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TECHNOLOGY CENTER

by Steve Wright

All of us would like to see optimization used more
widely and more effectively by applications scientists, en-
gineers, economists. We have all fielded questions along
the lines of “Here’s my problem — I think it’s an opti-
mization problem — can you help me solve it?” Some-
times these questions have led to interesting collabora-
tions, new research directions in optimization, even to
new careers. Sometimes, however, we consign such ques-
tions to the “too hard” basket because they don’t quite
fit any of the familiar paradigms and, anyway, we don’t
have time. Often, the question isn’t even asked in the
first place. Too many scientists and engineers are un-
aware that optimization could help them solve their re-
search problems faster and better than the methods they
are using now.

In making the transition from theory and algorithms
to applications, linear programming (discrete and con-
tinuous) has been the outstanding success story of opti-
mization. Why have other areas, such as optimization of
nonlinear or stochastic models, been slow to follow suit?
Some of the reasons are inherent to the nature of the
applications and algorithms, problems that can only be
solved by patient research and cooperation. But there are
other barriers to the use of optimization that are merely
practical and logistical, things that we can do something
about right now. These include

o It’s too hard to find up-to-date information about
algorithms and software;

e It costs too much time and money to get hold of the
right software, install it, and make sure your compu-
tational environment can handle it;

o There are misunderstandings about what optimiza-
tion software can actually achieve (“Why don’t you
find the global minimum? Why does my function
have to be smooth?”);

o It’s sometimes difficult to interface to optimization
software (for example, to represent the application
in FORTRAN, to write derivative evaluation code,
etc.).

The recent explosion of interest in the Internet gives
us a great opportunity tc jump some of these barriers.

Millions of people now turn to the World Wide Web as
their primary source for information on unfamiliar sub-
jects. By making optimization information and services
available through this medium, we can greatly expand
our user base.

The Optimization Technology Center was founded in
October, 1994 to grasp this opportunity. We aim to use
the Internet and other developments in computing and
communications to make optimization technology more
accessible and easier to use.

OTC membership includes a small group of researchers
at Argonne National Lab and Northwestern University,
together with affiliated postdocs, graduate students, and
undergraduates. Most of the OTC’s efforts are devoted to
development of the Network-Enabled Optimization Sys-
tem (NEOS), an Internet-resident source of optimization
information and services. NEOS currently consists of two
components: the NEOS Server and NEOS Guide.

The NEOS Server is a facility for solving optimization
problems remotely over the Internet. Look for it on the
Web at http://www.mcs.anl.gov/home/otc/Server/.
Users send problems to the Server via email, fip, or the
Web; results are returned similarly. The Server unpacks
and interprets the user input, schedules the job on one of
our workstations (or on a node of Argonne’s IBM SP mul-
tiprocessor), and calls a mini-Server to do the processing.
There is one mini-Server for each problem area.

The Server aims to make it as easy as possible for the
user to set up their input. For instance, the unconstrained
optimization model requires only two FORTRAN rou-
tines, one to evaluate the function and one to define a
starting point. Users can also supply a gradient evalua-
tion routine if they choose, but it’s often easier to let the
Server find its own derivatives with help of the automatic
differentiation tool ADIFOR.

Besides unconstrained minimization, the Server cur-
rently handles linear programming, stochastic linear pro-
gramming, bound-constrained minimization, and network
linear programming. More than one code is available for
most problem classes. Both codes written by OTC mem-
bers and existing codes (such as NETFLO and RELAX-
IV for network programming) are supported.
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Server development is proceeding apace. We are devel-
oping a tool that allows users to connect directly to the
Server through a unix socket from their own workstation,
and a branch of the Server that interacts with the AMPL
modeling system. Another extension will see the Server
acting as an intermediary between optimization code de-
velopers on the one hand and users on the other. The
Server will pass data from users to the code developer’s
workstation and activate a process on that machine, then
pass the results back to the user.

The NEOS Guide can be found on the Web at
http://www.mcs.anl.gov/home/otc/Guide/. It is still
very much under development (many things remain to
be filled in) but it already contains a lot of useful in-
formation for beginners and experts alike. There is an
online version of the Optimization Software Guide (Moré
and Wright, SIAM, 1993), updated where necessary to
include new codes. There is the “Optimization Tree,” a
collection of short descriptions of various topics in opti-
mization, with pointers to relevant software and sources
of further information. For the benefit of software devel-
opers, we are building up a comprehensive test problem
collection, which includes, where possible, documentation
on the origin of each problem and its underlying applica-
tion. The Guide also includes a set of case studies, one for
each major area, which guide the uninitiated through the
process of examining a practical application, formulating
it as an optimization problem, solving it with optimiza-
tion software, and interpreting the results. Information in
the Guide can be accessed easily through various search
and navigation tools.

