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FOURTH SIAM CONFERENCE
ON OPTIMIZATION

The Fourth SIAM Optimization Conference, which
was held from May 11-13, 1992 at the Hyatt-Regency,
Chicago, Illinois, gave further evidence of the continuing
growth and interest in optimization. In particular, the
number of presentations grew from 262 papers at the 1989
conference to a total of 301 papers at the 1992 conference.

The conference themes, invited speakers, and minisym-
posia of the conference were chosen around three main
areas:

e Large scale optimization problems
¢ Optimization applications
e Optimization problems in control

This was done because the organizers felt that optimiza-
tion research will lead to significant advances in scientific
computing by addressing important application prob-
lems. Of special interest were the following minisymposia
on optimization problems in applications:

¢ Global and local optimization methods for molecular
chemistry problems

¢ Optimal design of engineering systems

e Optimization problems in chemical engineering

e Problems “off-the-shelf” Newton methods won’t
solve
¢ Protein Folding — A challenging optimization prob-

lem

Interaction between optimization researchers and applica-
tion scientists was fostered by organizing sessions along
optimization areas. As a result, attendance at sessions
was increased. The main complaint was that there were
too many interesting talks; never that there were no in-
teresting talks at a given time.

The organizers tried to attract application scientists
to the conference by arranging for a pre-conference tuto-
rial centered on optimization software, which was given
by Jorge Moré and Stephen Wright of Argonne National
Laboratory. The tutorial attracted 93 attendees and drew
praise, in particular, for the presentations and the soft-
ware guide that was part of the program.

An interesting innovation designed to increase interac-
tion between conference attendees was to schedule the
social sessions together with the poster sessions. This re-
sulted in well attended poster sessions, and considerable
discussion between the attendees. Another innovation
was to increase the status of poster sessions by award-
ing a prize for best poster.

In order to accommodate the large number of presen-
tations, and keep the number of parallel sessions to a
reasonable number (6), many of the talks were shifted
to poster sessions. This decision was not entirely popu-
lar. Possible methods for dealing with this problem are
scheduling a four-day conference, being more selective in
the acceptance of papers, or shortening the time allocated
to each presentation. Each of these solutions has obvious
drawbacks. A better solution may be a more imaginative
use of poster sessions to enhance their status and thereby
place them on a par with the contributed sessions.

The general feeling was that the conference was highly
successful, and that there was a very definite need for
SIAM Conferences on Optimization. The technical pro-
gram, the SIAM staff, and the choice of city and site, were
all singled out as noteworthy by the attendees.

Kudos to the organizers: Jorge Moré (co-chair, Ar-
gonne National Laboratory), Jorgé Nocedal (co-chair,
Northwestern University), Jane Cullum (IBM Thomas
J. Watson Research Center) and Donald Goldfarb
(Columbia University), and thanks to the Air Force Office
for Scientific Research (AFOSR) and the Department of
Energy (DOE) for their generous support of the meeting.

The next SIAM Optimization Conference is scheduled
for 1996 and will be co-chaired by Andy Conn and Mar-
garet Wright (see the Bulletin Board Section for more
details).
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CHAIRMAN’S COLUMN
by A.R. Conn

Dear Colleague:

Presumably, by the time you read this you have recov-
ered from the shock at realizing that the SIAM Activity
Group in Optimization does indeed have a newsletter.
You are undoubtedly less surprised to discover that this
newsletter reserves a place for the chairman of the group
to preach.

Firstly, I would like to introduce our current officers.

Our vice-chairman is Tim Kelley, who currently is es-
pecially busy handling the group’s optimization prize (see
elsewhere in this newsletter). Jorgé Nocedal is our secre-
tary and treasurer. Thanks to him we have no secrets or
money. Those of you who were fortunate enough to at-
tend the Optimization meeting last May in Chicago (he
was the co-chairman, with Jorgé Moré, of that meeting)
can appreciate his enthusiasm and organizational abili-
ties. David Gay is our program organizer and takes care
of a very important aspect of the activity group. I know
that all the officers are here to serve the membership and
we all welcome your input and criticisms. (Note that crit-
icisms do not have to be negative.) Email can often be
an ideal way to initiate such input and I give you the
addresses and email addresses of all your officers below:

Andrew R. Conn,

Thomas J. Watson Research Center
P.O.Box 218

Yorktown Heights,

NY 10598

USA

Email : arconn@watson.ibm.com

David M. Gay

AT&T Bell Laboratories
Room 2C-463

600 Mountain Avenue
Murray Hill, NJ 07974-0636
USA

Email : dmg@research.att.com

C. T. Kelley

Department of Mathematics
Box 8205

North Carolina State University
Raleigh

NC 27695-8205

USA

Email : Tim Kelley@ncsu.edu

Jorgé Nocedal

Department of Electrical Engineering and Computer
Science

Northwestern University

Evanston

IL 60208-3118

USA

Email : nocedal@eecs.nwu.edu

In addition, our worthy new editor welcomes your sug-
gestions and contributions. Once again [ would en-
courage you to communicate, initially at least, via
email. His addresses are nazareth@wsumath.bitnet and
nazareth@amath.washington.edu .

My “sermon-of-the-week” is to ask you to encourage
your colleagues in optimization to become members of
SIAM, this special interest group, and our sister group
MATHEMATICAL PROGRAMMING. I would also hope
that you would seriously consider subscribing to the
SIAM Journal on Optimization. It is my opinion that
we do not take seriously enough our professional obliga-
tion to be members of, and encourage membership in, our
societies. Without these societies we would not have the
journals and major meetings that are so essential for the
well-being of our subject. Moreover, the societies act as
significant voices for our interests with respect to govern-
ments, industry and universities. I believe they really do
an excellent job and it is our duty to support them as best
we are able. Consequently I am always disappointed that
so few of my colleagues feel the obligation to be mem-
bers. So please, make your contribution to the health of
our subject by way of a little mathematical programming
evangelism.

