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SOUL-SEARCHING IN THE
MATHEMATICAL, COMPUTER
AND DECISION SCIENCES

Computational mathematics is at least as old as the
abacus, but it was only with the advent of the electronic
computer that this previously stunted leg of the math-
ematical tripod was able to grow to full stature. The
other two legs of the tripod are, of course, pure mathe-
matics (the poetry of the subject) and applied mathemat-
ics (models and their analysis). Indeed, during the first
part of the century, mathematics aspired to a precarious
stability on just one leg, with G.H. Hardy atop, perform-
ing his graceful and acrobatic balancing act. Nowadays,
however, the subject rests more secure with the help of
the other two legs.

Computational mathematics is the study, in its broad-
est sense, of algorithms for solving problems of a primarily
mathematical nature, for example, systems of equations or
extrema of constrained functions, over finite and infinite-
dimensional domains. Practitioners, most notably nu-
merical analysts and optimization specialists (mathemat-
ical programmers), often had to seek refuge within newly-
founded disciplines like computer science, operations re-
search, mathematical sciences, decision science, manage-
ment science, systems and control engineering, or indus-
trial and operations engineering. In some cases, their
mathematically and algorithmically-oriented work was
able to coexist happily with the larger discipline. For ex-
ample, business administration has never been distracted
from its primary objective of making money by its more
mathematically-oriented subdiscipline, management sci-
ence. Similarly, engineering has always remained true to
its primary objective of building things, and continues to
extensively use and contribute to mathematics and al-
gorithmics through systems theory, control theory, and
other subdisciplines. In other cases, an excessive mathe-
matical orientation has caused a distortion of the initial
intent of a field, most notably, in the areas of economics
and operations research. The latter, in particular, has
experienced a crisis of identity, as evidenced by several

recent soul-searching articles and a member survey in Op-
erations Research and OR/MS Today.

Increasingly, mathematics is welcoming back her prodi-
gal sons, and mathematics departments are beginning to
view themselves as pure, applied and computational in
nature, in a re-merging of the disciplines. Led by S. Smale

and his co-workers, a complexity theory for algorithms is
being developed that is better suited to the real number
field. And mathematicians are finally recognizing that
computer scientists have provided them with an incom-
parable laboratory tool. Calculus courses aided by, for ex-
ample, Mathematica or Maple (termed computer-assisted
analysis or, less charitably, analysis without proofs) are
now quite common. As a humorist puts it, soon alge-
bra and geometry may enjoy popularizations as calgebra
(aided by, for example, Matlab) and calemetry (aided by
new scientific visualization tools).

A corresponding reappraisal is occurring in the sister
disciplines. For example, the department of mathemat-
ical sciences, always a nebulous umbrella perhaps bet-
ter suited to naming research institutes than university
departments, has been recently reconstituted as a com-
putational and applied mathematics department at Rice
University. When the dust settles on the debate within
the OR community, that subject may well become more
oriented towards industrial and operations engineering
(cf. U. Michigan). Numerical analysts, who have al-
ways maintained an uneasy truce with computer scien-
tists, have also begun a re-examination of the undue influ-
ence of machines and finite-precision arithmetic on their
subject. Indeed, in a recent very stimulating SIAM News
article, Trefethen would even redefine numerical analysis
from the popularly perceived ‘study of rounding errors’ to
‘the study of algorithms for the problems of continuous
mathematics’.

Computer science, on the other hand, is increasingly
willing to be allied with engineering under the banner
CS&E, and to explicitly recognize that its primary moti-
vation is the tool itself, the ‘care, feeding and procreation
of computers’ and attendant information processing needs
of society at large. This has led to considerable debate
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within the community centered on the recent Comput-
ing the Future report of the National Research Coun-
cil. And, there are related rumours about the creation
of computational science or scientific computing depart-
ments, although these may well be pipped at the post
by a more embracing pure, applied and computational
mathematics, or even a newly-minted Algorithmic Sci-
ence. Time will tell!

Meanwhile, anyone interested in keeping track of these
‘weighty’ matters and their potential impact on optimiza-
tion will find a short list of relevant references posted in
the Bulletin Board Section.

CHAIRMAN’S COLUMN
by A.R. Conn

Dear Colleagues:

As 1 pointed out in the last issue, one of the advan-
tages of being the chairman is that it gives me the op-
portunity to air some of my thoughts. Since I am also
interested in encouraging feedback from members of this
special interest group it does not hurt to be (at least a
little) controversal.

Last month I was fortunate enough to attend the Con-
ference on Large-Scale Optimization, at the University of
Florida, organised by Bill Hager, Don Hearn and Panos
Pardalos, (see elsewhere in this issue) and this led me to
pondering about conferences and their role in our profes-
sion.

It seems to me that almost all the most satisfying con-
ferences I have attended have been relatively specialised,
have had no parallel sessions and have been worthwhile
from a social as well as an intellectual point of view. For
example, why do we ever have (or attend) large meetings
with many parallel sessions in large, over-priced and rel-
atively inhospitable hotels? I realise that it may well be
selfish to insist upon small meetings, but at least if the
number of attendees is large I still feel it is preferable for
the number of talks to be small. One often hears the ar-
gument that unless one gives a talk how does one obtain
funding to attend, but then that is exactly the point. Is it
reasonable that one can only obtain funding for a meet-
ing by providing a means to have that meeting be less
productive?

