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NONSMOOTH AND STOCHASTIC
OPTIMIZATION AT ITASA

Since the focus of the present issue and the next
(Spring, '94) is computational nonsmooth and stochas-
tic optimization, this is an opportune time to describe
the pivotal role played in these two areas by the Inter-
national Institute for Applied Systems Analysis (ITASA),
in particular, through its System and Decision Sciences
Program.

IIASA is an interdisciplinary, non-governmental re-
search institution headquartered at Laxenburg, Austria
on the outskirts of Vienna, in a beautifully refurbished
Habsburg summer palace provided by the Austrian Gov-
ernment. It was founded in 1972 on the initiative of the
USA and the former USSR, and is sponsored by a con-
sortium of National Member Organizations in 15 nations,
producing scientific research on economic, environmental,
technological and social issues of interest to all members.
During its first two decades, IIASA represented a bridge
between East and West. Now in its third decade, the In-
situte seeks to conduct international and interdisciplinary
studies that provide timely and relevant information and
options, addressing critical issues of global change in its
focus areas.

The theory and methods of systems analysis underpin
the foregoing research. This was the province of a group
of methodological projects that were collectively orga-
nized, during IIASA’s first two decades, into a System
and Decision Sciences (SDS) Program Area. (Recently,
a less structured form of coordination has been adopted
at IIASA that permits greater project independence and
flexibility.) Under able leadership that included Profes-
sors Michel Balinski, Andrzej Wierzbicki and Academi-
cian Alexander Kurzhanski (having a surname that ends
in ‘ki’ was not a job prerequisite), SDS/ITASA grew into
a leading center for methodological research, particularly
in the areas of nonsmooth optimization and optimization
under uncertainty.

In the standard and broadly applicable mathematical
programming model: minimizez¢ g~ f(z) subject to real
constraints a; < g;(z) < b;, 1 < i < m, the functions
f and g; are smooth and deterministic, usually with no
further restrictions, for example, on convexity. This is a
positive characterization. In contrast, nonsmooth opti-
mization and optimization under uncertainty are charac-
terizations in the negative. The old Chinese proverb for
describing a horse (“it is better to say: that that isa horse

15 a horse, rather than to say: that that is not a horse is
not a horse”) highlights the fact that in order to develop
models and solution methods of more than theoretical
significance (the theory is already well developed in these
areas), it becomes necessary in practical applications to
make a positive characterization of the underlying nons-
moothness or uncertainty. This has led to a multiplicity
of relevant models, in marked contrast to the smooth case.

Different approaches have been emphasized in different
countries, often an outgrowth of differing scientific cul-
tures. For example, the term ‘Russian school’ is often
attached to very general formulations defined in terms
of expectation functions, and nonmonotonic subgradient
or stochastic quasi-gradient techniques, which are power-
ful but difficult to automate. The term ‘French school’
is attached to deep analysis of the subdifferentiability
properties of nonsmooth models, and monotonic ‘bundle’-
type methods. ‘American school’ connotes an emphasis
on specific models (for example, recourse) solved auto-
matically, on powerful computers, by cleverly adapted
methods of large-scale mathematical programming cou-
pled with techniques of approximation/sampling of dis-
tribution functions. ITASA’s strength, through its core
interdisciplinary research projects and outreach networks
of scientists, has been to help bridge these gaps. Two
pioneering efforts in this regard are: Nonsmooth Opti-
mization, C, Lemarechal and R. Mifflin (Eds.), IIASA
Proceedings 3, Pergammon (1978), and Numerical Tech-
niques for Stochastic Oplimization, Y. Ermoliev and R.
Wets (Eds.), Springer-Verlag (1988), each representing an
important plateau of an ITASA project.

As a result of these efforts and others conducted else-
where, very significant practical breakthroughs have been
achieved. One, at Stanford, by Dantzig and Infanger is
overviewed in this issue. Others will be mentioned in
essays in the next issue, which incidentally are also repre-
sentative of the different (so-called) ‘schools’ mentioned
above. Interestingly enough, their authors have all been
long-term associates of ITASA or active participants in
IIASA projects, a further illustration of the important
synergistic and catalytic functions of this unique insti-
tute.
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CHAIRMAN’S COLUMN
by A.R. Conn

Like most groups, researchers have their own partic-
ular foibles and eccentricities. In particular, writing pa-
pers and subjecting them to peer review encourages a cer-
tain degree of egotism, paranoia and bloody-mindedness.
Most of it is understandable and, except for the occa-
sional ruffled feathers, causes no real harm. However,
it sometimes becomes more serious, and in one recent
extreme case, an academic in Montreal, denied tenure,
claimed that he did all the work in a series of articles,
although his more senior colleagues’ names (presumably
the same ones who contributed to his denied tenure) ap-
pear among the authors. The distressed faculty member
then attempted to shoot his colleagues. Although un-
successful in this endeavor, he did, unfortunately, kill a
secretary and two other faculty members. Although this
is clearly not a normal event, I think we are all aware of
abuses of authority/seniority that dictate authorship of
articles. Often this is partly a question of precedence in
the fleld — in some areas it is not at all unusual for the
head of a laboratory or group to appear as an author on
all articles published by the group. Thus for instance, in
medicine there are authors who publish at a phenomenal
rate. Baboon-liver transplanting Pittsburgh surgeon Dr.
Thomas Startzl published every 2.4 days in 1991...and he
also found time to write and promote a book about his
hectic life (cited from the Toronto Globe & Mail, Science
and Academe section, March 6, 1993).

Nevertheless, I believe that intellectual honesty is some-
thing that researchers take seriously and, in most cases,
when it is lacking, the omission is unintentional.