I realise this is a cliché but our group depends upon
its membership, that is your input, in order to respond
to your needs. So I would appreciate your thoughts. For
example, I frequently hear non-academic members com-
plain that we tend to ignore their perspective. Before we
can rectify this situation you must let us know what your
needs are.

Well, that is enough for this edition. You can look
forward to regular issues of this newsletter and I hope
that I can look forward to your input in the group.



FORUM ESSAYS)|

EXTENDED LINEAR-QUADRATIC
PROGRAMMING

by Terry Rockafellar!

Most work in numerical optimization starts from the
convention that the problem to be solved is given in the
form

(P): minimize fo(z) over all z € X,
<0 fori=1,...,s,
=0 fori=s+1,...,m,

such that f;(z) {

with X C IR". But this notion of what optimization is all
about may be unnecessarily limiting, both in the kind of
modeling it promotes and the computational approaches
it suggests. While all optimization eventually boils down
to minimizing some function over some set, the formu-
lation (P) says nothing about the mathematical struc-
ture of the objective and instead puts all the emphasis on
the structure of feasibility, insisting on “black-and-white”
constraints which don’t allow for gray areas of interaction
between feasibility and optimality.

For many applications several objective function can-
didates are in the background of any attempt at opti-
mization. Rather than choosing one of them to minimize
while the others are held within precise bounds, it would
make sense to form a joint expression out of “max” terms,
penalty terms and the like. That could lead to a nons-
mooth objective, but with special features. In (P) there
1s no built-in way of handling such features.

In fact the horizons of practical optimization modeling
can be widened considerably by providing for this extra
structure in a manner conducive to computation. A key
seems to be the use of composite terms, as is already
well understood as a means of treating nonsmoothness
numerically, and by admitting infinite penalties in some
situations to integrate such terms into a problem state-
ment that builds on the conventional one. The idea will
be explained briefly here with particular attention to the
linear-quadratic case.

An extended problem statement appearing to offer
many advantages over (P) is

(P): minimize f(z) = fo(z) + p(F(z)) over z € X,

!Dept. of Appl. Mathematics, University of Washington FS-20,
Seattle, WA 98195

where F(z) = (fi(z),..., fm(z)). Here, as usual in nu-
merical treatments of (P), the set X can be simple
(polyhedral, say) and the functions fo, fi,--., fim can be
smooth (C?, say), but the function p on R™ can be
nonsmooth and even extended-real-valued, although with
form amenable to elementary convex analysis. Feasibil-
ity in (P) means that z € X and F(z) € D, where
D = {ulp(u) < o0 }. The case where (P) reduces to
(P) is thus the one where the function constraints in (P)
are represented through infinite penalties:

p(u) = pu, - - Um)

0 when u; <0fori€(l,s]and
I{ u; =0 forie s+ 1,m],

oo otherwise.
Such infinite penalties reflect the attitudes we force on the
modeler in the traditional framework of (P). The slight-
est violation of any constraint is supposed to cause infinite
dissatisfaction; on the other hand, there is no reward of-
fered for keeping comfortably within a given bound. In
(P) there is much more flexibility.

The potential is already rich when p(u) = p1 (u1)+-- -+

Pm{(tm), so that

f@) = fo@) + p1(Fi(@) + -+ pm (fn(2). (1)

We can think of p; in general as converting the values of
a particular f; into units facilitating a trade-off with the
values fy and the other f;’s, but even if we cling to the
notion of a putative constraint like fi(z) <0, we have
new ways of expressing it. For instance, we can imagine
pi Introducing a minor penalty as fi(z) starts to exceed 0,
with this becoming more serious for larger violations and
perhaps infinite for violations beyond a certain amount.
In the other direction, p; could give a negative penalty
when f;(z) drops below 0, at least until a level is reached
where no further reward is warranted.

The extended problem model (P) has been studied the-
oretically in 1], but a linear-quadratic programming ver-
sion was proposed earlier in [2] out of needs in stochastic
programming. (Models with black-and-white constraints
are particularly inappropriate in optimization under un-
certainty.) In bridging toward the linear-quadratic con-
text, let’s concentrate now on a single class of examples
of expressions p; which could be invoked in (1). These
expressions, first introduced in [3], typically involve two
linear pieces with a smooth quadratic interpolation be-
tween, but they also cover as limiting cases expressions
in which the quadratic piece or one or both of the linear
pieces may be missing, or where an infinite penalty might
come up. They are parameterized in general by g; >0,
i € (—00,00), and a closed interval

YVi={w eR|i <4 <),



where the upper bound g could be oo and the lower
bound g; could be —co. (The reason for focusing on Y; in-
stead of just the two values g} and §; will emerge through
duality below.) The formula for p;(u;) as dictated by
these parameters is best understood by starting with
pi(ui) = Giui+(1/20;)u?, this being the unique quadratic
function with $;(0) = 0, p;(0) = @;, and p(0) = 1/5;. Let
4} be the unique value such that p{(a}) = g7, and sim-
ilarly let %7 be the unique value such that p(4;) = §; .
Then
Pi(ui) . pY;,ﬁ,-.g;(u")

pi(0F) + 9 (ui — )
= q Ai(uq)

pi(a7) + 97 (wi — 47)
As extreme cases, if §} = oo this is taken to mean that the
quadratic graph is followed forever to the right without
switching over to a tangential linearization; the interpre-
tation for §; = —oo is analogous. The case of §; = 0 is
taken to mean that there is no quadratic middle piece at
all: the function is given by yfu; when u; > 0 and by
97 u; when u; < 0. Possibly infinite values for g} or §;
then yield infinite penalties.