It also seems to me that ore of the groups most likely
to benefit from a meeting are graduate students and Jju-
nior researchers — exactly the groups least likely to have
funding to attend. In fact, the Gainesville meeting did
arrange special support for graduate students and they
and their enthusiasm was in evidence. I think that there
should always be support available for graduate students.

I also believe that invited speakers should be chosen
primarily for their ability to deliver good presentations.
In my opinion there is no excuse for poorly prepared
transparencies and sloppily constructed talks. After all
the speaker is imposing on a primarily captive audience.
Moreover, the format that I think has been the most pro-
ductive is to have a reasonable break after lunch and a
later termination time (for example, as at Oberwolfach).
If you want attendees to maintain an interest it seems ob-
vious that talks from 8.30 am until 5.30 pm with only a
one hour lunch break is not the correct formula. Speaking
about formats, I have found that somehow poster sessions
have never really worked for me. What do others think
of this method of presentation?

On the same principle that says “however much I en-
Joy Bach, an ideal concert is not a program that consists
only of Johann Sebastian”, I want to broaden my hori-
zons too, or at least have the opportunity to do so (even
though sometimes this guarantees I will hear something
that doesn’t interest me at all). In the case of a meeting,
is the best way to do this to have tutorial sessions (that is
sessions meant to introduce a research area to a broader
audience)?

Why do we have published proceedings? They are con-
sistently over-priced, under-refereed and rarely read. One
often has the impression that the only people who have
a personal copy are the attendees at the conference. If
it is only for them, then maybe the rationale for their
existence is correct. Also, even though it is not possible
to arrange first rate displays at all meetings, I do find it
useful to have extensive displays of journals, books and
software.

Finally, in these times of tight budgets are conferences
and travel a luxury that should be curtailed? Personally,
I believe otherwise. By virtue of the nature of our work,
our colleagues are spread over the globe. Even with the
wonders of electronic mail and the rapid dissemination of
latex files (these days one can hardly speak of fast dis-
tribution of ideas via journal papers) it is essential that
we regularly have the opportunity to meet with our col-
leagues. I am frequently impressed by the level of con-
scientiousness of my fellow researchers in attending the
sessions at meetings and making the most of the oppor-
tunity to consult and discuss issues of mutual interest.

I am interested in hearing your comments and advice
for what a good conference should be. I should hasten to
add that the Florida conference was certainly an example
of the type of meeting that was very worthwhile to attend.

I hope that I can look forward to your active par-
ticipation in meetings, the group and this newslet-
ter. If this column doesn’t excite any response (my
email address is arconn@watson.ibm.com, our editor’s
Is nazareth@amath.washington.edu) I will have to start
talking about health care or gun control!



FORUM ESSAYS

TENSOR METHOD SOFTWARE PACK-
AGES FOR NONLINEAR EQUATIONS
AND LEAST SQUARES, AND
UNCONSTRAINED OPTIMIZATION

by Robert B. Schnabel®

The purpose of this article is to mention the (free) avail-
ability of two new software packages, one for solving sys-
tems of nonlinear equations and nonlinear least squares
problems, the second for solving unconstrained optimiza-
tion problems. The packages implement the tensor meth-
ods that have been developed over the past decade by the
author and collaborators Ali Bouaricha, Tatung Chow,
Dan Feng, and Paul Frank. They also provide the option
of using standard Newton or Gauss-Newton based meth-
ods. The software packages are intended for problems
where the Jacobian or Hessian matrix is available either
analytically or by finite differences, and the number of
parameters is not too large, say less than 200. In tests
so far, the tensor methods implemented in these packages
appear to be significantly more robust and efficient than
standard methods, especially on problems where the Ja-
cobian or Hessian matrix at the solution has a small rank
deficiency. The remainder of this article very briefly dis-
cusses the problems addressed by this software, the al-
gorithmic approaches used, the features of the software
packages, and how the packages may be obtained.

The first software package, TENSOLVE, is intended to
find the simultaneous solution of n nonlinear equations in
n unknowns,

given F(z): R* — R",
find z, € R” for which F(z.) =0

or to solve the closely related nonlinear least squares prob-
lem,

given F(z): R* - R™, m > n,
find z. € R™ that minimizes || F(z)||s.

In both cases it is intended for problems where F(z) is
at least once continuously differentiable, and where the

! Research supported by Air Force Office of Scientific Research
grant AFOSR-90-0109, ARO grant DAAL 03-91-G-0151, NSF grant
CCR-9101795. Author’s address: Department of Computer Sci-
ence, University of Colorado at Boulder, Boulder, Colorado 80309-
0430.

Jacobian matrix F'(z) is available analytically or by finite
difference approximation. Standard methods for solving
such problems base each iteration upon a linear Taylor
series model of F(z) around the current iterate z,,
M(z.+6) = F(z.) + F'(z.)é,

resulting in the local method being Newton’s method for
the nonlinear equations problems, and the Gauss-Newton
method for nonlinear least squares.