Looking beyond the Server and Guide, we plan to es-
tablish the OTC as a place where high-quality software
tools are produced as well as disseminated. These tools
will be collected in the NEOS Library, which will empha-
size such design features such as component reusability
and modeling language interfaces. We also seek alliances
with key people in applications areas so that, through
them, we can demonstrate the usefulness of optimization
technology to entire communities of researchers.

Obviously, much of the hard work in the construction
of NEOS lies outside the scope of a traditional academic
research program. We have had to learn some new skills,
including Web page design, graphic design, and systems
programming in the scripting language Perl. Since we
are a small group of busy people, all this takes time. And
there is the question of talent — my own taste in graphics
has been called into question on one or two occasions.
Nothing would have been possible without our dedicated
undergraduate interns, who have done much of the hard
work of programming the server and beating the Web
pages into shape.

We welcome collaboration in all aspects of the OTC’s
activities. If you are interested in contributing informa-
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tion to the Guide or codes to the Server, get in touch!
Our operators are standing by to take your call.

CHAIRMAN’S COLUMN
by Jorge J. Moré

All the nominations for the SIAG/OPT prize are in.
Choosing a winner will be difficult, but the selection com-
mittee is outstanding, and represent a wide range of in-
terests. The members of the selection committee are Tim
Kelley (chair), Clyde Monma, Mike Powell, Bobby Schn-
abel, and Mike Todd. The winner is scheduled to be an-
nounced at the SIAM Optimization meeting, which will
be held May 20-22, 1996, in Victoria, British Columbia.

If you want more information on the STAM Optimiza-
tion conference, look at the Web page for the conference:

http://

WWW.siam.org/meetings/op96/op96home .htm
You will almost certainly like this page. I hope that you
can make it to the conference.

As part of our effort to advertise the SIAG/OPT prize,
SIAM sent out an email message to each member of
SIAG/OPT requesting that they consider nominating a
paper for the prize. I was not aware until recently that
we had this ability. We will use this facility to keep you
informed of occasional items of interest to the member-
ship, but for the moment we do not have plans to expand
in this direction.

You may remember that I proposed setting up a
Web page on interesting optimization problems. Now,
thanks to SIAM, we are developing a Web page for
the SIAG/OPT. The initial design was done by the
SIAG/OPT officers, with the cooperation of Laura Hel-
frich at STAM. In other words, we made suggestions, and
she did all the work.

We are seeking suggestions for what to include in the
STAG/OPT Web page. At present we have the following
headings on the main page:

e Conferences

o Prizes

¢ Optimization Sites

o Software

Newsletters, FAQ’s, and bibliographies
e Journals

e Books

We already have pointers in each category, but we need
suggestions for additional pointers. You can send sugges-
tions to any of the officers. In case you have mislaid this
information, these are the addresses:
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Jorge Moré more@mcs.anl. gov

Tim Kelley, tim kelley@ncsu. edu
Ekkehard Sachs, sachsQuni-trier.de
Philip Gill, pgill@ucsd.edun

The main listing under Conferences is the STAM Opti-
mization conference. We would like to list other confer-
ences of potential interest to SIAG/OPT members under
this heading. Suggestions?

Under Optimization Sites we have pointers to Web
pages with a strong optimization content. I realize that
this can lead to a large number of pointers, but at present
we are not worried about this. We need suggestions.

The Software heading has pointers to Web sites that
feature optimization software. These are generally Tepos-
itories with large amounts of software, but we are also
interested in Web pages that are strongly related to opti-
mization software.

The Newsletters, FAQ’s, and bibliographies entry is
self-explanatory. We only have a couple of bibliographies,
and I suspect that there are more.

The Journals entry is interesting. We have pointers for
Web pages with table of contents for journals of general
interest to optimizers. At first I thought that there would
be a large number of entries under this heading, but in-
terestingly enough, there are just a few pointers that are
not STAM journals. We could only find the ACM Trans-
actions on Mathematical Software, and the IEEE Com-

‘putational Science and Engineering journal. I regularly
see table of contents published in electronic newsletters,
but they do not list Web addresses for the table of con-
tents. Apparently STAM is way ahead of other publishers
in the Web business. By the way, the suggestion to have
table of contents came from Henry Wolkowicz.

