3 A Counterexample for SQPEC

Recently, Scholtés (2004) has considered optimization problems with combinatorial structure. One such ex-
ample involves MPECs, where the complementarity constraint is the combinatorial structure. Scholtes sug-
gests an SQP-like method that respects the combinatorial structure and shows local quadratic convergence
under reasonable assumptions. In the MPEC case, the method is a sequential quadratic programming with
equality constraints (SQPEC) method. Can this method avoid convergence to spurious stationary points?
Unfortunately, the answer to this question is no, as the following proposition shows.
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Proposition 2.1. Consider solving the MPEQ (2.7) by applying SQPEC (Schaltes,|2004). Starting at
(zo,y0) = (0,t) for 0 < t < 1, SQPEC generates the following sequence of iterates,

k 2
(atk+0 a0y = (o B )
6y*) 4 2

which converges quadratically to the spurious M-stationary p@ineo).

Proof. The gradient and Hessian ¢f (2.7) are given by

2(z —1) 2 2 2 0
i (3y2+2y> and v Vi 0 6y+2

)

respectively. Thus, the QPEC @t®, y(*)) is given by

minimize 2(zF) — 1)d, + (3y®* + 2y*)d,, + d2 + (3y™) + 2)d2
subjectto 0<d, L y® +d, >0.

One can show that, = 0 is a solution of this QPEC. In this case, it follows that

3y™” + 248 (k+1) _ 4/ (8)

W=y 7Y

The last inequality shows that this is a local solution of the QPEC. Convergelggiiofollows by taking
the limits, and convergence is clearly quadratic.

One can see thdD, 0) is a spurious stationary point, by observing tRaf(0,0) = (—2,0), which
clearly indicates the existence of a descend directioni#f increased from zero. The unique B-stationary
pointis(z*,y*) = (1,0). 0

SQPEC converges to the spurious stationary liifnD); but because it never gets there in finite time,
it cannot “look around the corner” to discover the descend dire¢tiof) that would allow convergence to
the B-stationary solutiofil, 0). We note that this isota counterexample to the results by Scholtes (2004),
because Scholtes investigates only local quadratic convergence. However, we still believe that this example
highlights a potential deficiency in an SQPEC method. In contrast, our SLPEC-EQP method would take one
step to the origin, solve an EQP, and then escape from the origin at the next iteration and converge after one
further EQP to the solution.

To our knowledge, currently no practical method guarantees convergence to B-stationary points under
reasonable assumptions. The only exception is the branch-and-bound method proposed by Bard (1988),
which is impractical even for medium-sized problems, because of the lack of suitable cutting planes. The
aim of this paper is to present a new method that fills this gap.

3 Algorithm Statement

In this section we define the key components of the algorithm and provide a formal algorithm statement.
We start by introducing the SLPEC method; later, we will indicate how EQP steps can be included. This
simplification is consistent with our global convergence result, which relies entirely on LPEC steps.
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3.1 Outline of SLPEC-EQP Algorithm

We start by defining the subproblems solved by our method and provide a rough outline of the SLPEC-EQP
method. At each iteration, we solve an LPEC inside a trust region of radiu® around the current point
z=(z,y):
minidmize g(2)Td
LPEC(z, p) subjectto c(2) + A(z)Td > 0,
0<y+d, L F(2)+ B(2)Td >0,
ldll < p

whereg(z) = Vf(z), A(z) = Ve(z), andB(z) = VF(z). Given a solution # 0, we find the active sets
that are predicted by the LPEC:

Az +d) = {i:ci(z)+ai(z)Td =0} (3.1)
Ay(z+d) = {j:y;+d; =0} (3.2)
Ap(z+d) = {j:Fj(z) +bj(z)'d =0} (3.3)

and solve the corresponding EQP:

minidmize g(z)Td+ 3dTH(z)d
EQM> + d) subjectto  ¢;(2) + a;i(2)Td = 0, Vi‘ € Ac(z +d)
yj+d; =0, Vje A (z+d)
Fj(z)+bj(z)Td:O, Vi€ Ap(z +d).

We note that EQR: + d) can be solved as a linear system of equations. Global convergence is promoted
through the use of a three-dimensional filter that separates the complementarity error and the nonlinear
infeasibility. A conceptual outline of our proposed algorithm is given below.