We are all familiar with tales of stolen ideas and of
trespassing on territorial claims. In most instances, I do
not believe these are cases of genuine intellectual dishon-
esty. Typically, I think they are much more likely to be
caused by what I call ‘cultural confusion’, equivalent to
say a pure mathematician claiming that the solution to a
square non-singular system of linear equations Az = b is
given by £ = A7'6 — end of story. Thus all the volumes
in numerical analysis devoted either directly or indirectly
to solving linear systems are either trivial or have already
been done. Although usually more subtle than the ex-
ample just given, I feel that most, but regrettably not
all, complaints of plagiarism are in fact more a matter of
points of view rather than intentional dishonesty. Simi-
larly, in slide presentations, it is difficult to give references
to all the relevant preceding work, if only because of the
limited time available for the presentation. I myself, usu-
ally give few such references when giving a presentation
of less than thirty minutes. Sometimes this appears as in-
tentional dishonesty but in reality it rarely is (in my own
case, never, I hope). By contrast, although inevitably it

is not trivial to include all the appropriate (especially his-
torical) attributes, I do believe it is essential to endeavor
to be as thorough as possible in referencing previous rele-
vant work in written articles. It is certainly intellectually
dishonest to expressly exclude references to previous work
either because you do not like the authors or disagree
with their point of view. Naturally, it is usual to have
some cultural biases based upon one’s upbringing, and
one has to make a conscious effort to avoid, for example,
nationalistic biases. At some level such parochialism is in-
evitable; for instance, the text one used as a student may
well introduce certain cultural attitudes. Many of us read
few Eastern European articles, not really because we are
prejudiced but because we find their style of mathematics
different (and less accessible) than our own. Nevertheless,
it 1s often rather astonishing how narrow-minded we can
sometimes be. It is not hard to find bibliographies unrea-
sonably biased not only to countries and continents, but
also to single institutions and their graduates.

Another area where such prejudices do show up from
time to time is in refereeing — whether it be of grant
proposals or submitted articles. In this arena, associate
editors and members of panels have a special responsibil-
ity to avoid abuses of their positions of power, whether
their own or those of fellow members. Since people in
these positions are already often powerful themselves, it
can be difficult to oppose them because of the possible
adverse consequences. However, if one feels that what
one might call ‘intellectual harassment’ is taking place, it
is intellectually dishonest to remain silent — even if that
might not be politically prudent.

Finally, prejudice in refereeing brings me to one of my
own particular hobby-horses, that of signing referee re-
ports. I have always signed my reports, with the excep-
tion of cursory dismissals of clearly unpublishable works
(in which case I always volunteer to write a more de-
tailed report that I would be willing to sign, if more de-
tails are requested). The usual argument against such
a policy is that the author will unjustly blame/hate the
referee. However, I contend that just as frequently an
author blames a colleague for a report that was actually
written by someone else! The referee knows the author so
why shouldn’t the author know the referee? In particu-
lar, I am convinced from my own experience as an author
that many reports would be constructively improved if
the referee signed them and especially, the all too fre-
quent, superficial and sometimes surprisingly venomous
remarks, would disappear.

Well, I hope the above remarks do not appear too
pompous and condescending. They are meant to be taken
for what they are, my honest, personal opinion. As al-
ways, your comments and feedback are welcome. My e-
mail address is arconn@watson.ibm.com



FORUM ESSAY

PLANNING UNDER UNCERTAINTY
by George B. Dantzig and Gerd Infanger!

Solutions obtained from deterministic planning mod-
els are usually unsatisfactory because they fail to hedge
against unfavorable events which may occur in the fu-
ture. Stochastic models address this shortcoming, but
in the past have seemed to be intractable because, even
for a relatively small number of parameters, subject to
uncertainty the size of such problems can get very large.
Techniques for solving stochastic mathematical programs
were first described in Dantzig (1955) [6]: more recently
in numerous articles, some of which are cited in our bib-
liography.

This essay addresses a common class of stochastic mod-
els, namely stochastic linear programs with recourse.
We review our approach for solving them efficiently us-
ing a blending of classical Benders Decomposition with
a relatively new technique called Importance Sampling
(Dantzig and Glynn (1990) [7], Infanger (1992) [21]).
Some numerical results from solving large-scale problems
in the area of expansion planning of power systems and
financial planning are also presented.

1. TWO-STAGE STOCHASTIC

LINEAR PROGRAMS

An important class of stochastic models are two-stage
stochastic linear programs with recourse. These models
are the analog extensions of deterministic dynamic sys-
tems which have a staircase structure: z denotes the first
it = 1, y the second t = 2 stage decision variables, A,
b represent the coefficients and right hand sides of the
first stage constraints and D, d represent the second stage
constraints, which together with the transition matrix F,
couples the two periods. In the literature D is often re-
ferred to as the technology/recourse matrix. The first
stage parameters are known with certainty. The second
stage parameters are random variables w that assume cer-
tain outcomes with certain probabilities p(w). They are
known at time ¢ = 1 only by their probability distribution

1Research partially supported by the Office of Naval Re-
search Contract N00014-89-J-1659; the National Science Founda-
tion Grants ECS-8906260, DMS-8913089, the Electric Power Re-
search Institute Contract RP 8010-09, CSA-4005335, and the
Austrian Science Foundation, “Fonds zur Férderung der wis-
senschaftlichen Forschung,” Grant J0323-Phy. Authors’ address:
Department of Operations Research, Stanford University, Stanford,
CA 94305-4022, U.S.A.

of possible outcomes. The actual outcomes will become
known later at time ¢ = 2. Uncertainty occurs in the
transition matrix F and in the right hand side vector d.
The second stage costs f and the elements of the tech-
nology /recourse matrix D are assumed to be known with
certainty. We denote an outcome of the stochastic pa-
rameters by w € €, with Q being the set of all possible
outcomes. E“(-) denotes the expectation with respect to
the probability distribution p(w). The two-stage stochas-
tic linear program can be written as follows:

min z = cz + E“( fy)
s/t Az = b
~FYz 4+ Dy = ¥
z,y” > 0, weq.