What other entries would you like to see? Suggestions
are welcome.

I would also like to have a section on Optimization
Applications. This would contain pointers to uses of op-
timization in applications. We would like to have infor-
mative displays that show how optimization is used in ap-
plications. We also would like to have some eye-popping
pictures associated with these pages. We should not em-
phasize glitter over substance, but in the Web, glitter is
important.

I encourage you to point your viewers to the
SIAG/OPT Web page at
http://www.siam.org/siags/siagop/siagop.htm
and provide suggestions for additions (or deletions). If
this project is to succeed, suggestions will have to come
from the SIAG/OPT members. The SIAG/OPT page
should reflect the interests of the membership.

Unfortunately, I have to end this column by announcing
that Larry Nazareth has decided to step down as editor

of the SIAG/OPT Newsletter: Views and News. He feels
that new blood must be injected into the Newsletter, and
that he must make room for a new editor. As I said
in my previous column: Larry Nazareth has been doing
an outstanding job as editor, and his efforts have led to
a classy publication. His contributions will be missed.
Replacing him is difficult. We are still searching, and
hope that by the time this newsletter reaches you, we
will have found a new editor.

FORUM ESSAYS]|

INVITED AUTHOR’S PREVIEW:
NONLINEAR PROGRAMMING

by Dimitri P. Bertsekas !

Nonlinear programming is a mature field that has expe-
rienced major developments in the last ten years. When
I reflect on the evolution of the subject over the last 30
years, I find that by the late sixties and the early sev-
enties most of the major ideas were already available in
some form. I am thinking here of the topics that still col-
lectively form the foundations of the field: iterative de-
scent methods and their convergence analyses, conjugate
directions, Newton/Quasi-Newton methodology, stochas-
tic gradient methods, penalty, interior point and aug-
mented Lagrangian methods, duality and convex pro-
gramming, nondifferentiable optimization and large-scale
problem decomposition. Moreover, the understanding of
these topics matured in the subsequent decade. Non-
linear programming became a mainstream subject that
1s covered in most schools’ graduate curricula, general
purpose nonlinear programming codes became available,
and nonlinear optimization was accepted as the primary
methodological vehicle in an ever broadening spectrum of
important practical applications.

As the mid-eighties were approaching a stage was
reached where many researchers felt that nonlinear pro-
gramming methodology had matured and had reached a
steady-state. Yet there have since been several develop-
ments that have resulted in substantially new perspec-
tives. The first such development is the merging of linear
and nonlinear programming algorithms through the use

1Lab. for Information and Decision Systems, Massachusetts In-
stitute of Technology, Room 35-210, Cambridge, MA 02139.
email: dimitrib@mit.edu



of interior point methods. This has resulted in a profound
rethinking of how we solve linear programming problems,
and in a major reassessment of how we treat constraints
in nonlinear programming. A second development, less
visible but still important, is the increased emphasis on
large-scale problems, and the associated algorithms that
take advantage of problem structure (such as the pres-
ence of a network or a dynamically controlled system)
as well as parallel hardware. A third development has
been the emergence of neural networks as a very popular
technology in a broad variety of practical contexts. The
training of neural networks and other related approxima-
tion architectures often gives rise to challenging singular
least squares problems that require trial and error, and
expertise in nonlinear programming. Somewhat paradox-
ically, these problems are better dealt with simple (possi-
bly stochastic) gradient-like methods and stepsize rules,
rather than sophisticated Newton-like methods, thus sig-
nificantly changing our perspective of iterative descent
algorithms.

While teaching nonlinear programming over the last
twenty years, I have been developing a set of class notes
that has finally become a book?. I am happy that the
major developments of the last ten years have been re-
flected in the book, although I am sure that much further
progress lies ahead.

The purpose of the book has been to provide a fairly
comprehensive and mathematically rigorous account of
nonlinear programming at the beginning graduate stu-
dent level. Classical topics, such as descent algorithms,
Lagrange multiplier theory, and duality, are covered. In
addition, interior point methods for both linear and non-
linear programs are treated in detail, the major aspects of
large-scale optimization are developed, and least squares
problems are discussed extensively, including their solu-
tion by simple incremental gradient-like methods that are
commonly used in neural network training problems.