Outline of SLPEC-EQP Algorithm
Given an initial point:y = (zo, yo), Setk = 0, andpy > 0.

while d # 0 do
Solve LPEGz(*), p;,) for stepd*)
Identify the active setsl.(z*) + d®)), A, (z*) +d®), and Ap (2 4 a).
Solve EQRz + d) for second-order stegh,),.
if 2% + d,, acceptable stethen
| Setz(**+1) .= 2(®) 14, and possibly increasg, 1 = 2.
else
| Setz(*t1) .= 2(*) and decreasgy. 1 = p. / 2.
end
end

The algorithm outlined above leaves a number of important open questions: How should the LPEC be
solved? What constitutes acceptance of a step? Most importantly, what happens if the LPEC or the EQP
has no solution? In a practical implementation we might also restrict the EQP step by a trust region or
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a proximal-point term, and we could use the SLPEC step if the EQP step fails, or we could consider a
piecewise line-search along an arc.

Our SLPEC-EQP method has one important advantage over the recent NLP approaches. The solution
of the LPEC matches exactly the definition of B-stationarity (see Section 2), and we therefore always work
with the correct tangent cone. In particulardi= 0 solves the LPEC for some > 0, then we can conclude
that the current point is B-stationary. To our knowledge, this is the only algorithm that guarantees global
convergence to B-stationary points.

We will start by analyzing the global convergence properties of an SLPEC method. The SLPEC-EQP
method will inherit the global convergence properties if we ensure that the EQP step realizes at least a
fraction of the progress predicted by the LPEC step. A detailed description of the SLPEC-EQP method is
given in Sectiof 5.

3.2 Definitions and Notation

Our SLPEC method uses a filter (Fletcher and Leyffer, 2002; Fletchef et al.,|2002a) to promote global con-
vergence to B-stationary points. Filter methods promote convergence by viewing an optimization problem
as a bi-objective optimization problem in which both the objective and the constraint violation are min-
imized. Unlike traditional filter methods, however, our SLPEC filter has three components. For a point
20 = (20 4O we define

O = fEY), (3.4)
Y = ho(z9) = le(z) oo, (3.4b)
WY = hp) = || min@y®, F(z0))]|« (3.4¢)

to measure the objective value, the infeasibility of the general constraints, and the complementarity con-
straint violation respectively. In the definition bf), we have used the notatiart := max(0,a). The use

of two infeasibility measures gives us greater flexibility to define a restoration phase later. For convenience,
we also define the total constraint violation as

h(z) := max (he(z), hp(z)) := max (\|c(z)+||Oo |l min(y,F(z))Hoo) ) (3.5)

We note that we could have chosen any other norm to measure the constraint violatiah,-ibem has
the advantage of simplifying the constants in the convergence proofs.

Definition 3.1. A filter is defined as follows:

1. Apointz® := (2, y(*))is said todominate another point) := (21, 1) ifthe triple (b h{¥)| k)
dominategh'”, h%), f®), namely,

O < O p® < pO and B < pY).

[

2. Afilter for ) is a listF of triples (h", h%), f®) such that no triple dominates any other triple for
alll e F.

3. We also define minimum the total constraint violation for a filter:

T = Ilrélyr__l {h(l)} )
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Dominance alone is not sufficient to ensure convergence of nonlinear solvers. In practice, we need to
add a small margin around the filter to ensure convergence.

Definition 3.2. We say that a pointz, y) is acceptable to the filteF if its corresponding tripl€h., hr, f)
satisfies
F<fO =y or he <h® —ypD or hp < bl — 40O, Vi e F, (3.6)

where0 < v < 1is a small constant.

We note, that this three-dimensional definition differs from the usual two-dimensional filter in the sense
that the margin depends on the total constraint violation, rather than on the individual constraint violation.
This change allows us to prove convergence to feasible limit points in the next section. If we relax the final
two conditions in) th. < (1 — 7)h£l) orhp < (1- v)h%), then we can no longer show that the limit
point is feasible, as it may be feasible with respect to one of the infeasibility measures, but not both.

Figure 3: Usual filter envelope (left) and filter envelope useflir (3.6) (right).

Figure[3 shows the difference between the traditional filter envelope and the new filter envelope, which
has also been used in (Gould et al., 2004). The dashed line shows the margins. By changing the margin to
be proportional to the total constraint violation, we introduce implicit bounds on the constraint violation in
he(z) andhp(z).

The filter ensures convergence only to a feasible limit point, and we require a sufficient reduction condi-
tion to ensure convergence to stationary points. We define the predicted and actual reduction in the objective
function over a steg as

Af:=f(z) — f(z+d) and Al := -V f(2)d,

respectively. However, we cannot expect that a sufficient reduction condition holds for points that are
far from the feasible set. This observation motivates the introduction of a so-called switching condition

(Wachter and Biegler, 2005h,a), which switches on a sufficient reduction condition, whenever we are close
to a feasible point. Formally, we require that

Af
Al

oAl whenever (3.7

>
> oh? (3.8)

holds, whered > 0 and0 < v < ¢ < 1 are constants.
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A successful iteration of SLPEC for which (B.7) and [3.8) holds is called-gpe iteration, and a
successful iteration for whicl (3.8) does not hold is callechappeiteration to indicate that the primary
purpose of the step is to decrease the constraint violation.