The problem is to find a first stage decision z, if possi-
ble, which is feasible for all scenarios w €  and has the
minimum expected costs. Note the adaptive nature of
the problem: While the decision z is made only with the
knowledge of the distribution p(w) of the random param-
eters, the second stage decision y* is made later after an
outcome w is observed. The second stage decision com-
pensates for and adapts to different scenarios w.

Using discrete distributions, one can express a stochas-
tic problem as a deterministically equivalent linear pro-
gram by writing down the second stage constraints for
each scenario w € Q one below the other. The objective
function carries out the expected value computation by
direct summation. Clearly, this formulation could lead
to linear programs of enormous sizes if the number K of
discrete events w is large:

minz =cx + pfy + + pNfy"

s/t Az = b
-F'z + Dy* = 4
-FXg +  Dy¥ = 4

z, v v o> 0

As already noted, the method which we apply to solve
large-scale stochastic linear programs uses Benders de-
composition and importance sampling. The underlying
theory of our approach is developed in Dantzig and Glynn
(1990) [7] and in Infanger (1992)[21]. Dantzig and In-
fanger (1991) [11] report on the solution of large-scale
problems. In the following we give a brief review of the
concept. First we discuss the concept of Benders decom-
position for 2-stage stochastic linear programs. We then
introduce the formulation of a special class of multi-stage
stochastic linear programs as an extension to the formu-
lation of the two-stage stochastic linear program above.
We show how using sampling techniques estimates of the



expected costs and variances can be computed. Here im-
portance sampling is the key to obtaining accurate esti-
mates, i.e. unbiased estimates with low variances, with
low sample size. Finally we demonstrate the power of the
approach through numerical results from large-scale test
problems that we solved.

2. BENDERS DECOMPOSITION

We decompose the 2-stage multi-period stochastic lin-
ear program by applying Benders (1962) [2] decomposi-
tion. See van Slyke and Wets (1969) [31] for a reference
to using Benders decomposition for stochastic linear pro-
grams,

Benders decomposition splits the original problem into
a master problem and a subproblem, which in turn de-
composes into a series of independent subproblems, one
for each w € Q. The latter are used to generate cuts.
The master problem, the subproblems and the cuts are
summarized as follows.

The master problem:

min zpy = cx + 0
s/t Az = b
cuts : -Gz + 0 > ¢, 1=1,...,L
z, g > 0.
The subproblems:
min z¥ = p¥fy¥
s/t p¥m¥ Dy = d“+ B“:
v 2 0, weq,

where, for example, Q@ = {1,2,..., K}, and where p*z¥*
is the optimal dual solution of subproblem w, given z, the
first stage decision. To simplify the discussion we assume
the subproblems are all feasible.

The parameters of the cuts:

Ew pw 7l.w¢ dw
Zw pw Trw* Bw

By solving the master problem, where cuts are initially
absent and then sequentially added, we obtain a trial so-
lution &. Given & we can solve K subproblems w €  to
compute a cut. The cut is a lower bound on the expected
value of the second stage costs represented as a function
of z. Cuts are sequentially added to the master prob-
lem and new values of & are obtained until the optimality
criterion is met.

If the expected values z,G, and g are computed ex-
actly, that is, by evaluating all scenarios w € Q, we refer
to it as the universe case. As we will see later the num-
ber of scenarios easily gets out of hand if K is large and

E(mw*dv),
E(r%* B¥).

g
G

it is not always possible to solve every subproblem w.
Therefore methods are sought that guarantee a satisfac-
tory solution without having to solve the universe case.
We employ Monte Carlo sampling techniques to obtain
accurate estimates of the expected values z, G, and g.

3. A CLASS OF MULTI-STAGE

STOCHASTIC LINEAR PROGRAMS

Large-scale deterministic mathematical programs, used
for operations and strategic planning, often are dynamic
linear programs. These problems have a staircase (multi-
stage) matrix structure. In general, the size of these
stochastic problems can get extremly large because the
number of scenarios grows exponentially with the num-
ber of periods. We will, however, address a certain re-
stricted class for which the number of scenarios grows
linearly with the number of stages: The problem (whose
constraints are stated below) breaks down into two parts:
a deterministic dynamic part and a stochastic part. We
call the deterministic part the master problem. It is a
dynamic linear program with T stages. The vectors ¢,
and b;, and the matrices B,_; and A, are assumed to be
known with certainty.

minz = Zthl CtT¢ + Z:trzl E(fty(t‘)‘)

=Bz + Az = b
_Ftwtxt + Dtyltvt — d;-)(
L, y(t‘“ Z 0)

where Bg = 0, ¢t = 1,...,T, and w; € §;. Each stage

is associated with a stochastic subproblem. Uncertainty
appears in the recourse-matrix F;”* and in the right hand
side vector dy* where w;, denotes an outcome of the
stochastic parameters in period ¢, with Q; denoting the
set of all possible outcomes in period ¢. The subproblems
in each stage are assumed to be stochastically indepen-
dent. The subproblem costs f; and the technology matrix
D, are assumed to be deterministic parameters.