Tensor methods for nonlinear equations or nonlin-
ear least squares instead base each iteration upon the
quadratic model

M(z.+6) = F(z.) + F'(zc)6 + %TC&S,

where T; is a very low rank three dimensional tensor,
most often rank one. No second order derivatives are cal-
culated; rather, the tensor term T is formed so that the
model interpolates F'(z) at the most recent previous iter-
ate, and sometimes at additional previous iterates. This
causes the model to have good second derivative infor-
mation in the directions to one or more recent iterates,
while requiring only a few vectors of additional storage,
and allowing the model to be formed and solved using
only a small multiple of mn operations more than the
O(mn?) cost of forming and solving the standard model
(here m = n for nonlinear equations) [7,2]. That is, the
additional costs per iteration of using the tensor method
are insignificant.

The package TENSOLVE allows the user to choose a
method based upon either the tensor model or the stan-
dard linear model, with either a line search or trust re-
gion global strategy in either case. In our tests on stan-
dard test problems, the tensor method using either global
strategy solves significantly more problems than the stan-
dard method, and on problems solved by both methods,
the tensor method is generally about 30-40% more effi-
cient than the corresponding standard method on prob-
lems where F'(z,) is nonsingular, and about 30-50% more
efficient on problems where F(z.) hasrank n—1orn—2
[2,1]. In the case when F(z.) has rank n — 1, the per-
formance of the tensor method is explained in part by
a (3-step) superlinear local convergence rate as opposed
to the linear convergence rate (with constant 0.5) of the
standard method [5)], but empirically the advantage seems
to come more generally from having a better model in the
most recent step direction. In tests in [1], the efficiency of
the tensor method for nonlinear least squares also com-
pares favorably with the well-known package NL2SOL [4].

The second software package, TENMIN, is intended to
solve the unconstrained optimization problem

Inin f(z):R" - R.



In this case it is assumed that f(z) is at least twice con-
tinuously differentiable, and that both the gradient vector
Vf(z) and the Hessian matrix V2 f(z) are available an-
alytically or by finite difference approximation. Whereas
standard methods for solving these problems base each
iteration upon a quadratic Taylor series model of F (z)
around the current iterate .,

m(z. +8) = f(z.)+ Vf(z:)b + %5Tv2f(zc)5,

tensor methods augment this model by the third and
fourth order terms

il 1
ch&% + 5&%6666

where T, and V, again are very low rank tensors that are
computed without calculating any higher order deriva-
tives. In the software package TENMIN, T, and V, are
calculated so that the tensor model interpolates the func-
tion and gradient value at the previous iterate. This re-
sults in T, having rank two and V, having rank one. It
causes the tensor model to have good second derivative
information in the direction to the most recent iterate,
while again requiring only a few vectors of additional stor-
age, and allowing the model to be formed and solved us-
mg only a small multiple of n? operations more than the
O(n®) cost of forming and solving the standard model
(6,3].

The package TENMIN also allows the user to choose a
method based upon either the tensor model or the stan-
dard quadratic model, using a line search global strategy
in either case. In our tests on standard test problems, the
tensor method solves considerably more problems than
the standard method. On problems solved by both meth-
ods, on the average the tensor method is about 20-30%
more efficient than the corresponding standard method on
problems where V2(z) is nonsingular at the solution, and
about 30-40% more efficient on problems where V?(z) has
rank n —1 or n — 2 at the solution [3).

It should be noted that since tensor methods use the
Jacobian or Hessian matrix, they may be less efficient
than quasi-Newton methods for nonlinear equations or
unconstrained optimization (e.g. Broyden’s method or
the BFGS method) in cases where this matrix must be
calculated by finite differences and function evaluation
is expensive. However in practice it appears that for
many (perhaps most) problems, the Jacobian or Hessian
is available analytically, often at not much more cost than
the function or gradient. For such problems, tensor meth-
ods should be of interest. For nonlinear least squares
problems, almost all methods compute or approximate
the Jacobian at each iteration (to assess whether one is
close to a solution), so tensor methods appear to clearly
be of interest.

Thus, we have created the TENSOLVE and TENMIN
software packages because the tensor methods may offer
gains in robustness and efficiency over existing methods
on a reasonable selection of problems. We have included
the option of using standard methods in both packages so
that the user may, with one package, compare and choose
between the two approaches for any particular class of
problems. The style and options of both software pack-
ages is similar to the UNCMIN unconstrained minimiza-
tion package [8]. Both provide the user with the choice
of either a short calling sequence where the user supplies
only the function, number of parameters, and a starting
point, or a longer calling sequence where the user can
override any of the default parameter values. Using the
longer calling sequence the user can choose whether to use
the standard or tensor method, the line search or trust
region strategy in TENSOLVE, and whether to supply
analytic derivatives or calculate derivatives by finite dif-
ferences. With the longer calling sequence the user can
also supply stopping tolerances, scaling information, and
control the output from the package. Both packages are
coded in Fortran 77. The TENSOLVE package consists
of approximately 8800 lines of code (25% comments) of
which 3500 are the UNCMIN software package that oc-
casionally is called to solve a small subproblem in the
tensor method. The TENMIN package consists of ap-
proximately 2800 lines of code of which about 35% are
comments.