Unconstrained optimization is covered extensively in a
beginning chapter: optimality conditions, gradient and
Newton-like algorithms, conjugate directions, nonderiva-
tive methods. The material is classic, but there are dis-
cussions of topics frequently left untreated, such as the
behavior of algorithms for singular problems, neural net-
work training, and discrete-time optimal control.

I have chosen to first discuss constrained optimization
over a convex set without introducing the complicated
Lagrange multiplier machinery. I have found that stu-
dents like this approach, which views algorithms such as
conditional gradient, gradient projection, the affine scal-
ing method for linear programming, and coordinate de-

2 “Nonlinear Programming,” 640 pages, published by Athena Sci-
entific, Dec. 1995 — information and table of contents may be ob-
tained by email from the publisher (athenasc@world.std.com) or the
author (dimitrib@mit.edu), and also from the author’s www page
http://web.mit.edu/dimitrib/www/home.html
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scent, as natural extensions of unconstrained descent al-
gorithms.

A nonlinear programming instructor has to choose the
level and the framework for treating Lagrange multipliers
and duality. One may use a variational approach based
on the implicit function theorem, or a convex analysis
approach based on convex analysis/support hyperplanes.
The former approach applies to a broader class of prob-
lems, while the latter is more elegant and more power-
ful for the convex programs to which it applies. I have
covered both lines of analysis, but I have also provided
the option for a third approach that I have on occa-
sion followed in class, because it is more economical in
terms of lecturing time. In particular, if one develops
Lagrange multiplier theory for linear constraints (using
Farkas’ lemma) one may develop in a simple way a fairly
powerful form of duality theory for linearly constrained
problems with differentiable convex cost, including linear
and quadratic programming.

The algorithmic treatment of constrained problems
includes barrier, augmented Lagrangian, sequential
quadratic programming, and primal-dual interior point
methods for linear programming. There is also an exten-
sive treatment of nondifferentiable optimization, includ-
ing subgradient, e-subgradient, and cutting plane meth-
ods. Decomposition methods such as Dantzig-Wolfe and
Benders are also discussed.

In most scientific books the author has to make cover-
age compromises. The subject of nonlinear optimization
has grown so much that leaving out a number of impor-
tant topics was inevitable. For example I had to forego a
discussion of variational inequalities and a deeper treat-
ment of Quasi-Newton methods.

Similar to the early eighties, many researchers today
feel that nonlinear programming has reached a steady-
state. As an author I hope so, although as a researcher
who has experienced the depth and rich variety of the
subject and has witnessed its evolution for many years, I
strongly doubt that this will prove to be the case.

sk koo ok ok ok ok
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UPROOTING
SIMULATED ANNEALING
AND GENETIC ALGORITHMS

by Bennett L. Fox !

1. INTRODUCTION

The feature article, New optimization methods rooted
in biology and physics, in the Spring 1995 issue of Views-
and-News outlines the respective biological and physical
origins of two global optimization methods: genetic algo-
rithms (GAs) and simulated annealing (SA). They have
been handicapped by slavish mimicking of those respec-
tive origins. While those roots have historically served as
points of departure, the time has come to cut them off —
as we sketch in Section 2. Thus, we decouple simulated
annealing and genetic algorithms from their respective
physical and biological origins. Section 3 discusses noisy
observations (even when the underlying problem is de-
terministic), traditionally not considered in the setting of
GAs and SA.

The proper backdrop for all probabilistic search meth-
ods, including GAs and SA, is Markov chains — on a
sufficiently rich state space. That setting subsumes the
most important feature — multiple solutions in a state
(population in genetic-algorithm jargon) — of G As, while
— unlike them — having no duplicate copies of feasible
solutions in a state. We use an entirely different move
mechanism; see Fox [3,6] for details.

Candidates for the next state can be generated from
‘respective individual solutions in the current state by lo-
cal search, by combining solutions in the current state
(crossover being but one such way), and by randomly
generating solutions from the entire feasible domain (mu-
tation being but one such way). Fox [3,6] details a scheme
for doing this for finite and general domains, respectively,
while integrating the transition mechanism with both SA
and the key feature of tabu search (TS): incorporating
short-term memory into each state and a corresponding
penalty function. A major reason for the latter is to in-
hibit short-run oscillation when proposed moves take ac-
count of objective-function values in the current neighbor-
hood. The TS literature abounds with ingenious penalty
functions reflecting additional criteria. As far as we know,
TS has no counterpart in nature — perhaps explain-
ing its absence from the feature article cited above. See
Glover and Laguna [13] for an authoritative account of
tabu search. The volume in which reference [3] appears
1s devoted to tabu search. Glover [12] linearly combines
solutions, which neither standard G As nor nature do, fol-
lowed by what he calls directional rounding. Together