Our algorithm also requires a restoration phase if LPE@) is inconsistent, which may happen far
from the feasible set or because the trust-region parameter becomes too small. One can define a restoration
problem in several ways. For example,

minimize HC(% y)+ H
x?y

; (3.9)
subjectto 0<y L F(z,y) >0

and
. . . JF
minimize ||c(x,y +|ls — F(z,y
simize (e, )] + lls = F.y)] .10
subjectto 0<y 1 s>0
are two possibilities. Problerh (3.9) aims to reduce the general constraint vidkationand may be more
suitable if we can guarantee the existence of solutions to the complementarity constraint fd?ralblem
(3.1Q) is more suitable whenever we cannot ensure that the complementarity constraint can be satisfied.
Both problems can be formulated as smooth LPECs, and the general algorithm proposed below can be used
to solve these problems. SLPEC will maintain feasibility of linear complementarity if started at a feasible
point, which implies tha{ (3.10) does not require a recursive restoration phase.

3.3 An SLPEC-Filter Algorithm for MPECs

We formally state the SLPEC algorithm in pseudo-code below. The algorithm has an inner and an outer
loop. The inner loop reduces the trust-region radius until either an acceptable point is found or the problem
becomes inconsistent, in which case we enter the restoration phase. The outer loop generates the sequence
of iteratesz (%) = (%) (k)

4 SLPEC-Filter Convergence Proof

This section establishes convergence to B-stationary point of our SLPEC-Filter algorithm. The extension to
an SLPEC-EQP procedure is described in Se¢fjon 5.

4.1 Preliminaries

We start with some preliminary results. The disjunctive nature of MPECs means that every LPEC consists
of a finite collection of LP-pieces. To derive a more suitable version of B-stationary for our analysis, we
define the following active sets:

Ac(z) = {ilei(z) =0} 4.1)
Ay(z) = {jly; =0} (4.2)
Ap(z) = {jlF;(z) =0}. (4.3)

The set of degenerate complementarity constraints is now given by

D(z) := Ay(z) N Ap(z).
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SLPEC Algorithm
Given (zo,y0), p € [p, 7], setk = 0; computeV f*), V)| v )

while not optimaldo
reset trust-region radiys< [p, )

repeat -
solve LPEGz(®, p) for a first-order ste

if 3 solutiond of LPEQz(*), 11) then
if d = 0 then terminate B-stationary point found

compute predicted reductiahl

evaluatef (%) + d), h.(2® + d), andhp(2*) + d)

if 2(¥) 4 d acceptable to filter andh ™, h{¥)| f®)) then
it Al%) < §(h*))? then

L setp, = p, d®) = d, AI®) = Al, Af*) = Af

add(ht®) h{E) | f#) to the filter h-type iteration
else if Af > ocAl and Al > §(h(*))? then
| setpp = p, d®) =d, AIF) = Aq, AfF) = Af f-type iteration
else

| reduce trust-region radiys= p/2

else
| reduce trust-region radiys= p/2

else

add(h) h{%) | f®) to filter

| enterrestoration phaseto find acceptable/compatible pointF+1)
until newz*+1 found

| setk = k + 1, update gradients f(¥), Vc(¥), VF(¥) & test for convergence

In addition, we define the set of binding complementarity constraints, namely, those where strict comple-
mentarity holds and either; = 0 or F;(z) = 0 (but not both):

Ay (2) = {j € Ay(2)|Fj(z) > 0} (4.4)
Api(z) = {j € Ap(z)ly; > 0}. (4.5)
Now we can state an equivalent condition for B-stationarity.
Proposition 4.1. A pointz* is B-stationary if and only il = 0 solves the collection of LPs given by
minidmize g*Td

subjectto c* + A d >0,

Fr+b'd>0 and d;=0, Vie A:,
Fr4+b'd=0 and yf+d;>0, VieAs,
Fr+bd>0 and d;=0, Vi € D,

Fr+b7d=0 and y'+d; >0, VieDp,
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for every partition(D,,, Dr) of D*, that is,D, N Dr = § andD, U D = D*.

The proof follows readily by observing that the partitionsI¥f represent the disjunctive nature of the
complementarity condition. Propositipn }.1 indicates a potential computational inefficiency of our method:
at every step, we may have to solfel Ps, wherel = |D(k)] is the number of different LP pieces. However,
this assessment turns out to be overly pessimistic, as we indicate in $éction 5.