To obtain either of these packages, please contact the
author, preferably by email at bobby@cs.colorado.edu, or
Betty Eskow (a research staff member at U. Colorado) at
eskow@cs.colorado.edu. There is no charge, although the
packages can not be used in a commercial product without
prior consent of the developers. We do ask that users
report any interesting experiences with these packages to
the developers, such as interesting comparisons between
tensor methods and either the standard methods in these
packages or other software.

It should finally be mentioned that in [1], tensor meth-
ods were extended to solve large, sparse systems of nonlin-
ear equations and nonlinear least squares problems in an
efficient manner. Software that implements these meth-
ods and standard methods, using efficient sparse linear
algebra techniques, has been developed and tested. This
software is not yet available for distribution but is likely
to be within about a year.
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GLOBAL CONFUSION
by Jorge Nocedal!

One of the most interesting results one can prove about
an optimization algorithm is that it is globally convergent.
By this I mean that, for any starting point, the sequence
of iterates (or a subsequence of iterates) converges to a
solution. A good example is the following well-known re-
sult for the steepest descent method for the minimization
of a smooth function f. It states that, if implemented
with an appropriate line search, and if f is bounded be-
low, then limz_,o Vf(zg) = 0. Thus the steepest de-
scent method is globally convergent to stationary points
of f. This is a useful global convergence result since it
applies to a wide class of functions occurring in practice;
its only weakness is that it does not guarantee that the
iterates approach minimizers, but only stationary points
— which for the purpose of this result are the “solution

1Department of Electrical Engineering and Computer Science,
Northwestern University, Evanston, IL 60208, USA.

points”. Other very interesting convergence results have
been established, for example, for trust region methods
for unconstrained minimization.

Since global convergence is such an important prop-
erty, it has also been considered in many studies of al-
gorithms for nonlinearly constrained optimization. How-
ever, a reader who consulted the literature to find out
which algorithms are robust and likely to converge from
remote starting points would be confused by many arti-
cles. This is because various “global convergence results”
in the literature are not at all global; in fact some of
these results could not even be characterized as local. An
example given later on will clearly illustrate this.

The misuse of the term “global convergence” in non-
linearly programming is common, and has spread to the
engineering literature. Readers should be warned that
many “global” convergence results do not imply that the
algorithm will converge from any starting point, or from
a large set of starting points, but only establish certain
properties about cluster points (which may or may not
exist), or establish point of attraction results. For gen-
eral nonlinearly constrained problems it is very difficult,
if not impossible, to establish convergence from remote
starting points. This has led authors to study several
other types of results, which are often called “global”.
Unfortunately, many papers do not clearly spell out what
the convergence results actually are, and it is not easy to
find this out.

Let me be more concrete. Suppose that we had shown
that, if the iterates generated by an algorithm remain in
a compact set, there is a subsequence that converges to
a solution. Is this a good result, a weak result, a global
result or what? Well it depends: it could be a very inter-
esting result or it could be quite useless. I would not call
it a global convergence result until I had seen the condi-
tions under which it had been established. Many merit
functions used in practice can guide the iterates away
from solution points, and make the sequence of iterates
diverge. So the basic assumption may not hold. Would
the inclusion of simple bounds on all the variables remove
any doubts about the usefulness of the result? Not nec-
essarily. Consider the following example due to Richard
Byrd (private communication).

Example: Suppose that f is a nonlinear scalar function
of several variables, and that we wish to find a station-
ary point of f, i.e. a point z. such that Vf(z,) = 0.
This problem can be attacked, for example, by applying
Newton’s method with a trust region to the system of
equations V f(z) = 0.

We will, however, use a different (and most inappro-
priate) method, and will show that it is “globally con-
vergent”. We will employ the steepest descent method,
with an exact line search, to minimize f. The reader will
surely agree that this is a very inadequate method for the



problem of finding stationary points of f. If the only sta-
tionary point is a saddle point, then even if we start the
method very close to the solution, the iterates are likely
to move away from it, and in fact diverge to infinity.

Nevertheless we prove our “global convergence result”
by assuming that the iterates stay in a compact set, and
that f is smooth and bounded in this set. Then by the
result stated in the first paragraph, for any starting point,
we have that {Vf(xx)} — 0. Thus we have proved that
the method, which we know must fail on many problems,
is globally convergent!

The trouble is that assuming the boundedness of the
iterates is not reasonable. Therefore to try to rescue our
result we now force the iterates to stay in a compact set
by imposing bounds on the variables. The compactness
assumption is now valid, but the analysis of the method in
this constrained setting cannot possibly give us a good re-
sult since we know that the method is still terribly wrong.

If instead of obscuring matters by assuming that the
iterates stay in a compact set we had assumed that the
method is to be applied only to functions f that are
bounded below, the discussion would have been clear from
the outset.

[m}

I'hope that these remarks draw some attention to what
[ believe is an undesirable situation. If convergence stud-
ies are to be intelligible to more than a handful of people,
they should state or summarize in simple terms the con-
vergence results proved and the assumptions made. They
should also discuss the validity of the assumptions, if they
are not obvious. And perhaps these remarks will convince
some authors not to describe certain convergence results
as “global”, and find a more suitable name for them.
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FROM DIKIN TO KARMARKAR
VIA SCALINGS, MODELS AND
TRUST REGIONS

by Larry Nazareth!