1Mathematics Department, Campus Box 170, University of Col-
orado, P. 0. Box 173364, Denver, CO 80217-3364, email:
bfox@castle.cudenver.edu. Thanks to Larry Nazareth for inviting
this contribution.

with certain additional ideas, he calls the result scatter
search and indicates that it can be combined with other
heuristics. He notes that “relying too literally on the ge-
netic metaphor” excludes scatter search (and, we add,
many other useful ideas). Links among scatter search,
GAs, TS, structured combinations, and relaxation are
explored in Glover [10,11]. Fox [3] compares mutation
with neighborhood enrichment by generating (a starting
point for) a proposed move uniformly over the entire state
space, demonstrating an advantage of the latter (despite
the increased short-run computation it usually requires).

Neither the GA nor TS community sees search through
a Markov-chain lens. Lacking this weltanschauung makes
it hard to formulate certain theorems, let alone prove
them. In sharp contrast, SA generally is formulated ex-
plicitly as a Markov chain — though typically on an un-
duly restrictive state space (which SA theory does not
require).

2. CUTTING OFF ROOTS

Naive SA. A straightforward SA approach (rigidly)
mimics physical annealing in several ways:

1. Bare-bones state space. States are in one-to-one cor-
respondence with feasible solutions.

2. Blind moves. Moves are proposed with little or (more
commonly) no regard for objective-function values.

3. Ezplicit rejection. Proposed moves are tested for ac-
ceptance and, if rejected, the state is unchanged.

4. Myopic search. Proposed moves are restricted to a
“local” neighborhood.

5. No look-ahead. No descent (usually but not always
[Torczon [22], for example] gradient-based when the
domain when the domain is continuous) from a pro-
posed starting point.

6. No preprocessing. The initial state is arbitrary.

None of these characteristics of physical annealing are
necessary for simulated annealing, as Fox [3,6] details.
He argues that none are desirable. When strategies for
global optimization are compared, often naive SA is used
as a straw man.

Smart SA. Partly following Fox [3,6], we briefly com-
ment on the respective points above:

1. Fleshed-out state space. A richer state space is
needed to incorporate key features of GAs and TS
in (uprooted) SA.



2. Smart moves. We take off the blinders. Without

dependence on objective-function values, there is no
way to discriminate among improving moves. When
the domain is continuous, some have proposed cer-
tain weak dependence on objective-function values
but nevertheless generate the coordinates of a pro-
posed point independently; even if axes are rotated
in some problem-dependent way, it is easy to see a
priori that in general generating coordinates inde-
pendently is ineffective (because some valleys are not
“aligned” with the axes).

. Loop skipping. An alternative move mechanism ad-
vances simulated time to the epoch of the last move
L in respective self-loop sequences of rejected moves
(of the form ¢ — z — --- — z) and then, given L,
routinely generates the state at epoch L + 1. Un-
like previous approaches, Fox [3,5,6] does this with-
out obliterating the given cooling schedule — while
doing it in O(1) computer time. Fox [5] and the
pair of papers, Fox and Heine [8] and Heine [14],
respectively, detail the quadratic-mean and almost-
sure senses in which this assertion holds. Heine [15]
examines the Cesaro-sense sample-path implications
of advancing simulated time by simply generating a
geometric variate with parameter depending on the
current state and temperature. With the neighbor-
hood structure recommended in Fox [3,6] but (as far
as we know now) not in general, the probability that
the current state is optimal converges to one using
the same simple method of advancing time. Unlike
the straightforward implementation of the SA ac-
ceptance test, Fox’s scheme and a fortior: the sim-
ple method are compatible with parallel processing
on SIMD computers. Loop-skipping, as above, is a
shortcut that nature cannot take.

. Dynamic enrichment. Restriction to a “local” neigh-
borhood makes the search unduly myopic. Putting
a few time-dependent non-local states in the current
neighborhood diversifies the search. In other words,
it increases search breadth. Fox [5,6] shows, via a
non-pathological example, that purely local neigh-
borhoods can asymptotically disconnect the state
space and exhibits a bad consequence. For theoreti-
cal purposes only, he recasts time-dependent neigh-
borhoods as static neighborhoods on a more elab-
orate state space. On that space, from each state
there is a path with no uphill moves to the set Sy
of optimal states. When a path depends on the non-
local neighborhood enrichment indicated above, gen-
erally it has low probability — except possibly at
very low temperatures. Making these dynamic neigh-
borhoods small makes proposing moves influenced by
objective-function values practical; likewise, for the
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alternative move mechanism above and look-ahead
below. Candidates for these neighborhoods come
(generally not uniformly) from the entire space, as
Fox [3,6] details. Not all candidates succeed in en-
tering the neighborhood.