Facility expansion planning is an example of this type
of formulation. The master problem models the expan-
sion of the facilities over time. Decision variables are the
capacity built and the capacity available at time ¢. The
subproblems model the operation of these capacities in
an uncertain environment. Take for example the case of
expansion planning of power systems: The expansion or
replacement of capacities of generators and transmission
lines are determined in the master problem. The capac-
ities at each period ¢ are made available to the system
for operation. The subproblems model the power system
operation, the optimal sceduling of the available capaci-
ties to meet the demand for electricity. The availabilities
of generators and transmission lines and the demands arc
uncertain and not known at the time when the expansion
decision is made. The special class of multi-stage prob-
lems decomposes as follows:



The master problem:

i L T T
min zy =35 aze + 3 0

=Bz + Ay = b
-Giz: + 6 > g
It 2 01
where By =0,t=1,...,T,and l=1,...,L.
The subproblems for w; in period t:
min 2 (&) = fiy;"
W:W (i’.i) : Diy:“ e d‘td‘ + F:‘"ji’ wt € Qg
w2 0, £ given,

wheret =1,...,T.

The parameters of the cuts:
fort=1,2,...,T,

Gi = E(z*B“*), g} = E(r“1d*"),

a(#y) = E(2"), # =n(3)).
4. IMPORTANCE SAMPLING

The difficulty of solving large-scale stochastic problems
arises from the need to compute multiple integrals or mul-
tiple sums. The expected value of the second stage costs
e.g. z = E(fy”) = E(C) is an expectation of functions
C(v”), w € Q, where C(v*) is obtained by solving a lin-
ear problem. v* = (vi,...,v,)* with p(v¥), the cor-
responding probability, are outcomes of say V (in gen-
eral), an h-dimensional random vector parameter, e.g.
V = (W,...,V4). With P being the probability mea-
sure and under the assumption of independence the inte-
gral E C(V) = [ C(v*)P(dw) takes the form of a multi-
ple integral E C(V) = [ ... [ C(v)p(v)dv; ...dus, or, in
case of discrete distributions, the form of a multiple sum
EC(V)=2,, 2, C(v)p1(v1) ..o (va).

In the following discussion we concentrate on discrete
distributions. This is not a restriction as the approach
can be easily adapted for continuous distributions. Even
for h as small as 20 the number of terms in the multiple
sum computation gets easily out of hand and the prob-
lem is no longer practical to solve by direct summation.
This is especially true because function evaluations can
be computationally expensive since each term in the mul-
tiple sum requires the solution of a linear program.

Monte Carlo Methods are recommended to com-
pute multiple integrals or multiple sums for higher h-
dimensional sample spaces (Davis and Rabinowitz (1984)
(13], Glynn and Iglehart (1989) [19]). Suppose C¥ =
C(v”) are independent random variates of ¥, w =

1,...,n with expectation z, where n is the sample size.
An unbiased estimator of z with variance ¢ = ¢%/n,
o? = var(C(V)) is

z=(1/n))_cCv.
w=1

Note that the standard error decreases with n=%5 and the
convergence rate of Z to z is independent of the dimension
of the sample space h. We rewrite z = 3o C(v*)p(v*)

* C(*)p(v*)g(s*)
w;, g(v)

by introducing a new probability mass function ¢(v*) and
we obtain a new estimator of z

1 <= C(v*)p(v*
1y (v“)p(v*)

n q(v+)

w=1

zZ =
by sampling from g(v*). The variance of 7 is given by

var(z) = % > (—Cﬁm - z>2 o).

hoer q(v)

Chosing ¢* (%) = C(v*)p(v*)/ Feq C(s*)p(s*) would
lead to var(Z) = 0, which means one could get a perfect
estimate of the multiple sum from only one estimation.
Practically however, this is useless since to compute g(v¥)
we have to know z = Y~ . C“p(v*), which is the value
we wanted to compute in the first place. The result, how-
ever, helps us to derive a heuristic criterion for choosing
a “good” ¢. It should be proportional to the product
C(v“)p(v¥) and should have a form that can be inte-
grated easily. Thus a function I'(v*) ~ C(v¥) is sought,
which can be integrated with less costs than C(v*). Addi-
tive and multiplicative (in the components of the stochas-
tic vector v) approximation functions and combinations
of these are potential candidates for our approximations.
In particular, we have been getting good results using

C(V)=~ ZLI C;(V;). We compute q as
O ()
Yim1 Luea, Ci(v*)pi(v)

To understand the motivation for this importance sam-
pling scheme, assume for convenience C;(v{*) > 0 and let

L'(w) = ZLI Ci(vy). If - C(v¥)p(v*) were used as an

approximation of 7 it can be written

q(v") ~

n h n
w w Ci(vf w wh
Yo p) = 3 o 3 1S i) o),
w=l1 i=1 w=l ¢
.,wr) and where we define

ai= Y Ci(of )pi(v}"),

wi€N;

where w = (wy,ws, ..



which is relatively easy to compute since it can be evalu-
ated by summing only h sums each of which is a sum of
one of the dimensions of w. Note that

Wiy, (Wi

pi(upry = SN 5 5 4 e
a5
may be viewed as a modified probability distribution of
v; associated with the ¢ term. It is, of course, a trivial
matter to directly sum each term 7 since each of its fac-
tors, being independent probability distributions, sum to
one. Suppose, however, one does not notice this fact and
decides to estimate the sum by estimating each of the h
terms by Monte Carlo sampling. The i-th term would
then be evaluated by randomly sampling v; from the dis-
tribution p;(v;*) and all the rest of the components v; of
v from the distributions p;(v;"*).
In an analogous manner, we let

plw) = %

and write

z = ) Cw)pw)
X p)T(@)p(w) )
= Y e Y pw)[EL py(v4r) . pa ().