Our convergence result uses a piecewise Mangasarian-Fromowitz constraint qualification (MFCQ). We
include its definition for the sake of completeness; see also (Scholtes, 2001).

Definition 4.1. We say that the MPEQ (1.1) satisfies an MPEC-MFCQ if and only if, for every partition
(Dy, Dr) of D*, the standard NLP defined as

minimize f(x,y)
(zy)
subjectto c(x,y) > 0,

yi =0 and Fi(x,y) >0, Vie A,
yi >0 and Fi(z,y) =0, Vie AL,
y; =0 and Fi(z,y) >0, VieD,
y; >0 and F;(xz,y) =0, Vi€ Dp

satisfies an MFCQ.

We note that a linear-independence constraint qualification (LICQ) for MPECs can be defined in a
similar way. Next, we generalize Fritz-John necessary optimality conditions to MPECSs, by applying Fritz-
John conditions to every LP-piece.

Proposition 4.2. Let z* solve the MPEC[ (1]1), and assume that](1.1) satisfies an MPEC-MFCQ. Then the
following hold:

1. z* is a feasible point, that ig(z*) > 0, and0 < y* L F(z*) > 0.

2. For every partition(D,, D) of D*, the following holds:

{slg" s <0 (4.6a)
a's>0 Vi€ A (4.6b)

si=0 Vi€ A, (4.6¢)

bls=0 Vie A, (4.6d)

s; =0 and b;‘Ts >0 VieD, (4.6€)
s;>0andbf s=0 VieDp} =0 (4.6f)

Proof. The proof follows from the Fritz-John conditions on every LP piece, assuming that an MPEC-MFCQ
holds. |

A consequence of Propositipn }1.2 is thatif is a feasible point that isot optima] then there exists a
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partition (D, D) of D> such that the set

{s|g°°Ts <0 (4.7a)

a® s>0 VieAX (4.7b)

si=0  Vie A (4.7c)

b s =0 Vie AR, (4.7d)

s; =0 and b;?OTs >0 VieD, (4.7¢)
si>0andb® s=0 VieDp}#0 (4.7f)

is not empty. In other words there exists an LP-piece that has a strictly interior descend direction along
which the objective can be reduced. Thus, there exist0 and a directiors with ||s|| = 1 and a partition
(Dy, DF) of D> such that

T

g s < —¢ (4.8a)

a;»’oTs >e YVie AF (4.8b)

si=0 Vi€ Ay (4.8c)

b s =0 Vie AR, (4.8d)

s; =0 and b;x’Ts >e VieD, (4.8e)
si>ecandb® s=0 Vi€ Dp. (4.8f)

We will exploit this existence of descend directions in our convergence analysis.

4.2 Assumptions

To derive our convergence results, we make the following assumptions on the MPEC problem.
Assumption 4.1. The iterates remain in a compact sét,

Assumption 4.2. The problem functiong, ¢, and F' are twice continuously differentiable on an open set
containingZ.

Assumption 4.3. Any limit point satisfies an MPEC-MFCQ, see Definifion] 4.1.

These assumptions are quite mild. In particular, we do not assume that an MPEC-LICQ holds, an
assumption that is unreasonable in practice. The strongest assumption is Assfimption 4.1, because it may be
difficult to derive bounds on the variablgsHowever, there exist sufficient conditions that ensure that such
bounds exist. For example, if the MPEC arises out of a bilevel optimization problem, where the lower-level
problem satisfies an MFCQ, then the multipliers of the lower-level problem are bounded. Thus, as long as
the primal variables are bounded, the dual variables are also bounded, and the variables of the MPEC are
bounded.

In addition, we require an assumption on the quality of the solution of each LPEC that is similar in spirit
to a Cauchy-point condition. This assumption is not needed in the case of standard SLP-EQP filter methods
because we can usually solve LPs to global optimality. We require this additional assumption for MPECs,
however, to handle the disjunctive nature of each LPEC. We are concerned with the situation where our
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algorithm approaches a spurious stationary point but when solving the LPEC, always chooses the wrong
partition of D*) for which the predicted reduction approaches zero. In that case, we may get stuck at a
spurious stationary point. To avoid this situation, we make the following assumption on the solution of the
LPEC.

Assumption 4.4. The method for solving the LPEC approximation explores-attive complementarity
partitions of D(*) and chooses the largest predicted reduction from among these.

This assumption does not mean that the LPEC is solved to global optimality (though this would be a
sufficient condition). It requires only the solution of all LP pieces at the starting point. In Sg{tion 6 we give
a computationally more efficient way to guarantee global convergence. We note that a sufficient condition
for Assumptiorj 414 is that each LPEC is solved to global optimality.