. Look-ahead. When one tries to propose moves intel-

ligently (implying discrimination among improving
moves, for example), look-ahead is natural. Though
the starting point for a proposed move comes from
an enriched neighborhood, descent from it is relative
to the local (unenriched) neighborhood. For discrete
domains, look-ahead is just a heuristic. In contrast,
when it is continuous, it is easy to see that — with-
out look-ahead — ordinarily the convergence rate is
glacial (because it becomes increasingly hard to gen-
erate a proposed point better than the current best
point — especially when the (local) valleys have steep
walls but small volumes near their respective bot-
toms). For readers of Views-and-News, an added at-
traction of using a descent subroutine is that it links
SA to mainstream mathematical programming. The
more intense the look-ahead, the greater the search
depth. Trading off search depth and search breadth,
along with specifying neighborhoods (and — in our
setup — tabu penalties), is the art of SA. Intelligent
neighborhood specification, when possible, makes it
likely that “deep energy wells also drain wide basins”
— a necessary (and nearly sufficient) condition for
SA to work well, as noted in the feature article in
Views-and-News cited above, quoting Kauffman [16],
p. 112. A caveatis that, with the way we dynamically
enrich the neighborhoods, the added drains may be
narrow (hence hard to find) if the landscape with lo-
cal neighborhoods does not satisfy Kauffman’s condi-
tion. Though with dynamic enrichment there is only
one well and it drains everything, no approach is a
panacea. Nature does not have freedom to choose its
neighborhoods, but SA does.

. Preprocessing. While foreign to nature, preprocess-

ing is a mathematical ally in eclectic algorithms.
Combined with the spatial memory induced by hav-
ing multiple solutions in a state, it gives the algo-
rithm a feel for the landscape by recording scanned
points at or near deep valley bottoms. Only after
getting that global feel, the algorithm explores inten-
sively promising regions with possible uphill moves.
More than its name perhaps suggests, preprocess-
ing is a prominent part of our meta-strategy and,
depending on the termination criteria, may domi-
nate the overall computation — with simulated an-
nealing proper becoming a postprocessor. It can be
random restarting in tandem with descent. This
as a stand-alone technique beats naive SA in the
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sense that, for all large enough k, the probability
that an optimal state is scanned by simulated time
k is at least large under the former. However, using
Fox’s loop-skipping algorithm and (thus reasonably)
counting only accepted moves, Fox [4] shows by ex-
ample that is no longer true in general. Stratifying
the restarts makes sense. In a continuous-domain
counterpart, where the state space (or a projection
of it) is the unit cube, Fox [6] shows how to team
descent with so-called (¢, m, s)-nets in a natural way,
producing clusters analogous to those used in certain
other approaches to global optimization but which
— unlike those — are not ad hoc. The (excellent)
standard reference for such nets (apparently little
known in the optimization community) is Nieder-
reiter [19]. In this setting (as in fixed-dimensional
numerical integration), these nets are much better
spaced (for example, relative to the largest “hole”)
for a given number of points than grids or a set of
points intended to mimic truly (independent) uni-
form random numbers. Fox [6] deliberately chooses
the coordinates of the point to which a move is next
proposed far from independently by first choosing a
“box” (in the net) to scan next via a dynamically-
updated weight vector. That box contains the point
next scanned. It is natural to start with a coarse net
N and then, adaptively, refine it by laying down nets
on certain boxes of A'. This is roughly analogous
to adaptive numerical integration and to adaptive
multilevel techniques for PDEs (Riide [21] for exam-
ple). Another weapon in the preprocessing arsenal
gets lower bounds on the objective function over vari-
ous respective regions, eliminates those for which the
bound exceeds a known feasible solution, and points
to those for which the lower bound falls much below
any known feasible solution as especially attractive
to explore.