The search direction used in Dikin’s interior-point al-
gorithm [3] for linear programming (rediscovered dur-
ing the past decade by several researchers and strength-
ened through extensive convergence analysis and compu-
tational investigation on practical problems) can be de-
rived in three different, but equivalent ways, involving
respectively:

¢ a rescaling of variables

!Department of Pure and Applied Mathematics, Washington
State University, Pullman, WA 99164-3113.

¢ a quadratic regularizing model

¢ an ellipsoidal trust region.

Each approach can be generalized using conic functions
and collinear transformations, which were originally in-
troduced into nonlinear minimization by Davidon [2]. In
each case, one obtains an augmentation of Dikin’s direc-
tion by a ‘centering’ direction. This is the distinguishing
characteristic of all Karmarkar-type interior-point algo-
rithms,

In this mathematical essay, we outline these three ap-
proaches and their extensions with the objective of stimu-
lating interest in this point of view (particularly the trust
region approach) and perhaps motivating further research
along these lines. Further detail and references to related
work are given in a short bibliography, which is necessar-
ily incomplete in the interests of brevity.

1. RESCALINGS
Consider the linear program
(CP): minimize Tz st. Az =15, z >0,
where z € R", A is an m X n matrix and the other quanti-
ties are of matching dimensions. Let z*¥ > 0 be a feasible
interior point and let D = diag[z¥, ..., z%].

Rescaling of variables is the most direct way to derive
the search direction used in Dikin’s algorithm, namely,
define w = D~z and form a projected steepest descent
direction at the transformed iterate e = (1,1, ..., )T, In
the original variables, it is the direction d, = —DPDe¢ =
—cp, where P = I — DAT(AD?AT)~'AD. Note that
the boundary hyperplanes are invariant, i.e., u’f:c =0,

where u; denotes the j’th unit vector, becomes u;rw =0

under the diagonal transformation. Also, the term ‘linear
scaling’ is more accurate than ‘affine scaling’ (see (3)) in
this derivation.

Collinear transformations provide a natural extension,
because they are the most general transformations that
map straight lines to straight lines, affine subspaces (hy-
perplanes) to affine subspaces and convex sets (that do
not intersect the horizon) to convex sets. Consider there-
fore the following collinear scaling and its inverse:

_ D1y _ Duw 1)
w= 1+elD-1g * *T 1 ¢Tw’

Observe that > 0 if and only if w > 0 and v = (1 -
eTw) > 0. Since D is diagonal, the boundary hyperplanes
are again invariant. (LP) transforms to the following
fractional program:

¢ Dw

¥

minimize

s.t. [AD|-—b][ :’ ] =0, [eT]1) [ f/” ] =1,



w>0,v2>0.

In the transformed space, the search direction may
be defined by the projected steepest descent direc-
tion —P[Dc/y,—cT Dw/4?]T, evaluated at the point
—ﬁ%, ey HLH]T, where P is the projection matrix P =
[ — AT(AAT)"14 and 4 = [ 45 =k
be expressed in the original variables using the collinear
transformation.

The approach is closely related to the original projec-
tive approach of Karmarkar [7). Connections between
Karmarkar’s projective transformations and collinear
scalings have been noticed early on, see, for example, La-
garias [8]. Also related are the projective transformations
of Freund [4] derived from convex analysis. It would be
interesting to work out the precise connections between
these different approaches.

Collinear transformations are taken up again later (see

(4))-

2. MODELS

A second derivation of Dikin’s algorithm has an-
tecedents in the proximal-point method of Rockafellar
[14] and the quadratic regularization of Pschenichny and
Danilin [13]. The bound constraints z > 0 of (LP) are re-
placed by a quadratic regularization of the objective func-
lion in the metric defined by D=2, The resulting quadratic
approzimating (Dikin) model is

It can then

minimize ¢T'd+ —;-dTD‘zd s.t. Ad =0, (2)

where d = z — z¥. It has only equalily constraints and
can thus be solved explicitly. The vector from z* to its
minimizing point is along the Dikin direction. This ap-
proach is discussed in more detail in Nazareth [11] where
1t is also shown that primal-dual affine scaling and the
relation defining the central path can be derived from a
simultaneous consideration of quadratic models for (LP)
and its dual.

A very natural generalization of the foregoing approach
is to substitute a conic approximating model that maiches
the quadratic approzimating (Dikin) model upto second
order terms. Thus one defines a model that locally ap-
proximates (LP) at z* as follows:

c’d 4+ Ld(D7% + ke + chT)d
1+hTD-1d " 2 (1+ hTD-1d)?

min s.t. Ad=0.
where d = z~z*, h = e and pu > 0 scales the gauge vec-
tor of the conic model and provides the parameterization
for the model.

Make the transformation z = z* + Zw, where Z is
a matrix of full rank that spans the null space of A,
thus obtaining an unconstrainted problem. By setting

its gradient to zero, solving and reverting to the origi-
nal variables, it is immediately evident that the search
direction is a linear combination of Dikin’s direction
dy = —Z(2TD7%22)"1ZT¢ = —DPDc = —c, and the
centering direction e, = Z(ZT D~-22)~1ZT D~'e = DPe,
where P is defined in Section 1. The gauge parameter p,
in turn, determines the relative weight given to each one.
See Nazareth [11] for more detail.