4.3 Main Convergence Result

Our main convergence result shows that the SLPEC method generates a subsequence that converges to a
stationary point or a local minimum of the infeasibility meash(e).

Theorem 4.1. Let Assumptions 4.1—4.4 hold. Then it follows that the SLPEC-filter algorithm terminates
with one of the following mutually exclusive outcomes.

01 The algorithm terminates at a B-stationary point; thatlis- 0 solves LPECz(*), p) for somek.

02 The algorithm generates an infinite sequence of iterates that has an accumulation point that is feasible
and B-stationary.

O3 The restoration phase fails to find a point that is acceptable to the filter.

Outcome$D1 andO2 correspond to normal termination of the algorithm. If the limit point fails to satisfy
an MPEC-MFCQ, then we can no longer guarantee B-stationarity, but the limit remains feasible. Outcome
O3 corresponds to the case where the complementarity constraints and/or the general constraints are locally
inconsistent. Unless we make very restrictive assumptions on the class of problem that we consider, this
outcome cannot be excluded.

Outline of Convergence ProofWe start by showing that feasibility of the LPEC implies bounds on
the predicted reduction and the infeasibility after the LPEC step (Lejnma 4.1). Next, we show that in a
neighborhood of a feasible but not stationary point, the LPEC will generate a step that is acceptable to the
filter and reduces the objective function, resulting in an f-type step (Leinma 4.2). This lemma allows us
to show that the inner iteration terminates finitely (Lenjma 4.3). Thus, the algorithm generates an infinite
sequence, and we show that there exists a limit point that is feasible (Lémma 4.4). Finally, we prove
Theoreni 4]l by considering the two mutually exclusive cases: an infinite number or a finite number of
h-type steps.

4.4 SLPEC-Filter Convergence Proof

Our convergence proof follows the filter convergence proofs of Chin and Fletchel (2003) and Fletcher et al.
(2002h), though it requires extra care to handle the disjunctive nature of the subproblems and the fact that
we are using a three-dimensional filter. We start by extending a lemma about properties of the LPEC step.
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Lemma 4.1. Let M > 0 be a constant such that
HSTVf(z)sH < M, HSTVFj(z)sH <M, and HSTVci(z)sH <M, Vs:|s]leoc=1

forall i = 1,...,mandj = 1,...,q, and letd # 0 solve LPECz(*), p). Then it follows that for all
i=1,....mandj=1,....,q

(2™ +d) > —p*M (4.9a)
he(z® +d) < p*M (4.9b)
F(z®) +a) < p*M (4.9¢)
y® +d, > 0 (4.9d)
he(z2®) +d) < min(p|Z|, p* M) (4.9¢)
Af > Al—p*M, (4.91)

where|Z| is the radius of the bounded s&t

Proof. Taylor's theorem implies that there exists a pginalong the line segment froat*) to z(*) + d such
that
¢i(z®) 4+ d) = c( ) 4+ (k) d+ dTV2cZ(§Z)d > —p*M,

where the inequality follows from the feasibility of LPEG¥), p) and the fact thald| ., < p. The bound
(4.90) follows from the definition of the constraint violatign (3.4).

The bound[(4.9c) can be shown similar to the bo 4.9a)[and (4.9d) follows from the feasibility of the
LPEC. To prove|(4.9d), we distinguish three cases;,eﬁ +d; = 0, then we conclude that the minimum
of componentj is bounded by?M from (4.9¢). Ify](k) +d; > 0andF;(2*) 4 d) < 0, then the bound
follows again from|(4.9c); and igﬁ](k) +d; >0 andFj(z(’“) + d) > 0, then the minimum of componepts
bounded bymin(|Z|p, p*M).

Taylor’s theorem implies that there exigtalong the line segment fromt*) to 2(¥) + d such that

FG® 4 d) =& 4 B g 4 %dTVZ f(e)d.
Rearranging this equation and exploiting the definitlin= —¢*)" d, we have that
Af =Al - %dTVQf(f)d > Al —

d

Next, we show that near a feasible and nonstationary point, the LPEC step will be a filter-acceptable
f-type step.

Lemma 4.2. Let 2z be a feasible but not stationary point. Then there exist a neighborhG8df > and
constants > 0, > 0, andu > 0 such that for any € N> the LPEGz, p) is compatible and produces a
filter-acceptable f-type step for all trust-region ragiin the range

M < p < k. (4.10)
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Proof. Let = € N'*°. We start by showing that the LPEE p) is compatible. Consider the equality con-
straints in LPECz, p) induced by the complementarity constraint. Because the MPEC satisfies an MPEC-
MFCQ, it follows that the constraint normads, b (2) for j € A% andk € A7° are linearly independent.