If our approximation I'(w) to C(w) is any good, p(w)
will be roughly 1 for almost all scenarios w. This suggests
the heuristic that the sampling be carried out differently
for each term i. The importance sampling scheme then is
to sample v; of the i-th term according to the distribution
pi(v;"") and to sample all other components v;f'j of the i-th

term according to the distribution p; (v;-"j ).

If the additive function turns out to be a bad approxi-
mation of the cost function, as indicated by the observed
variance being too high, it is easily corrected by increas-
ing the size of the sample. This is done adaptively.

Actually we use a variant of the additive approximation
function. By introducing C(7), the costs of a base case,
we make the model more sensitive to the impact of the
stochastic parameters v. Our approximation function is
computed as follows:

h
T(V)=C(r)+ Z T;(Vi),

(Vi) = C(m, .. L Th) — C(7).

We refer to this as a marginal cost approximation. We
explore the cost function at the margins, e.g. we vary the
random elements v; to compute the costs for all outcomes
v; while we fix the other random elements at the level of
the base case. 7 can be any arbitrary chosen point of the
set of k; discrete values of v;, i = 1,..., h. For example

3 Ti-1, ‘/i"rl'+ls ..

we choose 7; as that outcome of V; which leads to the
lowest costs, ceteris paribus.

Summarizing, the importance sampling scheme has two
phases: the preparation phase and the sample phase. In
the preparation phase we explore the cost function C(V)
at the margins to compute the additive approximation
function I'(V'). For this process nprep = 1+ S (ki —1)
subproblems have to be solved. Using I'(V) we compute
the approximate importance density

L(v*)p(v*) |
C(r) + Yolet Yueq, Ti(v*)p(v?)

Next we sample n scenarios from the importance density
and, in the sample phase, solve n linear programs to com-
pute the estimation of Z using the Monte Carlo estimator.
We compute the gradient G and the right hand side g of
the cut using the same sample points at hand from the
expected cost calculation. See Infanger (1992) [21] for
the computation of the cuts and details of the estimation
process.

The additive adaptive importance sampling scheme
worked very well in many different kinds of models. In the
section ”Implementation and Numerical Results” below
we review the quality of solutions obtained from models
of electric power planning and financial planning. Kr-
ishna (1993) [24] developed as part of his Ph.D. thesis a
promising importance sampling scheme based on a piece-
wise linear approximation function.

g(v’) =

5. PROBABILISTIC BOUNDS

Based on Benders decomposition and using estimates
of the expected second stage costs, z, the gradients, G,
and the right-hand sides, g, of the cuts, the objective
function value of the master problem gives a lower bound
estimate and the total expected costs of a trial solution
zl,t=1,...,T gives an upper bound estimate to the ob-
jective function value of the problem. If the lower and
the upper bound are sufficiently close, which is tested by
a Student t-test, the problem is considered to be solved.
Lower and upper bounds can be seen as a sum of i.i.d.
random terms which for sample sizes of 30 or more can be
assumed normally distributed with known (derived from
the estimation process) variances. A 95% confidence in-
tervall of the optimal solution is computed. See Dantzig
and Glynn (1990) [7] and Infanger (1992) [22] for details
of the algorithm. Current research involves the devel-
opment of ways to adaptively improve solutions until a
prespecified quality criterion is met, e.g. David Morton
(1993) [25] explored as part of his Ph.D. thesis limit re-
sults of sampling based improving algorithms.



6. IMPLEMENTATION AND

NUMERICAL RESULTS

This method for solving large-scale two-stage stochas-
tic linear programs with recourse has been implemented.
The code of MINOS (Murtagh and Saunders (1983) [26])
has been adapted for this purpose as a subroutine for solv-
ing both the master problem and the subproblems. When
solving large numbers of subproblems we have found it is
important for the performance of the algorithm to take
advantage of good starting bases. Computation time can
be reduced dramatically by solving first an expected value
problem by replacing the stochastic parameters by their
expectations. The expected value solution of the result-
ing deterministic problem is then used as a starting point
for the stochastic solution. Additionally we keep cuts ob-
tained from the expected value problem to initially guide
the algorithm. It can be shown that cuts obtained from
the expected value problem are valid for the stochastic
problem. They are often “weak” and have to be replaced
as the algorithm proceeds. The code uses sparce ma-
trix techniques and efficient data structures for handling
large-scale problems.

Computational results of the large scale test problems
are represented in Table 1. Besides the solution of the
stochastic problems, the results from solving the expected
value problems are also reported. We also report on the
estimated expected costs if the expected value solution is
used as the decision in a stochastic environment. The ob-
Jjective function value of the true stochastic solution has
to lie between the minimum value of objective function of
the deterministic problem and the expected costs of the
expected value solution.

Expansion planning of multi-area power systems
WRPM is a multi-area capacity expansion planning
problem for the western USA and Canada. The model
is very detailed and covers 6 regions, 3 demand blocks, 2
seasons, and several kinds of generation and transmission
technologies. The objective is to determine optimum dis-
counted least cost levels of generation and transmission
facilities for each region of the system over time. The
model minimizes the total discounted costs of supplying
electricity (investment and operating costs) to meet the
exogenously given demand subject to expansion and op-
erating constraints. A description of the model can be
found in Dantzig et. al. (1989). In the stochastic version
of the model the availabilities of generators and transmis-
sion lines and demands are subject to uncertainty. There
are 13 stochastic parameters per time period (8 stochas-
tic availabilities of generators and transmission lines and
5 uncertain demands) with discrete distributions with 3
or 4 outcomes. The model covers a time horizon of 3 fu-
ture periods of 10 years each. Thus the total number of
stochastic parameters is 39. The operating subproblems

of each period are stochastically independent. The num-
ber of universe scenarios is larger than 5 - 10° per period.
In the deterministic equivalent formulation the problem
if it were possible to express it exactly would have more
than 4.5 billion constraints.