The model-based approach is taken up again below (see

5)).

3. TRUST REGIONS

Quadratic-based trust regions have enjoyed substan-
tial use in nonlinear minimization (Moré [9]) and more
recently in linear programming (Ye [17], Gonzaga [6]).
They are especially appealing from a geometric point of
view.

In Dikin’s algorithm, the bound constraints z > 0 of
(LP) are replaced by a quadratic (ellipsoidal) trust re-
gion (z — z*)TD=2(z — z*) < 1 and a step taken to or
in the direction of the minimizing point of the result-
ing local approximating problem. Make the affine scal-
ing w = D' (z — z*), i.e., a shift plus linear scaling
z = z* 4+ Dw to obtain

minimize (Dc)”w s.t. ADw =0, wTw<1, (3)
whose solution is obviously the projected steepest descent
direction —P Dc with P defined in Section 1. In the orig-
inal variables, this corresponds to the usual Dikin direc-
tion ¢, = —DPDc.

It is a reasonable conjecture, premised on Davidon’s [2]
techniques, thal something useful might be gained from
substiluting a conic trusl region for the quadratic trust

regions currently in use. Thus let us locally approximate
(LP) by the following problem: d

dT D34
. . . T 2
(CTRP): minimize ¢* d s.t. Ad =0, ———(1 TD-Tap < p°,

where d = ¢ — zF, D~'e represents a particular choice of

gauge vector and p is a scalar parameter. (For necessary
background on conic functions, consult Davidon [2]. For
more recent developments, see, for example, Ariyawansa
and Lau [1] and references cited therein.)

The solution of (CTRP) is discussed, in detail, in
Nazareth [12]. In particular, the conic trust region is el-
lipsoidal whenever 0 < p < 1/|le}|2. At the upper bound,
the trust region becomes a paraboloid. (For example,
when n = 2 and zF = e, the Dikin trust region is a cir-
cle centered on e and the conic trust region is an ellipse
with principal axis along the vector e and, in the limit-
ing case, a parabola with focus at the point e.) (CTRP)
is a convex programming problem and the search vector
obtained from it is always a direction of descent. The



latter has interesting properties. When p — 0, this direc-
tion approaches Dikin’s direction and when p — 1/||e}lz,
it approaches the centering direction, e, = DPe when-

ever cTep < 0, and the descent direction parallel to
c

—cp + (;cLTe%) ep otherwise.

When z* has some very small components, the Dikin
ellipsoidal trust region hugs the boundary along the cor-
responding axes and in consequence, the next iterate can
also be very close to a boundary. The conic trust region,
in effect, allows the Dikin ellipsoid to be reoriented along
a preferred direction and reshaped. Optimizing over this
new ellipsoid can give greater improvement as measured
by objective function value and/or ‘centeredness’ of the
next iterate.

The defining relation of the spherical cone or conical
trust region formulated by Todd [16] (see page 3 of his ar-
ticle}, when squared and inverted, closely resembles our
conic trust region. There are, however, also significant
differences as can be seen by looking at the limiting cases
and also noting that the direction in [16] is not always
a direction of descent. Todd [16] mentions that his ap-
proach is strongly motivated by the conical projections
of Gonzaga [5], which in turn has antecedents and makes
reference to Davidon [2]. Our approach is much more di-
rectly based on Davidon’s techniques and it would be very
interesting to explore the precise connections between the
different approaches.

The resulting conic-based trust region LP algorithm
also resembles that of Todd [15] and using proof tech-
niques developed there and a suitable strategy for choos-
ing p at each iteration, it is likely that polynomial com-
plexity can be established. This is currently being stud-
ied.

Conic trust regions can be formulated in dual and
primal-dual settings in an analogous way by making an
appropriate choice of diagonal scaling matrix.

The use of gauge vectors other than D~le is an inter-
esting topic for further study (see also [11]).

Conic trust regions can also be used for nonlinear mini-
mization leading to conjugate-gradient-like algorithms, as
discussed, in detail, in Nazareth [12].

4. TRANSFORMATIONS AND MODELS
MOTIVATED BY TRUST REGIONS

A variant on solving (CTRP) is to make a collinear
transformation (shift plus collinear scaling) of the conic

trust region based on the following mapping and its in-
verse (cf. (1)):

o D‘l(x—xk)
- 1+ eTD-1(z — z¥) °

(4)

where the Jacobian of the second transformation is given
by J = (1/7)(D+ DweT /v), v = 1—eTw. Thus (CTRP)

becomes

T
minimize — e;}w s.t. ADw =0, wlw < p?,
and p can be restricted to ensure that 1 —eTw > 0. If
the objective function of this transformed problem is lin-
earized then the solution is the projected steepest descent
direction —PJT¢, where P is defined earlier. This is a
reasonable approzimation to the solution of (CTRP) and
it is easily seen to be a linear combination of the Dikin
and centering directions. The approach is again closely
related to the original approach of Karmarkar (see earlier
rescaling discussion).