Already in choosing expressions p; in (1) just from this
class, there are many ways of incorporating the functions
fi into an optimization model. A particular f; can be
treated for instance in terms of a constraint with infinite
penalties for violation,

Y;=1[0,00), ;i =0, % =0 (inequality mode),
Y; = (—00,00), B;i =0, g, =0 (equality mode),

when u; > 4f,
when 4] <u; <4}
when u; < 4].

)

classical linear penalties d; > 0,

Y; =[0,di], i =0, % =0 (inequality mode),
Y; =[~di,di], i =0, % =0 (equality mode),

classical quadratic penalties,

Y;=[0,00), 5 >0, i =0 (inequality mode),
Y = (—00,00), B; >0, §i =0 (equality mode),

a constraint replaced by an augmented Lagrangian term,

)/i:[0,00), ﬁi >0a 9120
}/i = (—O0,00), ﬁi > 01 gi arb.

(inequality mode),
(equality mode),

or a modified augmented Lagrangian term with “satura-
tion” bound d; > 0,

Yi=[0,di], ;: >0, 3 >0
Yi = [_di,di], ﬂi > 0, Q,' arb.

(inequality mode),
(equality mode).

Even expressions with more than the three pieces directly
allowed for in (2) can be taken care of. For instance, if
we want to model f; with no penalty when fi(z) <0, a
linear penalty rate di > 0 when 0 < f;(z) < 1 but an

infinite penalty if fi(z) > 1, we can choose notation so
that the function fs5 is fi — 1 and put a linear penalty ex-
pression as above on f; but an infinite penalty expression
on fy. Clearly, the range of modeling expressions easily
representable through such tricks is enormous.

A strong property of the class of functions p; in (2) is
a dual representation: one has

) = e — L3 N2
pY.,ﬁi,ﬁi(u’) - 072:2g+{U1y1 Zﬂz(yz yl) } (3)

This leads us to consider more generally in (P) the class
of all functions p : R™ — (—00, 0] representable dually
as

by ) = sup{uy— 36— 9B -9}, @

where Y is a nonempty polyhedral set in IR™, B is a
symmetric, positive semidefinite matrix in IR™*™, and
¥ =(91,-.-,9m) is some vector in IR™. The examples of
(P) we’ve been discussing so far correspond to the boz-
diagonal case of such a function, where

Y:Y1X"'XYm, B’:di&g[ﬁl,---)ﬂm])

for nonnegative values 3; and closed intervals Y;, not nec-
essarily bounded. An example of a multidimensional p
function not conforming to the box-diagonal format is

p(u) = p(uy, . . ., Um) = max{ul, B Um} e py,B,g(u)

for Y ={y|lsi>0, 1+ +ym=1}, B=0, §=0.

In this case, with fy taken to be = 0 for instance, (P)
would be a nonsmooth optimization problem of the form:
minimize f(z) = max {fi(2),..., fu(z)} over all z € X.

Note by the way that the parameter vector ¢ really adds
no generality, because PyBg = Py’ Bo for Y =Y -3
(translation). But the inclusion of this vector is conve-
nient because in many cases it can stand for reference
values for Lagrange multipliers. These can be estimated
by the modeler as rates of change of the minimum value
of the objective in (P) relative to shifts in the f; values,
cf. [1, Section 9].

The case of problem (P) called extended linear-
quadratic programming, ELQP, is the one in which p be-
longs to the class (4), the set X is polyhedral, the function
fo 1s convex linear-quadratic, and the functions f1,..., fi
are affine. We can state this as

(P,) : min f(z) = c-x+%(z—i)-C(z—:ﬁ)+py,B,y.(b—A:c)

over z € X, for vectors b € R™, c € R*, i € R", a
symmetric, positive semidefinite matrix C € IR"*", and
a matrix A € R™*". As with §, the parameter vec-
tor £ adds no real generality—it can be taken to be 0 if
desired—but is convenient often as an initial estimate of



an optimal solution when proximal terms are being intro-
duced to achieve strong convexity.

The p function in (flq) can take the value co to the
extent that exact linear constraints are modeled with in-
finite penalties instead of being built into the specification
of X. The feasible set is generally therefore not X , but

{zex|b—Az €Dyp} Dyp= {“|Py,3,g(“) <o}

(5
(this doesn’t actually depend on §). It was shown in (4]
that Dy g is always a polyhedral cone. (It’s the sum of
the barrier cone for ¥ and the range space for B.) The
feasible set in (5) is therefore polyhedral as well; only
linear constraints are present in (flq) in principle. On
the other hand according to [4], the objective function fis
convex and piecewise linear-quadratic on this feasible set.
Due to the different ways of setting up penalties, there
may be discontinuities in the first or second derivatives
of f.

From this standpoint an ELQP problem may seem
quite complicated in comparison with conventional LP
or QP, but simplicity resurfaces through an associated
Lagrangian representation: in terms of

~—

L(z,y) = ca+5(z—2)-C(z~&)+by—L(y—3) Bly—§)—y-Az

the saddle points of the associated Lagrangian L on X xY
and are characterized by the normal cone conditions

-V L(Z,9) € Nx(z), VyL(Z,y) € Ny ().