The stochastic WRPM is solved by using a sample size
of 100 to generate each cut obtained by sampling. It
takes 129 iterations to obtain the expected value solution
and additional 68 iterations to compute the stochastic
solution. The objective function value of the stochastic
solution was estimated as 199017.4 with an amazingly
small 95% confidence intervall of 0.029% on the low side
and 0.067% on the high side. Thus the optimal solu-
tion lies with 95% confidence between 198959.3 < 2* <
199164.1. The expected costs of the expected value so-
lution (202590.3) and the objective function value of the
stochastic solution differ significantly from the expected
costs of the optimal stochastic solution. The problem was
solved in 687 minutes on a Toshiba T5200 laptop personal
computer. This time includes time to solve 26295 linear
subproblems of the size of 302 rows and 289 columns and
197 master problems.

Portfolio Management

LP42 is a portfolio management test-problem, formu-
lated as a network problem. It is a modified version of
test-problems found in Mulvey and Vladimirou (1989).
The problem is to select a portfolio which maximizes ex-
pected returns in future periods taking into account the
possibility of revising the portfolio in each period. There
are also transaction costs and bounds on the holdings
and turnovers. The test problem covers a planning hori-
zon of four future periods. The returns of the stocks in
the four future periods are assumed to be independent
stochastic parameters, discretely distributed with 3 out-
comes each; this formulation differs from that of Mulvey
and Vladimirou who restricted the problem size by look-
ing at a certain number of preselected scenarios. Like
in Mulvey and Vladimirou the multi-period problem is
viewed as a 2-stage problem, where all future periods are
included in the second stage. With 13 stocks with uncer-
tain returns, the problem has 52 stochastic parameters.
The universe number of scenarios 6 - 1024 is very large,
so that the deterministic equivalent formulation of the
problem if it could be expressed explicitely would have
more than 1.9 - 1027 rows. Here, the stochastic parame-
ters appear in the F-matrix as well as in the D-matrix.
In this case cuts from the expected value problem are
not valid for the stochastic problem. The expected value
problem and the stochastic problem are solved seperately.
A sample size of 600 was chosen. The solution (objective
function value 2.329) is obtained in 4 iterations. Given
the large number of stochastic parameters, the 95% con-
fidence intervall is very small namely 0.536% on the low



side and 0.767% on the high side. Thus with 95% confi-
dence the objective function value of the optimal solution
lies within 2.316 < z* < 2.347. The expected costs of the
expected value solution is significantly different from the
expected costs of the stochastic solution.

Table 1: Large test problems:
power planning

computational results

WRPM LP42
# iter stoch. (exp. val.) 197 (129) | 4(6)
sample size 100 600
exp. val. solution obj 196471.4 | 1.611
exp. val. solution, exp. cost | 202590.3 | 2.334
stochastic solution 199017.4 2.329
estimated conf. left % 0.0292 0.536
estimated conf. right % 0.067 0.767
solution time (min) 687 209
Problem Size
Master rows 128 49
columns 226 83
nonzeros 413 133
Sub rows 302 178
columns 289 309
NONZeros 866 570
# stoch parameters 39 52
# univ. scenarios 15-10% | 6-10%

7. PARALLEL PROCESSORS

The algorithm lends itself, whether in exact form or
using sampling to parallel processing. In collaboration
with James K. Ho we have explored how our approach
for solving two-stage stochastic linear programs can be
effectively implemented on a parallel (Hypercube) mul-
ticomputer (Dantzig, Ho and Infanger (1991) [9]). For
this work we used an Intel iPSC/2 d6 with 64 nodes at
the Oak Ridge National Laboratory. The hypercube has
the architecture of loosely coupled multiprocessors, each
processor running asynchronously and accessing its pri-
vate memory (MIMD). Information is exchanged between
nodes only by sending messages through the communi-
cations network of the hypercube. In our implementa-
tion we assign one processor to be the master processor,
which, besides its main task of solving the master prob-
lem, also controls the computation and synchronizes the
algorithm. The other processors were assigned to be sub
processors, with the main task of solving subproblems.
Numerical results show that significant speed-ups can be
achieved using parallel processing. The efficiency of the
algorithm increases with larger sample sizes, which makes
parallel processing techniques especially worthwhile for
solving difficult stochastic problems where large sample
sizes are required. For example, solving a reduced ver-

sion of WRPM with only one sub period, we achieved a
speed-up of about 60% using a sample size of 600 and 64
parallel processors. For detailed results, see Dantzig, Ho
and Infanger (1991) [9]. Current efforts in a collaboration
with IBM involve the implementation of the parallel al-
gorithm on a network of parallel RS/6000 workstations.
Here each node is a fast computer itself and is connected
with other nodes via the unix network. We expect to be
able to quickly solve large practical problems involving
large numbers of sample sizes.