We denote the basis matrix By := [e; : b ()], and its generalized inverse B/ := (BT B)~!BT. The
closest point to the linearized equality constraintgite- 0 is given byp = —BTi(z), wherel(z) is the
right-hand side of the linearized equality constraipts- d; = 0 for j € A% andFy(z) + bx(2)"d = 0 for

k € Aj°. We denote the length gfby p := ||p||2 and observe that = O(h(z)) from the definition ofp.

We can therefore chooge> 0 such that

p>p=0(h(z)) = ph(z). (4.11)

Because=* is not stationary, there exists> 0 and a directions™ with ||s*| = 1 such that[(4]8)
holds. We now form the closest unit vectorst in the null space o3’ as

s=(—BB")s>* /(I -BB")s™|,

and observe that there exists a possibly smaller neighbothGeduch that

stg < —e (4.12)
sTa; > € Vie AP (4.13)
sTh, > € Vie A (4.14)
sj > € VjEAY (4.15)

holds for anyz € N*°.
Now consider the solution to LPEE., p) along the line segment

do =p+alp—p)s for ael0,1]

for fixed p > p. It follows thatd,, satisfies the equality constraints by construction. The orthogonaljiy of
ands andp > p ensures that for = 1

1]l = /P2 + (p— D)2 = V/p* — 2pp + 2p* < p,

so thatd; satisfies the trust-region constraint of LPEC).
Next, we show that we can ignore the inactive constraings,42°, for a suitable value 0. It follows
that there exist constantsa > 0 independent op such that

ci>¢andals <aVig AX
for everys such that|s||2 < 1 by continuity ofc;(z) and boundedness af(z). This implies the bound
¢ + pa;fps > ¢ — pa.
Thus, the inactive constraints are satisfied as long as

p<—. (4.16)

Q| O

A similar result holds for the inactive complementarity constraints, and we can adjust the cofstants
accordingly.
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Now we consider the active inequality constraints (again for the sake of simplicity we consider only the
active general constraints, but we note that a similar result holds for the active complementarity constraints).
Fori € A2° we obtain from|[(4.B) that

cit+aldi=ci+al +(p—pa] <ci+a] +(p—pe
Thus, if

¢ + a;fpp
6 )

P> (4.17)

then the active constraints are also feasible. The right-hand side of this inequélit}(is)). Thus, there
existy > 0 andx > 0 such that foph(z) < p < k, LPEQ2, p) is compatible.
Next, we consider the predicted reduction. It follows frgm}(4.8) that
9 di =g p+(p— g™ s < O(P) - (p—pe.

Feasibility ofd; andp = O(h(z)) imply that the predicted reduction satisfi&$ > pe — £h(z) for someg
sufficiently large. Thus,

1 .
Al > Pe; if p>2Eh(z)/e (4.18)
which can be achieved by makipgsufficiently large in[(4.111). It follows fron] (4.18) and (4.9f) that
2pM

2
Aoy PM .
Al — Al — €

Thus, ifp < (1 — o0)e/(2M), then the sufficient reduction conditidn (B.7) holds. Frpm|(3.7), it follows that

1
Af —~h(z+d) > iape—vaMZO

if p <oe/(2vM).

It remains to be shown that the step is also acceptable to the filter. The mechanism of the filter ensures
that~ > 0, because any step starting from a pointvith zero constraint violation/((z) = 0) satisfies
the switching condition] (3]8) and is therefore an f-type step. It follows fjonj (3.5),](4.9b)[ andl (4.9e) that
h(z+d) < p?M. Thus, ifp < \/B7/M, thenh(z+d) < 7 is acceptable to the filter, whefe= 1 —~ > 0.

Putting all the bounds optogether, we observe that if

, oce (l—o)e ¢ |pT
h(z) < p<m Z4

then the LPEC:, p) is consistent, and the conditions for a successful f-type step are satisfied. We note that
the right-hand side of this range is a constant 0, independent op. O

The next lemma shows that the algorithm is well defined and that the inner iteration terminates finitely.
Thus, if the algorithm does not terminate finitely, it generates an infinite sequence that has an accumulation
point as a consequence of Assumpfior] 4.1.

Lemma 4.3. Let Assumptions 4.1—4.3 hold. Then it follows that the inner iteration terminates in a finite
number of steps.
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Proof. If z(¥) is B-stationary, thenl = 0 solves LPECz(*), p) for any p > 0, and the inner iteration
terminates. Hence, in the remainder of the proof we can assumethit not B-stationary.