The development of good techniques for solving ELQP
problems offers many open challenges. It was shown in
(2] that any ELQP problem could, in principle, be refor-
mulated as a conventional QP problem and solved that
way, but the reformulation greatly increases the dimen-
sion and introduces possibly redundant constraints, which
could cause numerical troubles in some situations. It also
destroys the symmetry between the primal and dual and
thereby threatens disruption of the kind of problem struc-
ture that ought to be put to use, especially in large-scale
applications. Generalizations of complementarity algo-
rithms could perhaps be applied effectively to the saddle
point expression of optimality. Most of the efforts so far
have been directed however at exploiting new kinds of
decomposability that have come to light in ELQP appli-
cations with dynamics and stochastics [2], [3], [4], [5]. In
(6] a class of “envelope” methods, something like bundle
methods with smoothing, has been developed. Envelope
ideas have been used differently in [7] to get generalized
projected algorithms which operate with a novel kind of
primal-dual feedback. These algorithms have solved prob-

on X xY, the essential objective function in (511:[) is given lems with 100,000 primal and 100,000 dual variables, de-

by f(z) = supyey L(z,y) for £ € X, as seen from (4).
Thus: ELQP problems are precisely the problems aris-
ing from Lagrangians L that are linear-quadratic convex-
concave on a product X x Y of polyhedral sets.

The symmetry in the generalized Lagrangian leads us
to dualize in terms of maximizing g(y) = infgex L(z,y)
over all y € Y. We arrive then at the dual problem

rived as discretized problems in optimal control [4], in
half the time as the earlier algorithms in [6]. In [8] and
[9] forward-backward splitting methods have been applied
to the saddle point representation to take advantage of
Lagrangian separability.

Besides offering direct possibilities in optimization
modeling far beyond those available in conventional lin-
ear or quadratic programming, ELQP problems (ﬁq) can

(D\y): max g(y) = b-y—%(y—g))-B(y—g)—pX,C'i (ATy—c) arise from general nonlinear problems (P) just like QP

over y € Y. This is an ELQP problem expressed concavely
instead of convexly. Its feasible set is

{y €Y |ATy—ce Dx ¢ }’Dx,c - {U|Px,c,f(”) <oo}.

The p function examples given above provide many inter-
esting specializations. Traditional duality in linear pro-
gramming and quadratic programming are covered, but
much more. The theoretical properties of this duality are
every bit as strong as in the classical cases, according to
the following result from [2].

Theorem. If either (ﬁq) or (-1_51q) has finite optimal
value, then both problems have optimal solutions, and

min (P),) = max (D))

The pairs (Z,§) € X XY such that z is an optimal solution
to (P)q) and 7 is an optimal solution to (D\q) are precisely

en

subproblems can arise from problems (P) in schemes of
sequential quadratic programming through second-order
approximations to a Lagrangian function. (Lagrangian
theory for (P) is furnished in [1].) There is lots to do, not
only with ELQP as such, but in using ELQP techniques to

solve extended problems (P) by Newton-like approaches.
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ON THE QUADRATIC
CONVERGENCE OF THE SINGULAR
NEWTON’S METHOD

by Richard Tapia? and Yin Zhang?®

The purpose of this essay is to describe a situation that
we have found particularly exciting in our recent work in
interior-point methods for linear programming. To our
surprise, we have seen considerable theory developed con-
cerning the superlinear convergence of singular Newton’s
methods. Hopefully, our comments will motivate further
research in the general area of fast convergence for the
singular Newton’s method.

What is the general perception of Newton’s method?
Well, we all know that it is a most wonderful algorithm
for approximating the zeros of a nonlinear system of equa-
tions. Its numerical and theoretical properties are known
to us and we understand both its strengths and its weak-
nesses. Under well-known standard conditions concerning
smoothness and nonsingularity it is not hard to establish
local and fast convergence. For years we have embraced

?Department of Computational and Applied Mathematics, Rice
University, Houston, Texas 77251-1892.

3Department of Mathematics and Statistics, University of Mary-
land, Baltimore County Campus, Baltimore, Maryland, 21228.

these conditions and argue that they are both reason-
able and mild. Indeed, in some ill-defined but meaningful
sense they must be necessary and sufficient for local and
fast convergence. Experience has shown us that the semi-
local properties of the method are actually quite good;
in fact much better than the theory predicts. Conver-
gence and fast convergence are not restricted to a very
small neighborhood of the solution as many vendors of
awkward hybrid methods would have us believe. This
experience has also taught us that damping the Newton
step, i.e., choosing steplength less than one, often im-
proves the global behavior of Newton’s method. However,
not choosing steplength one locally may preclude fast con-
vergence. The concern for these two aspects of Newton’s
method has led to the so-called backtracking strategies.
In such a strategy one always considers steplength one
before damping and implements damping in a manner
which takes steplength one near the solution.

The literature is actually quite sparse when it comes to
satisfying results concerning singular Newton’s method
in finite dimensional spaces. Some of the results that do
exist make the assumption that the rank deficiency of
the Jacobian is extremely small, e.g. one. This lack of
satisfying theory and our numerical experience reinforce
the general belief that local fast convergence is not to
be enjoyed by the singular Newton’s method. However,
our current message is that we have missed something by
being excessively general in the problem class considered.
We now support this statement by briefly describing what
we consider to be a very convincing theory for the singular
Newton’s method in the application area of primal-dual
interior-point methods for linear programming. It seems
quite natural to believe that there is a more general theory
which contains the linear programming application as a
special case. Further study and understanding in the area
of singular Newton’s method is merited.