8. A GENERAL CLASS OF MULTI-STAGE
STOCHASTIC LINEAR PROGRAMS
Encouraged by the promising numerical results for two-

stage and a restricted class of multi-stage problems cur-
rent research involves the development of methods for
solving a general class of multi-stage stochastic linear pro-
grams. These class of problems arises from determinis-
tic dynamic linear programs and have uncertain param-
eters in different time periods. As already noted above,
the size of these stochastic problems can get extremely
large because the number of scenarios grows exponen-
tially with the number of periods. Difficulties in solving
these problems also can arise from dependencies of the
stochastic parameters both within a certain stage a nd be-
tween different stages. Dantzig and Infanger (1991) [10]
show how multi-stage portfolio optimization problems can
be efficiently solved as multi-stage stochastic linear pro-
grams. In Infanger (1992) [22] we developed a theory
of solving this general class of multi-stage stochastic lin-
ear programs. Qur approach includes special sampling
techniques for computing upper bounds and methods of
sharing cuts between different sub-problems. It will en-
able us to efficiently solve large-scale multi-stage problems
with many stages and numerous stochastic parameters in
each stage. The implementation is subject to future re-
search. Preliminary numerical results have turned out to
be promising.

9. CONCLUSION

We have presented a review of our approach using Ben-
ders decomposition and importance sampling which is ca-
pable of solving certain classes of large-scale problems of
planning under uncertainty. Numerical results of large
problems with numerous stochastic parameters indicate
that very accurate solutions of such problems can be ob-
tained using only small sample sizes. Using parallel pro-
cessors significant speed-ups can be obtained. Numer-
ical results from our parallel implementation on a hy-
percube multicomputer with 64 processors show an ef-
ficiency of about 60%. Current research concentrates on
the theory and the implementation of methods for solving
a general class of multi-stage problems, where the num-
ber of scenarios grows exponentially with the number of



stages. Further research includes improved decomposi-
tion techniques for large-scale problems, e.g., optimized
tree traversing strategies and passing information based
on non-optimal subproblems, improvements to the im-
portance sampling approach, e.g., using different types of
approximation functions, improved software, e.g., a par-
allel implementation of the multi-stage algorithm on dis-
tributed workstations, and the testing of the methodology
on different practical problems in different areas.
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BULLETIN BOARD

GEORGE B. DANTZIG PRIZE 1994

Nominations are solicited for the George B. Dantzig
Prize, administered jointly by the Mathematical Pro-
gramming Society (MPS) and the Society for Industrial
and Applied Mathematics (STAM). This prize is awarded
to one or more individuals for original research which, by
virtue of its originality, breadth, and depth, is having a
major impact on the field of mathematical programming.
The contributions eligible for consideration must be pub-
licly available and may address any aspect of mathemati-
cal programming in its broadest sense. Strong preference
is given to contributions by individuals under 50 years of
age.

The prize will be presented at the Mathematical Pro-
gramming Society’s triennial symposium to be held Au-
gust 15-19, 1994, in Ann Arbor, Michigan, USA. Past
Dantzig Prize recipients have been: M.J.D. Powell and
R.T. Rockafellar in 1982, E.L. Johnson and M.W. Pad-
berg in 1985, M.J. Todd in 1988, and M. Groetschel and
A.S. Nemirovsky in 1991.

The Prize Committee members are: Michael J. Todd,
Chajr, Martin Groetschel, Ellis L. Johnson, and R.
Tyrrell Rockafellar.

Please send nominations to Michael J. Todd, School
of Operations Research & Industrial Engineering, 206
Engineering & Theory Center Building, Cornell Univer-
sity, Ithaca, New York, 14853-3801, USA, or electroni-
cally to miketodd@cs.cornell.edu. Nominations are due
by September 30, 1993 and should provide a brief one or
two page description of the nominee’s outstanding contri-
butions and, if possible, a current resume including a list
of the nominee’s publications.

A.W. TUCKER PRIZE 1994

The Mathematical Programming Society invites nomi-
nations for the A.W. Tucker Prize for an outstanding pa-
per authored by a student. The award will be presented at
the International Symposium on Mathematical Program-
ming in Ann Arbor (15-19 August 1994). All students,
graduate and undergraduate, are eligible. Nominations
of students who have not yet received the first university
degree are especially welcome. In advance of the Sympo-
sium an award committee will screen the nominations and
select at most three finalists. The finalists will be invited,
but not required, to give oral presentations at a special
session of the Symposium. The award committee will se-



lect the winner and present the award prior to the conclu-
sion of the Symposium. The members of the committee
for the 1994 A.W. Tucker Prize are : Thomas M. Liebling,
Swiss Federal Institute of Technology, Lausanne; Andrew
R. Conn, Thomas J. Watson Research Center, Yorktown
Heights, William H. Cunningham, University of Water-
loo, Clovis Gonzaga, COPPE, Federal University of Rio
de Janeiro and Jean-Philippe Vial, University of Geneva.

The paper may concern any aspect of mathematical
programming; it may be original research, an exposition
or survey, a report on computer routines and computing
experiments, or a presentation of a new and interesting
application. The paper must be solely authored, and com-
pleted after January 1991. The paper and the work on
which it is based should have been undertaken and com-
pleted in conjunction with a degree program.

Nominations must be made in writing to the chair-
man of the award committee, namely, Thomas M.
Liebling, Swiss Federal Institute of Technology, Depart-
ment of Mathematics, MA(Ecublens), CH-1015 Lau-
sanne, Switzerland, by a faculty member at the institu-
tion where the nominee was studying for a degree when
the paper was completed. Letters of nomination must be
accompanied by four copies each of : the student’s paper;
a separate summary of the paper’s contributions, written
by the nominee, and no more than two pages in length;
and a brief biographical sketch of the nominee.

Nominations must be sent to the chairman no later
than December 31, 1993. (Postmark on recommended
letter).

OPT-NET: A COMMUNICATION
FACILITY FOR SCIENTISTS
INTERESTED IN OPTIMIZATION

The Special [Interest Group for OPTimization
(SIGOPT) of the Deutsche Mathematiker-Vereinigung
(DMV) has started a new electronic service: the oper-
ation of the OPT-NET. This facility is not limited to
SIGOPT, it is also open to all scientists and students of
mathematics, computer science, economics, electrical en-
gineering etc. who are interested in optimization or who
want to obtain the relevant information.