Another variant, motivated by the quadratic regular-
ization (2) and the Lagrangian equations that can be
associated with (C7RP), is to replace the bound con-
straints of (LP) by a conic regularization of its objective
function, i.e., define a model that locally approximates
(LP) at z* as follows:

.. . p. 1 d'D™%
minimize ¢ d + 5(1 T+ et D-1d)

5 st. Ad=0, (5)

where again d = z — z¥ and g > 0 is a parameter. As
before, make the transformation d = Zw. Then the fore-
going model can be reexpressed as:

I . 1 wTDw

minimize ¢ w <+ 5(1—_*_;_,}1”—)2,
where ¢ = ZT¢c, D = ZTD=2Z and € = pZTD~'e. The
gradient of this function is ;11?(1 + ewT )1 Dw + ¢ with
7s = (1 — €T w). By setting this gradient to zero, solving
and reverting to the original variables, it is immediately
evident that the resulting search direction is also a lin-
ear combination of Dikin’s direction dy, and the centering
direction e,. This direction and the resulting algorithm
have interesting properties that we are currently study-
ing.

Finally, we may note that the use of conic regulariza-
tion within prozimal-point algorithms (Rockafellar [14])
offers an intriguing potential application to convex pro-
gramming.
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BULLETIN BOARD

THE NEXT INTERNATIONAL
SYMPOSIUM ON
MATHEMATICAL PROGRAMMING

The 15th International Symposium on Mathematical
Programming sponsored by the Mathematical Program-
ming Society will be held in Ann Arbor, Michigan, USA
on the campus of the University of Michigan during 15-
19 August 1994. Interested persons who have not re-
ceived an announcement can request one by sending an
e-mail message to xvismp@um.cc.umich.edu, or by writ-
ing to “15th International Symposium on Mathematical
Programming, Conferences and Seminars, 541 Thomp-
son St., Room 112, University of Michigan, Ann Arbor,
MI 48109-1360, USA, FAX: 313-764-2990.” All interested
persons are requested to fill in the preregistration form
on this announcement, or a Xerox copy of it, and send it
to this address soon. In September 1993, a detailed 2nd
announcement will be sent to all those who return the
preregistration form.

POSTSCRIPT: CONFERENCE ON
LARGE-SCALE OPTIMIZATION

On February 15-17, 1993, a conference on Large Scale
Optimization, hosted by the Center for Applied Opti-
mization (organized by W. Hager, D. Hearn and P. Parda-
los), was held at the University of Florida. The confer-
ence was supported by the National Science Foundation
and the U. S. Army Research Office and was endorsed
from SIAM, MPS, ORSA and IMACS. Forty one invited
speakers from all over the world presented papers on top-
ics on mathematical programming and optimal control
with an emphasis on algorithms, software development,
and numerical experimentations. A wide range of practi-
cal applications such as airline crew scheduling, network
problems, protein folding, location problems, multitarget
tracking, and database design problems were discussed.

Attendees also included representatives from IBM,
American Airlines, US Air, UPS, AT & T Bell Labs,
Thinking Machines, and Argonne Labs. A unique fea-
ture of the meeting was the NSF sponsored attendance of
thirteen graduate students from universities in the United
States.

A conference publication on large-scale optimization
will be published by Kluwer Academic Press.

Panos M. Pardalos, University of Florida, Gainesville.



LINEAR AND NONLINEAR
CG-RELATED METHODS

Researchers in the area of CG-related methods for solv-
ing large-scale linear systems are often surprisingly iso-
lated from researchers in the area of CG-related meth-
ods for large-scale nonlinear optimization. With this in
mind, Loyce Adams (UW), Randy LeVeque (UW), Larry
Nazareth (WSU) and Dave Watkins (WSU) are planning
to organize a (small-scale) workshop at the University of
Washington, Seattle, which is intended to bring together
researchers from these two communities for an exchange
of ideas. Summer, ’95 seems a good time for optimizers,
since it is between the Mathematical Programming Sym-
posium (Ann Arbor) in ’94 and the next SIAM Optimiza-
tion Conference in ’96. This also seems suitable from the
point of view of the computational linear algebra sched-
ule of events. We’d welcome hearing from people who are
interested in participating and/or have preconditioning
opinions that they might care to share during the plan-
ning stage as we put together a proposal.
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FOR FEATURE ARTICLE
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[2] Computing the Future: A Broader Agenda for Com-
puter Science and Engineering, Report of the National
Research Council, National Academy Press, 1992.

[3) John A. White, An Existence Theorem for OR/MS,
Operations Research, 39, p. 183-193, 1991.

(4] John D.C. Little, Operations Research in Industry:
New Opportunities in a Changing World, Operations Re-
search, 39, p. 531-542, 1991.

[5] Richard Teach, State of the Profession, OR/MS To-
day, p. 26-30, October, 1991.