The proof is by contradiction. We assume that the inner iteration does not terminate finitely. Then it
follows thatp — 0 from the mechanism of the algorithm. We distinguish two cases, depending on whether
the current point is infeasible.

Case (1): Current point is infeasible, that #$¥) > 0. Then there exists an indeéxsuch thatcgk) =
—h¥), or there exists an index grsuch that min(y](-k), Fj(k))| = h(¥), Consider the case thalf? = —n(®),

Then
_ Z(’f)

(k

"+ 0l d < M+ pllal | < 0, forall p suchthatp < gl

i 7

If Hagk>||1 = 0, then the result holds for any> 0. Thus, the LPEC is not consistent fesufficiently small.

If, on the other hand,min(yj(.k), Fj('“))| = h®), we can distinguish three casd%(:k) = —hk), Fj(k) =hk),
andyj(k) = 1), In all three cases, we again observe that the LPEC will be inconsistent for a sufficiently
small p using a similar argument. Thus, we enter the restoration after a finite number of iterations, which
contradicts the assumption that the inner iteration is infinite.

Case (2): Current point is feasible, that#*) = 0. Again, if the inner iteration does not terminate
finitely, then it follows thatp — 0. Becausez(*) is not a stationary point (the algorithm would have
terminated with Outcom®1), we can apply Lemma 4.2. Thus, the conditions for a successful f-type step
are satisfied fob < p < k, and the inner iteration terminates finitely. O

A consequence of Lemnia 4.3 is that if the algorithm does not terminate with Outo@roeO3, then
it generates an infinite sequence of iterates, and there exists an accumulation point due to Assurnption 4.1.
Next, we show that the filter envelope forces iterates toward a feasible point. The result is a straightforward
extension of Lemma 1 in (Chin and FletcHer, 2003).

Lemma 4.4. The SLPEC-Filter algorithm generates a feasible limit point.

Proof. If the algorithm generates an infinite number of h-type steps, then feasibility of the subsequence on
which (hﬁk), hgf), )y is entered into the filter follows from Lemma 1 in (Chin and Fletcher, 2003). If the
algorithm generates a finite number of h-type steps, then feasibility follows from the boundedrfé&8s of

and the switching conditio.8), which ensures thf4t — 0 (otherwise,f would be unbounded below).

O

We are now in a position to prove our main convergence result.

Proof of Theorem 4]1We need to consider only Outcon@?, because in the other two cases we either
obtain a stationary point or conclude that the constraints are locally inconsistent. The convergence proof is
divided into two parts, depending on whether the algorithm generates an infinite or finite number of h-type
steps.

Case 1. Algorithm 2 generates an infinite number of h-type st&fesconsider the subsequence of h-
type iterations and observe that) — 0, and consequently, — 0 (because only h-type steps can regdt
It follows that there exists a subsequence suchilat = Tr+1 < Tk for which z®) — 2%, We assume
thatz> is not stationary and seek a contradiction. We now apply Lemna 4.2, which implies that there exists
a neighborhood of>° in which the conditions for an f-type step are satisfied. Thusk feufficiently large,
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z®) e A°° and if p is chosen such that

ph(®) <p<min{\/ﬁj\2k,/<a}, (4.19)

then we take an f-type step at*). Observe that, in the limita*) < 7, — 0 and the right-hand side in
(4.19) is more than twice the left-hand side. Thus, the mechanism of the algorithm that setegtand
then halves the trust region will locate a valuepoin this range. We cannot produce an h-type step for
a larger value op because\! decreases monotonically wigh Thus, fork sufficiently large, our iterates
come from f-type steps, which contradicts the assumption that all steps are h-type steps.

Case 2: Algorithm 2 generates a finite number of h-type stépghis case, we can assume that all
iterations are f-type iterations farsufficiently large. Thus(,hgk“), h;f“), f*+1)Y is always acceptable to
(P, n¥) | £®)), and the sufficient reduction conditialf® > ¢AIK) > 0 is satisfied. This implies that
the sequenc@f(’“)} is monotonically decreasing and thHat) — 0, so that the limit point> is feasible.
Now assume that*> is not stationary and seek a contradiction. Lenimé 4.2 implies that fop amghe

range
uh® < p < min{ ﬂ]\?,n}

the conditions for a successful f-type step are satisfied. We note that the upper bound of this range is now a
constant, say, becausey, is reset only in h-type steps. Thus, the inner iteration will choose a trust-region
radiusp > min(p, p), which is bounded away from zero. The sufficient reduction condition becomes

1 1
AfE) > 50Pe > 50¢ min(p, p).