Today the interior-point methods of choice for linear
programming all have the basic structure of the primal-
dual method originally proposed by Kojima, Mizuno and
Yoshise [2] based on earlier work of Megiddo [5]. These
methods can be viewed as perturbed damped singular
Newton’s method applied to the first-order conditions for
a particular standard form linear program. In the stan-
dard form linear program, the only inequality constraints
are nonnegativity constraints on the variables. This for-
mulation also has the nice feature that the duality gap at
a feasible point is equal to the £1-norm of the nonlinear
residual (first-order conditions). Hence the duality gap
is an excellent merit function; it is nonnegative and zero
only at a solution.

The term perturbed describes the situation that at each
iteration the right-hand side of the Newton equation is
modified to accommodate so-called adherence to the cen-
tral path behavior. The interior-point aspect of the al-



gorithm comes from the fact that at each iteration the
new iterate is forced to stay positive, i.e. strictly satisfy
the inequality constraints by staying in the interior of
the nonnegative orthant. This is accomplished by start-
ing with a strictly feasible initial iterate and damping the
Newton step at each iteration. An interesting feature here
1s that there is no guarantee that steplength one will ever
be allowed, even near the solution.

The singularity of the Newton’s method comes from
the fact that the Jacobian of the system in question is
singular at the solution for degenerate linear programs.
Moreover, most real-world problems are known to be de-
generate. Hence in practice degeneracy is the rule and
not the exception. Moreover, the rank deficiency in many
problems is quite large.

It seems that Newton’s method is starting out with
three strikes against it; namely forced perturbation,
forced damping, and singularity. All three are natural
enemies of fast (superlinear) convergence. Our perturbed
damped singular Newton’s method has two algorithmic
parameters that the designer or user is free to choose.
The first choice we shall denote by ¢ and the second by u.
The parameter ¢ is strictly between 0 and 1 and denotes
the percentage by which one chooses to move toward the
boundary of the positive orthant. Specifically ¢ = 0 im-
plies no movement and ¢ = 1 implies movement onto the
boundary. It should be appreciated that the choice ¢t = 1
does not imply steplength 1. The parameter u merely
designates the perturbation to the right-hand side of the
Newton system.

The earliest theoretical papers on this topic, Kojima,
Mizuno and Yoshise [2], Monteiro and Adler [8], and Todd
and Ye [10], for example, all established polynomial com-
plexity for various choices of the algorithmic parameters.
From a Newton’s method point of view their form of poly-
nomial complexity implies global linear convergence of the
duality gap sequence to zero. At this juncture global lin-
ear convergence is the most that should be expected from
a perturbed damped singular Newton’s method. Today
we know that the linear convergence obtained was actu-
ally quite poor and tended to be negatively correlated
with the quality of the complexity bounds. Could it be
that fast convergence and polynomiality actually work
against each other? This inconsistency was further fueled
by the work of Lustig, Marsten and Shanno [3]. They de-
viated from the algorithmic parameter choices which were
known to give polynomiality and successfully constructed
fast algorithms. However, it was not clear if their form of
the perturbed damped singular Newton method possessed
polynomiality, indeed, if it was globally convergent.

The issue of superlinear convergence was brought into
the mainstream of activity in February of 1990 at the
Asilomar meeting when Zhang, Tapia, and Dennis (see
(15]) presented two theories for superlinear convergence

of the increasingly popular primal-dual interior-point
methods (perturbed damped singular Newton’s meth-
ods). Their first theory assumed nondegeneracy (equiva-
lently nonsingularity) and gave conditions which the al-
gorithmic parameters ¢ and u should satisfy in order to
guarantee quadratic convergence of.the duality gap se-
quence to zero. A main issue here was the demonstration
that it was possible to choose ¢ (percentage to boundary)
in a manner which allowed the steplength to approach 1
sufficiently fast so that the quadratic convergence of New-
ton’s method was not lost. Their second theory did not
use the assumption of nondegeneracy and gave conditions
which the algorithmic parameters ¢ and u should satisfy
in order to guarantee superlinear convergence of the du-
ality gap sequence to zero. Immediately some questioned
the consistency of the Zhang-Tapia-Dennis assumptions.
Others conjectured that polynomial complexity and su-
perlinear convergence were incompatible. However, soon
after Zhang and Tapia [14] squelched these doubts by
constructing a class of choices for the algorithmic param-
eters and showing that for these choices the perturbed
damped singular Newton method possessed polynomial
complexity and gave superlinear convergence for degener-
ate problems. They showed that for nondegenerate prob-
lems polynomial complexity and quadratic convergence
could be obtained. This was particularly satisfying since
no one really expected quadratic convergence for degen-
erate problems. However, there was one annoying aspect
to this situation — in practice quadratic convergence was
observed even for degenerate problems. Hence our story
continues.

Mizuno, Todd and Ye [7] considered a variant of the
Newton method we have been discussing and established
superior polynomial complexity bounds for this variant.
They called this variant a predictor-corrector method.
The predictor-correct aspect of the algorithm entailed two
linear solves per iteration. Hence when comparing con-
vergence rate results for the Mizuno-Todd-Ye predictor-
corrector method with those for the standard method,
they should technically be considered as two-step results.
The predictor-corrector variant can also be viewed as a
perturbed damped singular Newton’s method.