The basic services provided by OPT-NET are:

¢ a moderated forum for discussion with a weekly di-
est
o i unique E-mail address for each subscriber (virtual
mailbox)
¢ a WhitePage service with “whois” —command
¢ an OPT-NET archive within eLib (a library for
mathematical software)

This facility has been implemented at the Konrad—Zuse—
Zentrum in Berlin (ZIB), which provides the technical
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infrastructure for its operation. Utilization of OPT-NET
is free of charge.

For a first start send a message with the text “help” in
the subject line to

“opt—net-request@zib—berlin.de”.

Then you will receive automatically a document which
gives you the information on all services offered by OPT—
NET, in particular on how to register with OPT-NET,
how to obtain the digest and, of course, how to become a
member of SIGOPT.

Contributions to the discussion forum should be sent
to

“opt—net@zib—berlin.de”.

The subject line of a contribution should contain the
senders name (followed by a colon) followed by a brief
description of the contents of the contribution.

All contributions will be examined by a modera-
tor, presently Prof. Dr. Uwe Zimmermann (TU Braun-
schweig), who selects those of general interest and com-
bines them into the weekly digest, which will be dis-
tributed to all members of OPT-NET.

PRACTITIONERS’ OPTIMIZATION
WORKSHOP

Date: Spring, 1994
Given by:

Logistics Optimization Center

School of Industrial and Systems Engineering

Georgia Institute of Technology

Atlanta, GA 30332-0205

Tel: (404) 894-4550 or 894-2379

FAX: (404) 894-2301

e-mail: POWorkshop@akula.isye.gatech.edu
Description: The workshop deals with modeling and solu-
tion techniques for large scale optimization problems, es-
pecially linear and mixed integer programming problems.
The mathematical modeling software used is AMPL, and
the optimization software used is OSL. The presentations
and practical sessions are geared toward practitioners ap-
plying mathematical programming in the workplace.
Lecturers: Lloyd Clarke, Ellis Johnson,
George Nemhauser, and Martin Savelsbergh
Prerequisites: Practical optimization experience or POW
I (held in early September, 1994); Working knowledge
of FORTRAN or C; Experience with OSL and UNIX is
helpful, but not required.
Objective: Understand the special techniques needed to
solve large and difficult LP & IP problems, and how to
implement them using OSL.
Price (the bottom line): $750 per course.
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Convex Functions with Unbounded Level Sets and Appli-
cations to Duality Theory A. Auslender, R. Cominells,
and J.-P. Crouzeiz

Reducing Matching to Polynomial Size Linear Program-
ming Francisco Barahona

A Quadratically Convergent Polynomial Algorithm for
Solving Entropy Optimization Problems Florian Potra
and Yinyu Ye

Higher Order Predictor-Corrector Interior Point Methods
with Application to Quadratic Objectives Tamra J. Car-
penter, Irvin J. Lustig, John M. Mulvey, and David F.
Shanno

A Global Optimization Algorithm for Concave Quadratic
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A Note on K Best Solutions to the Chinese Postman Prob-
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Generating Fenchel Cutting Planes for Knapsack Polyhe-
dra E. A. Boyd

On Mizuno’s Rank One Updating Algorithm for Linear
Programming Robert A. Bosch

Primal-Dual Projected Gradient Algorithms for Ex-
tended Linear-Quadratic Programming Ciyou Zhu and R.
T. Rockafellar

Accelerated Stochastic Approximation Bernard Delyon
and Anatoli Juditsky
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a-Lower Subdifferentiable Functions J. E. Martinez-
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Parallel Projected Aggregation Methods for Solving the
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Hoon No

On Sensitivity Analysis of Nonlinear Programs in Banach
Spaces: The Approach via Composite Unconstrained Op-
timization Alezander Ioffe

A Nonconvex Duality with Zero Gap and Applications
Phan Thien Thach

A Path-Following Projective Interior Point Method for
Linear Programming Dong Shaw and Donald Goldfard
Fast Approximation Schemes for Convex Programs with
Many Blocks and Coupling Constraints Michael D.
Grigortadis and Leonid G. Khachiyan

On the Use of Product Structure in Secant Methods for
Nonlinear Least Squares Problems J. Huschens
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Approximating Oracle Machines for Combinatorial Opti-
mization Shmuel Onn

Strong Rotundity and Optimization J. M. Borwein and
A. S. Lewss

Local Minimizers of Quadratic Functions on Euclidean
Balls and Spheres Jose Mario Martinez
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CONTRIBUTIONS TO THE V&N

The set of essays previously planned for this issue could
not all be accomodated. Therefore, the remaining essays
will appear in the Spring, ’94 issue, which will continue
the focus on nonsmooth optimization and optimization
under uncertainty

Articles contributed by SIAG/OPT members are al-
ways welcome and can take one of two forms:

a) Views: short, scholarly, N (Not Necessarily Noncon-
troversial) essay-type articles, say 2 to 4 pages long, on
any topic in optimization and its interfaces with the sci-
ences, engineering and education.

b) News: brief items for the Bulletin Board Section.

Our first preference is that a contribution take the form
of a LaTeX file sent by email to the editor at the address
given below. (If possible try it out in two-column format.)
However, other forms of input are also acceptable.

The Bulletin-Board deadline for the Spring, ’94 issue is
February 1, 1994,

Larry Nazareth, Editor
Department of Pure and Applied Mathematics

Washington State University
Pullman, WA 99164-3113

email: nazareth@wsumath.bitnet
or nazareth@amath.washington.edu