SELECTED UPCOMING ARTICLES
FOR SIAM J. OPTIMIZATION

A Globally and Superlinearly Convergent Algorithm for
Convex Quadratic Programs with Simple Bounds Thomas
F. Coleman and Laurie A. Hulbert

A New Method for Optimal Truss Topology Design
Aharon Ben-Tal and Martin P. Bendspe

Quantitative Stability of Variational Systems II. A
Framework for Nonlinear Conditioning H. Attouch and
R. Wets

Partial-Update Newton Methods for Unary, Factorable,
and Partially Separable Optimization Donald Goldfarb
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and Siyun Wang

Large-Step Interior Point Algorithms for Linear Com-
plementarity Problems M. Kojima, Y. Kurila, and S.
Mizuno

A Finite Smoothing Algorithm for Linear L; Estimation
H. B. Nielsen and K. Madsen

On the Superlinear Convergence of Interior-Point Al-
gorithms for a General Class of Problems Yin Zhang,
Richard Tapia, and Florian Poira

Pointwise Broyden Methods C. T. Kelley and E. W.
Sachs

Partially Finite Programming in L; and the Existence of
Maximum Entropy Estimates J. M. Borwein and A. S.
Lewis

Reverse Auction and the Solution of Inequality Con-
strained Assignment Problems D. P. Berisekas, D. A.
Castanon, and H. Tsaknakis

Uniformly Extremal Solutions in Sobolev Function Spaces
for the Quadratic Case: Characterization and Applica-
tions L. S. Thakur

Second-Order Multiplier Update Calculations for Opti-
mal Control Problems and Related Large-Scale Nonlinear
Programs J. C. Dunn

A Noninterior Continuation Method for Quadratic and
Linear Programming Binlong Chen and Patrick T.
Harker

A Globally Convergent Method for L, Problems Yuying
Li

Convergence Analysis of a Proximal-Like Minimization
Algorithm Using Bregman Functions Gong Chen and
Marc Teboulle

Nonsmooth Equations: Motivation and Algorithms Jong-
Shi Pang and Liqun Qi

A Lagrangian Relaxation Algorithm for Multidimensional
Assignment Problems Arising from Multitarget Tracking
Aubrey B. Poore and Nenad Rijavec

An Implementation of the Dual Affine Scaling Algorithm
for Minimum Cost Flow on Bipartite Uncapacitated Net-
works Mauricio G. C. Resende and Geraldo Veiga
Multi-Objective Control-Structure Optimization Via Ho-
motopy Methods Joanna Rakowska, Raphael T. Haftka,
and Layne T. Walson

A Newton Method for Convex Regression, Data Smooth-
ing, and Quadratic Programming with Bounded Con-
straints Wu Li and John Swetits

Manifold Structure of the Karush~-Kuhn-Tucker Sta-
tionary Solution Set with Two Parametrics Ryuichi
Hirabayashi, Masayuki Shida, and Susumu Shindoh
Numerical Experience with Limited-Memory Quasi-
Newton and Truncated Newton Methods X. Zou, I. M.
Navon, M. Berger, K. H. Phua, T. Schlick and F. X.
LeDimet

A Collinear Scaling Interpretation of Karmarkar’s Linear
Programming Algorithm J. C. Lagarias



CONTRIBUTIONS TO THE V&N

The essay section of the next issue (Fall, '93) will fo-
cus on two related and computationally extremely chal-
lenging research areas at the frontier: optimization under
uncertainly and nonsmooth optimization. It will contain
articles by George Dantzig/Gerd Infanger, Roger Wets
and Claude Lemarechal.

Issues of the Views-and-News will appear each Spring
and Fall. Articles contributed by STAG/OPT members
are always welcome and can take one of two forms:

a) Views: short, scholarly, N® (Not Necessarily Noncon-
troversial) essay-type articles, say 2 to 4 pages long, on
any topic in optimization and its interfaces with the sci-
ences, engineering and education.

b) News: brief items for the Bulletin Board Section.

Author/developer previews of definitive optimization
research monographs and software libraries, which are in
the works or have just appeared, are also welcome for the
essay section (space permitting). However, book reviews
will not be published in order to avoid unnecessary over-
lap with the Mathematical Programming Society newslet-
ter Optima nor short technical notes of the sort sought by
the recently reorganized MPS-COAL Bulletin.

Our first preference is that a contribution take the form
of a LaTeX file sent by email to the editor at the address
given below. (If possible try it out in two-column format.)
However, other forms of input are also acceptable.

The deadline for the Fall issue is September 1, 1993.

Larry Nazareth, Editor

Department of Pure and Applied Mathematics
Washington State University

Pullman, WA 99164-3113

email: nazareth@wsumath.bitnet
or nazareth@amath.washington.edu
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SELECTED
THEMES

Computational Fluid Dynamics
Materials Science
Biotechnology
Industrial Problems
Optimization

Large Scale Computing
Inverse Problems
Nondestructive Testing
Dynamical Systems
Discrete Mathematics
Finance

and in conjunction with the annual meeting

SYMPOSIUM July 8-1¢, 1993
Inverse Problems and Optimal Design in Industry

TUTORIALS July 11, 1993
Wavelets and Applications * Continuous Time
Finance * Structured Population Dynamics

WORKSHOP July 10, 1993
Making Mathematics Count:
A Workshop for High School Matbematics Teachers

For a copy of the preliminary program, please contact:
v

SIS,

Conference Coordinator
Society for Industrial and Applied Mathematics
3600 University City Science Genter
Philadelphia, PA 19104-2688
Telephone: 215-382-9800
Fax: 215-386-7999
E-mail: meetings@siam.org
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Having trouble with your latest math paper?
Giving a presentation that you just can’t pull together?
Struggling with your thesis or trying to get your first article published in a technical journal?
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