Ye, Tapia and Zhang [13] showed that the Mizuno-
Todd-Ye predictor-corrector algorithm gave superlinear
convergence for degenerate problems and quadratic con-
vergence for nondegenerate problems while maintaining
its superior complexity. McShane [4] independently de-
rived a similar result. Ye, Giiler, Tapia and Zhang [12],
based on Ye, Tapia, Zhang [13], were able to demonstrate
the surprising result that the Mizuno-Todd-Ye predictor-
corrector algorithm actually gave quadratic convergence
in all cases including degenerate problems. Mehrotra, [6],
also based on Ye, Tapia and Zhang [13], independently
established a similar result. So technically we now have



two-step quadratic convergence for a perturbed damped
singular Newton’s method. This result motivated several
very strong and intense attempts to establish an analo-
gous one-step result.

Zhang and Tapia [16] extended the Zhang-Tapia-
Dennis theory in [15] and dropped the assumption of
nondegeneracy. They were able to use this new the-
ory to construct a perturbed damped Newton method
which demonstrably had an order of convergence = for
any 1 < r < 2. While their theory gave conditions for
quadratic convergence they were not able to construct
such an algorithm. Ye [11], working with the basic model
of the Mizuno-Todd-Ye predictor-corrector method, was
able to construct one-step versions with convergence order
r for any r satisfying 1 < r < 2. However, his algorithm
with a convergence order of 2 is only subquadratic since
the QQa-factor is actually infinite.

The final chapter to this exciting story is presently be-
ing written. Very recently Gonzaga and Tapia [1] working
with the Mizuno-Todd-Ye predictor-corrector primal-dual
interior-point method constructed a variant which can be
viewed as a perturbed damped singular Newton method
and gives (one-step) quadratic convergence.

We hope that the exciting and intense activity that
led to superlinear convergence theory for various forms
of singular Newton’s methods in linear programming will
spread to more general problem areas.
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A BRIEF INTRODUCTION TO THE
IBM OPTIMIZATION SUBROUTINE
LIBRARY

by D. G. Wilson*

INTRODUCTION

Mathematical optimization is broadly applicable to the
problems of minimizing costs, maximizing profits, and
scheduling projects subject to time and financial con-
straints. Techniques of mathematical optimization were
pioneered in the 1940s, and the field continues to grow
in both theory and areas of application. Over the past
four decades, the economic necessity of maximizing re-
turn on limited resources has been recognized by man-
agers in many different areas of business, government, and
the military. Computer software implementing the tech-
niques of mathematical optimization has been in great
demand, and IBM has been a leader in providing such
software. The Optimization Subroutine Library (OSL)
is an IBM product for manipulating and analyzing opti-
mization problems that has been developed in response to
customer requirements for more powerful and more flexi-
ble software. OSL provides a collection of tools for solving
linear programming, quadratic programming, and mixed
integer programming problems. Individual OSL compo-
nents implement state-of-the-art algorithms in code that
takes special advantage of the characteristics of the plat-
forms on which they run. These components can be com-
bined into applications as simple as “input, solve, out-
put,” or as complicated as a knowledgeable user may care
to create.

AN OVERVIEW OF OSL

The Optimization Subroutine Library (OSL) is a suite
of subroutines for manipulating the mathematical mod-
els and solving the resulting minimization and maximiza-
tion problems of mathematical optimization. The sub-
routines are written primarily in portable FORTRAN,
with a few assembler language routines to enhance per-
formance. OSL includes routines in seven categories: 1.
Solvers for linear programming (LP), network program-
ming, quadratic programming (QP), and mixed integer
programming (MIP) problems, 2. Data input and out-
put, 3. Initialization and setup, 4. Matrix manipula-
tion, 5. Message handling, 6. Control variable querying
and setting, and 7. Sensitivity and parametric analyses.
The user may input data in any format, or generate it
as needed, and pass the information on to appropriate
OSL routines in internal arrays. Alternatively, OSL has
input/output routines for MPS and Lotus 1-2-3 files. The
library is available on numerous platforms, from PC’s to

1IBM Corporation 85BA /276, Neighborhood Road, Kingston,
NY 12401.

mainframes, including IBM and non-IBM workstations
(Hewlett Packard, Silicon Graphics, and SUN). Sample
FORTRAN and C application programs and FORTRAN
user exit subroutines (discussed below) are distributed
with OSL.

The emphasis in OSL is on solving optimization prob-
lems. The development philosophy was to provide a set
of powerful building blocks, and the freedom to assemble
them in many ways, to solve different kinds of optimiza-
tion problems. There is a “bridge” to the well known
IBM MPSX optimization system, with its extensive ca-
pabilities, and several IBM business partners offer OSL
compatible software, with matrix generators, model de-
scription languages, report generators, etc. The following
is a (partial) list of OSL vendors. Bender Management,
Chesapeake Decision Sciences, Dash Associates, GAMS,
Haverly Systems, LINDO, MathPro, Optimization Soft-
ware, Speakeasy, and Sundown Software.

USING OSL, WRITE CODE OR POINT AND
CLICK

To use the OSL routines directly, a user must develop
an application program that calls the subroutines and co-
ordinates the work, but a graphical user interface (GUI),
available for IBM RISC System/6000 workstations, pro-
vides OSL functionality in a “point and click” environ-
ment in which no programming is required. A useful fea-
ture of the OSL/6000 GUI is that, simultaneously with its
data processing and problem solving, it generates applica-
tion code, in both FORTRAN and C, that will reproduce
the GUI session, including any changes of the data that
may have been made interactively. These programs can
be saved, modified, and reused, even on other platforms.

An OSL application program may be written in FOR-
TRAN, C, PL/I, or APL2. The code may be as simple
as four subroutine calls, or as complicated as the user
may care to make it. To develop an application, a user
may write new code, adapt one of the sample programs
distributed with OSL, or modify one produced by the
OSL/6000 GUI. Within rather wide limits, OSL subrou-
tines may be called in various orders, or not at all. A user
may call alternate subroutines to supplement or even re-
place OSL modules. Thus, a special technique can be
created for a particular problem.