It follows that f*) is unbounded below, which contradicts Assumpt 4.]@d 4.3. O

5 Accelerating Local Convergence and Computational Considerations

In this section we present an extension of the SLPEC algorithm of the previous section that includes EQP
steps, and we discuss some computational aspects of our method.

5.1 Extensionto SLPEC-EQP Methods

The SLPEC algorithm defined in Section 3 and analyzed in Section 4 provides only a linear rate of conver-
gence. However, we can easily add an EQP phase that allows us to achieve faster rate of local convergence.
The resulting SLPEC-EQP algorithm is defined below in pseudo-code.

The algorithm computes a Cauchy step, which is the first minimum of the quadratic model along the
LPEC-stepd = dy, for 0 < oo < 1:

qr(ad) := ) 4 ozg(k)Td + QQ%dTH(k)d.

We use the Cauchy step to estimate the active set, and we define the EQP step, detigted by

In practice, we may also try to take the LPEC step. If we are far from the solution, then this step may be
acceptable to the filter. Because this step has already been computed, the additional cost in trying this step
is negligible.
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SLPEC-EQP Algorithm
Given (zo,y0), p € [p, 7], setk — 0; computeV f*), V¢k)| v k)

while not optimaldo
reset trust-region radiys< [p, p]

repeat
solve LPEGz(*), p) for a first-order steg,,

if 3 solutiondy, of LPEQ2(*), ;1) then
if d = 0 then terminate B-stationary point found

compute the Cauchy-step := a.dj,

find the active setsl.(z*) + d.), A,(z®) + d.), andAp(z*) + d,.).
solve EQRz*) + d.) and let the solution bé,,

compute predicted reductiahg

evaluatef (z(%) + dgp), he(2%) + dgp), andhp (2% + dgp)

if 2(¥) 4+ d acceptable to filter andh'®, hﬁf), %)) then

if Aq < 5(h(*))? then

L setp, = p, d¥) = dgp, Ag®) = Ag, Af®) = Af

add(hgk), h%k), %)) to the filter h-type iteration
else ifAf > cAgandAq > §(h(*))? then
| setpr = p, d®) =d, Aq®) = Ag, AfF) = Af f-type iteration
else

| reduce trust-region radiys= p/2

else
| reduce trust-region radiys= p/2

else
add( f;k), h}’?), ) to filter
| enterrestoration phaseto find acceptable/compatible points*1)

until newz*+1 found
| setk = k + 1, update gradients f*), V¢(*®), vV F(¥) & test for convergence

5.2 Computational Considerations

We finish by providing some computational considerations. It should be clear that the algorithm closely
resembles filter-SLQP methods that have been proposed by Chin and Fletcher (2003). This similarity is
deliberate: it allows us to reuse the SLQP cdde (Leyffer, 2007) that we are currently developing to solve
MPECs by simply replacing the step-computation through an LP by an LPEC.

At first sight, the SLPEC approach may appear computationally intractable because of the potential
existence o2? LP-pieces that have to be solved at every iteration, wiietgD| is the number of degenerate
indices. In many cases, however, we do not require the solution of all LP pieces. For example, if the current
point is not stationary, then descend alamy piece is sufficient to ensure convergence. Thus we do not
need to solve the LPEC to global optimality, and instead we expect to be able to make progress by solving
a small number of LPs at most.
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In fact, if the current iterate satisfies an MPEC-LICQ, then it follows that there exists a common multi-
plier, and we can find a descend direction after a single LP solve. The same holds if the solution satisfies an
MPEC-LICQ. In this case we can again compute a common multiplier and verify optimality after a single
LP solve. Thus we do not believe that the computational burden of our method will become prohibitive.

6 Conclusions

We have presented a new algorithm for solving MPECs and have established global convergence under
mild conditions. The algorithm solves an LPEC to predict the optimal active set and fixes the activities and
solves an equality-constrained QP to accelerate local convergence. Global convergence is promoted through
the use of a filter that distinguishes the general constraint infeasibility and the complementarity constraint
violation.

We have also provided examples that show that commonly used stationarity concepts do not preclude
the existence of trivial descend directions. These spurious stationarity concepts have been referred to as A-,
C-, and M-stationarity. We have shown that popular methods such as NLP approaches and even SQPEC
method are attracted to these spurious stationary points.

Our results can be extended in various ways. Clearly, we could replace the filter by a merit function,
such as arf; exact penalty function. Because we maintain complementarity, exactness results should be
straightforward to establish. The proposed methods also extend to star-shaped optimization (Schdltes, 2004)
and to optimization problems with vanishing constraints that arise for example in truss-topology design.
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