Recap. It is unproductive to get wedded to just one
of SA, GAs, and TS. Far from being disjoint, they can
be integrated into a coherent whole (as indicated above
and, in more detail, in Fox [3,6]), which is much more
than the sum of its parts. That whole stands on its own,
decoupled from nature. It contains a powerful preproces-
sor, unlike the usual implementations of SA, GAs, and
TS separately. We view that hybrid as smart SA, but a
good case can be made to view it as a meta-strategy sui
generis.

Implementation. Kawai [17] is implementing our
ideas for unit-cube domains. The user has to supply only
a subroutine that computes the objective function and,
depending on the local-search subroutine, certain of its
derivatives. With the default conjugate-gradient subrou-

tine, the user-supplied subroutine must (of course) com-
pute two derivatives. In addition, the user has the option
of overriding default values of certain tuning parameters.
Though Kawai’s (experimental) highly-modularized code
1s limited to low dimensions, it scales easily to (much)
higher dimensions — except that then the (¢, m, s)-nets
would have to generated differently in a practical imple-
mentation. Currently, they are extracted from Niederre-
iter’s (1988) base-2 (¢, s)-sequence. Because of the corre-
sponding fast growth of ¢(s) in the dimension s, in higher
dimensions — if extraction from (¢, s)-sequences is to be
used — different bases b(s) giving a slower growth of ¢(s)
are available from Bratley, Fox, and Niederreiter [1],[2]
(though not recommended in those references for numer-
ical integration). Alternatively (and in principle better),
(t,m, s)-nets can be generated directly (Mullen, Maha-
lanabis, and Niederreiter [18] for example). Perhaps best
of all, (¢, m, s)-nets can be extracted from the new base-2
Niederreiter-Xing [20] (¢, s)-sequence, for which ¢(-) grows
much more slowly than with any other known base-2
(t, 5)-sequence. Niederreiter and Xing are currently work-
ing out details that would make implementation practi-
cal. Note that m > ¢, the number of points in the net is
b™, and that — for fixed b — the smaller ¢, the better
the spacing. For discrete domains, there is currently no
implementation — partly because (though certain sub-
routines can be written in a problem-independent way)
significantly more problem-dependent code is needed. The
increased tailoring required for discrete problems appears
in all approaches.

Speed-up on parallel computers. Nature must work
with just one copy of a physical system. In contrast,
mathematical counterparts (such as SA) to nature’s op-
timization schemes can work with many. This can pro-
duce dramatic speed-up on parallel computers of the ex-
pected time to first hit the set Sp of optimal states or
any non-empty set of the form {s : ¢(s) < b}, where ¢ is
the objective function. Fox [5] characterizes this speed-
up mathematically and, applying linear algebra and some
analysis to the Markov-chain setup (also relevant to cer-
tain variants of TS), gives sufficient conditions for linear
speed-up in a precise sense, when the domain is finite.
Extending this result to (certain) general domains is an
outstanding open problem.

GAs. In working with biological systems, especially in
the setting of evolution, nature does work with multiple
copies. Yet nature’s progress is slow. We think that the
explanation is that nature’s move mechanism is awkward.
This is reflected in our reinterpretation of the following
folklore: the more faithfully GAs try to imitate nature
(variants without local search, for example), the less suc-
cessful they are empirically. The key ideas of GAs can be



uprooted and incorporated in SA, as we have indicated
above, with a flexible move mechanism uninhibited by
nature’s constraints.

Neural networks. Neural networks (NNs), also men-
tioned in the feature article cited above, are not part
of the package. There are two reasons for this. First,
the mathematics of NNs seems orthogonal to it. Second,
NNs seem so tightly bound to their biological and phys-
ical antecedents that, to be (possibly) competitive as an
optimization technique, vastly different computer archi-
tectures (perhaps inspired by human brains) — not yet
available — are needed.

3. NOISE: INTRINSIC AND INDUCED

The objective-function ¢ may be measured with noise
or it may be computed inexactly, with the error in the
estimate &(s) going to zero almost surely as the num-
ber of visits to state s increases. For example, in either
case, ¢(s) may be the expectation some random vari-
able Z(s) which we can simulate. In the second case,
this may be a profitable viewpoint if ¢(s) is the sum of
(perhaps combinatorially-explosively) many terms. Im-
portance sampling may well be effective here. More gen-
erally, we can simulate far more efficiently than nature
does; see Fox and L’Ecuyer [9] for example, where — as
a special case — ¢(s) can be the reciprocal of simulation
“efficiency” using simulation strategy s.

Denote the state space by S, for practical reasons gen-
erally orders of magnitude smaller than with noiseless ob-
servations. Our adapted SA procedure is the natural one:

Base the current move on the current estimates

{é(s) : Vs € S}.