OSL is competitive in speed with other commercial op-
timization software, and faster than most. However, its
most noteworthy strong points are its versatility and ru-
bustness. The OSL simplex solver has a special strategy
for dealing with degeneracies. Control variables and user
exits are provided that enable users to customize solution
strategies. Default control paths enable users to solve
problems without using the many options of OSL, but as
they gain experience with OSL, they typically grow more
interested in its adaptability for solving their particular



problems.

User settable control variables affect many aspects of
OSL execution. These multiposition switches permit set-
ting, among many other things: the number of simplex
iterations to be done with one pricing strategy before
changing to another, the tolerances for detecting zero val-
ues and certain error conditions, the allowed amounts of
primal and dual infeasibilities, the initial weight for the
feasibility component of the composite objective function
used by the simplex method solver, the rate at which the
barrier parameter of the interior point solvers is reduced,
the maximum number of steps of the simplex method to
be done before the matrix of basis vectors is refactored,
and the maximum number of nodes allowed in the branch
and bound tree for the MIP solver. Default values, deter-
mined by testing the solvers on a suite of representative
problems, are supplied.

Embedded calls in each solver, and in the message han-
dler, to user exit subroutines make possible significant
customization of OSL. To take advantage of these user
exits requires writing one or more replacement routines
(in FORTRAN), and compiling and loading them with
the main program. At load time, the user’s routines will
supersede the corresponding example routines distributed
with OSL, and at run time, the user’s routines will gain
control in the midst of the execution of the OSL routines.
The user is thus empowered with the means to monitor
and control program execution. For example, a user could
simply write out intermediate information as the solution
progressed, or change solution tactics in a major way in
the midst of a computation.

ABBREVIATED DESCRIPTIONS OF THE OSL
SOLVERS

For LP problems, OSL includes both primal and dual
versions of the justly famous simplex method developed
by George Dantzig, of Stanford University. In these vari-
ants, the work is not divided into two phases. A compos-
ite objective function is used throughout, so that variables
are simultaneously moved toward an optimum as feasibil-
1ty is approached. As previously mentioned, OSL simplex
solvers have a special strategy for circumventing degen-
eracies, and they permit the user to adjust the pricing
strategy to enhance performance.

Three interior point LP solvers are included in OSL. All
three use logarithmic barrier methods in which a sequence
of functions, each a linear objective function augmented
by a sum of logarithmic terms multiplied by a barrier
parameter, is minimized. The algorithms are: a primal
method, and two primal/dual methods, one with a pre-
dictor corrector scheme and one without. All the OSL
interior point LP solvers provide an option to switch over
to a simplex solver, at (or near) completion of the interior
point iterations, to obtain a basic feasible solution.
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The pure network solver in OSL is a variant of the
simplex method modified to take advantage of the sim-
ple structure of the constraint matrices. For pure network
problems, this solver runs much faster than an unmodified
simplex solver. The pure network solver also uses a com-
posite objective function, and thus moves problem vari-
ables toward optimal values as feasibility is approached.
As before, the user may adjust the pricing strategy.

The OSL QP solver uses a two part algorithm to
minimize a quadratic objective function with a positive
semidefinite quadratic coefficient matrix subject to linear
constraints. Since the optimum may occur in the interior
of the feasible region, the simplex method alone cannot
be used to solve QP problems. The first subalgorithm
solves an approximating LP problem, using the simplex
solver, and a related very simple QP problem at each iter-
ation. When successive approximations are close enough
together, the second subalgorithm is used. This exten-
sion of the simplex method permits a quadratic objective
function and converges very rapidly when given a good
initial approximation. This hybrid approach yields a QP
solver that is both fast and robust.

For MIP problems, OSL includes a branch and bound
solver and an optional preprocessor that probes on the
zero/one variables. A user who wants low level control
of the branch and bound procedure may, via a user exit,
specify which branch to investigate at each step. The sim-
plex solver is used on the LP relaxations. In the prepro-
cessor probing, zero/one variables are successively fixed,
first to zero and then to one, and the logical consequences
of these assignments are investigated. The result is sim-
ilar to branching, but the analysis does not require solv-
ing the LP relaxations. Implication lists are built for
use throughout the solution process. The preprocessor
may detect infeasibility, fix variables, modify or add con-
straints, or even determine an optimal solution.

SOURCES OF ADDITIONAL INFORMATION

For more detailed discussions of OSL, and the algo-
rithms implemented therein, the reader is referred to the
IBM Systems Journal, Vol 31, Issue 1 (1992), and to the
IBM Optimization Subroutine Library Guide and Refer-
ence, SC23-0519, 1992. The referenced issue of the IBM
Systems Journal contains eight articles related to OSL,
including three that discuss the solver algorithms. In
preparing this manuscript, the author borrowed liberally
from the overview article of this issue, of which he was
the principal author. EKKNEWS, a source of product an-
nouncements, tips on using OSL, user applications, and
vendor information is distributed free to OSL users and
selected interested parties. An e-mail address for the OSL
development group is osl@vnet.ibm.com.
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BULLETIN BOARD

SIAG/OPT PRIZE

The SIAG/OPT will present its first award at the
SIAM Annual Meeting in July 1993. The award is to
be given to the author(s) of the most outstanding paper,
as determined by the prize committee, on a topic in opti-
mization published in English in a peer-reviewed journal.
The nominations will be evaluated by a committe con-
sisting of Bill Cunningham, John Dennis, Don Goldfarb,
Tim Kelley, and Mike Powell.

Nominations, should be sent to the SIAM office:

SIAG/OPT Prize 3600 University City Science Center
Philadelphia, PA 19104-2688

Nominations should include a a copy of the paper (in
English), a description of the significance of the paper,
the important questions that have been resolved and/or
raised in the paper, and the applications, if any, of the
work. Nominations must be received at the SIAM office
by November 30, 1992.

Candidate papers must be published in English in a
peer-reviewed journal bearing a publication date within
the period from January 1, 1987 to December 31, 1991.
The papers must contain significant research contribu-
tions to the field of optimization, as commonly defined
in the mathematical literature, with direct or potential
applications.

The award will consist of a plaque and a certificate
containing the citation. The chair of the prize committee
will notify the recipient(s) of the award in advance of the
award date. An invitation will be extended to the recipi-
ent(s) to attend the award ceremony to receive the award
and to present the paper. At least one of the awardees is
expected to attend the ceremony and present the winning

paper.

INTERIOR-POINT METHODS BIBLI-
OGRAPHY

A bibliography on interior point methods (ipm’s) for
mathematical programming has been available on netlib
since October 1991. It contains references to articles,
books, reports and talks on ipm’s, especially to those
which were released after the publication of Karmarkar’s
algorithm in 1984. Two versions of the bibliography are
installed : 1. A BibTeX file called intbib.bib, and 2. A
technical report consisting of two files named intbib.tex
and intbib.bbl. The bibliography, which will be updated
every four weeks, can be accessed via e-mail or ftp :

1. Using e-mail :

address : netlib@research.att.com
message : send intbib.bib from bib,
or send intbib.tex from bib,
and then send intbib.bbl from bib

2. Using ftp :

ftp research.att.com
Name: input anonymous
Password: input your e-mail address
cd netlib
cd bib
binary
get intbib.bib.Z

or get intbib.tex.Z

and then get intbib.bbl.Z
quit
uncompress filename

Additions/corrections are welcome and should be sent
to: Eberhard Kranich, Dept. of Mathematics, Univer-
sity of Wuppertal, Gauss-str. 20, D-W-5600 Wuppertal
1, Germany.

e-mail : puett@math.uni-wuppertal.de
FAX : (++49) (202) 439 2658

THE NEXT SIAM OPTIMIZATION
MEETING

As some of you may know, Margaret Wright and An-
drew Conn are the co-chairs of the fifth SIAM confer-
ence on Optimization. It had originally been planned for
Spring 95, but given that the 15th International Mathe-
matical Programming Symposium is to be held in August
’94 at Ann Arbor, Michigan, the co-chairs, after discus-
sion with the SIAG officers, have decided that it is more
appropriate to have the meeting postponed until May ’96.

Actually, this is more in line with the original schedule
since the first two SIAM optimization meetings, in 1984
and 1987, were roughly halfway between MPS symposia.

Thus the Fifth SIAM Conference on Optimization is
now planned for May 1996. It is hoped to have the meet-
ing on the West Coast, possibly in Canada.

FIRST PANAMERICAN WORKSHOP
FOR APPLIED AND

"COMPUTATIONAL MATHEMATICS
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The workshop will be held at Universidad Simon Boli-
var, Caracas, Venezuela from January 10-15, 1993.
The first day (January 10) will be devoted to tutori-



als on Numerical Optimization (Boggs, Schnabel), Sparse
Computation (Duff) and Supercomputing (Simon).

The workshop itself (January 11-15) is organized
around twelve topical and interrelated conferences as fol-
lows: Matrix Analysis and Computation, Optimization,
Mathematics of Oil Recovery, Network and Graph Mod-
elling, Mathematics in Industry, Applied Probability, Sci-
entific Computing, Numerical Methods, Numerical Dif-
ferential Equations, Numerical Grid Generation, Applied
Sciences and Engineering, and Mathematical Ecology.

Invited speakers include B. Cockburn, C. Grebogi, H.B.
Keller, J. Koiller, R. O’Malley, J. Nocedal, V. Pereyra, G.
Ponce, H. Simons and R. Tapia.

Other highlights are a beach trip and, of course,
a respite from winter. January is the dry season in

Venezuela with expected temperatures between 14C and
22C.

For further information, contact the organizers by
email at caracas@polar.fiu.edu or by regular mail at Aso-
ciacién Matemdtica Venezolana, Caracas ’93, Apartado
47898, Caracas 1041-A, Venezuela.

CONTRIBUTIONS TO THE FORUM

Issues will appear each Fall and Spring. Articles from
SIAG/OPT members are always welcome and can take
one of two forms:

a) Views: short, scholarly, N® (Not Necessarily Noncon-
troversial) essay-type articles on any topic in optimization
and its interfaces with the sciences, engineering and edu-
cation.

b) News: brief items for the Bulletin Board Section.

Author/developer previews of definitive optimization
research monographs and software libraries, which are in
the works or have just appeared, are also welcome for the
essay section (space permitting). However, book reviews
will not be published in order to avoid unnecessary over-
lap with the Mathematical Programming Society newslet-
ter Optima nor short technical notes of the sort sought by
the recently reorganized MPS-COAL Bullelin.

Our first preference is that a contribution take the form
of a LaTeX file sent by email to the editor at the address
given below. (If possible try it out in two-column format.)
However, other forms of input are also acceptable.

The deadline for the Spring issue is March 10, 1993.
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Larry Nazareth, Editor

Department of Pure and Applied Mathematics
Washington State University

Pullman, WA 99164-3113

email: nazareth@wsumath.bitnet
or nazareth@amath.washington.edu