This is a situation where, while it is helpful to reduce the
expected time to hit first hit Sy, the real goal is to hit Sy
frequently — to refine our estimate of ¢ on Sy as quickly
as possible. Fox and Heine [8] show, under arguably-
reasonable hypotheses, that the procedure above inherits
the convergence-in-probability of the (hypothetical) coun-
terpart where all ¢(s) are observed without noise. When
S is finite, Fox and Heine [7] give compatible estimators.
Extension to more general S, via likelihood ratios, is ex-
amined in Fox and L’Ecuyer [9] . For general S, stochastic
approzimation plays a role in local search. Extending a
result in Fox [6] for finite S, Fox and L’Ecuyer [9] find
— for general S — an asymptotically-valid confidence
interval for min{c(s) : s € S} which — under certain
conditions — is as good as if argmin{c(s) : s € S} were
known in advance. The practical point is that crude es-
timates of those c(s) which are not top contenders suffice
and that, for large but finite computer-time budgets, this
— along with good estimates for the top contenders — is
what SA produces. The bandit approach, popular among
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statisticians, does likewise, but — unlike SA — does not
exploit structure on S. Such structure can be induced
by computationally-exploitable connections (perhaps re-
flecting a suitable metric) or by a priori considerations
suggesting (but not proving) a certain partial order on S
relative to c.
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GLOBAL MODELING
FOR OPTIMIZATION

by Paul D. Frank !

1. MOTIVATION FOR GLOBAL MODELING

The problem addressed is that of obtaining globally op-
timal, or at least globally “good”, solutions of problems
where function evaluations may require several hours of
supercomputer time. In addition, the optimization prob-
lem may not be differentiable. This situation arises fre-
quently in industry, where function evaluations may re-
quire runs of analysis codes in fields such as computa-
tional fluid dynamics or structural dynamics. Such codes
are often expensive-to-run, black boxes from the user’s
perspective. In many cases, the user knows little about
the smoothness of the analysis results with respect to the
optimization variables, and does not have a good starting
guess for the optimization process.

In the above situation, there is little to be gained by
blowing the entire computing budget to obtain a local
optimizer. Instead, it is more desirable to use the limited
available resources to obtain insight into the global trends
of the optimization functions. This global insight can be
used to determine good designs, “screen” out ineffective
variables, or identify regions in design space worthy of
further exploration.

To obtain global insight and globally good designs,
the method considered here is modeling over the design
space. The models are based on data obtained by run-
ning the expensive analysis code at an affordable number
of points, well spread out in the design space. It is as-
sumed throughout that the designer can define reasonable
bounds on the design variables.

In the current context, the number of data points will
often be only a small multiple of the number of vari-
ables. In this situation, interpolating models are not
likely to exhibit “wild” behavior. For example, there may
only be 100 data points available for a 20 variable prob-
lem. In this case, there is not enough data to determine
even a quadratic model. However, depending on the data
and data locations, the interpolating models can describe
higher-degree behavior in some subspaces. In addition,
fidelity to the data is a key concern. Thus, interpolating
models, rather than approximating models, are discussed
in this report.

Analysis and design optimization using interpolating
models have been applied to several problems at the Boe-
ing Company. These problems include design of low-
vibration helicopter rotor blades, design for low radar
cross section, and optimal shot peen forming of wing skins
(the process of curving and work-hardening aluminium

1Boeing Information and Support Services, P.O. Box 3707, MS
71-21, Seattle, WA 98124-2207.
e-mail: frank@espresso.rt.cs.boeing.com
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wing skin sections by hitting them with lead shot at high
speeds).

The remaining sections discuss selection of data points,
formation and analysis of interpolating models, optimiza-
tion using interpolating models, and areas for further re-
search.

2. DETERMINING WHERE TO RUN
THE EXPENSIVE ANALYSIS CODE

The main requirement for selecting the points at which
to run the expensive analysis code is that they be well
spread out in the design space.

For many years, statisticians have studied the problem
of selecting data points for physical experiments. Re-
cently, they have addressed the case of “computer exper-
iments”. The main difference in the case of computer ex-
periments is that there is no need for extra runs to enable
estimation of experimental error. One class of methods
for determining data points, or sites, for computer exper-
iments are the optimel methods. These methods optimize
either quantities related to the conditioning of the matri-
ces associated with the interpolation problem, or a sta-
tistical estimate of the integral of the model’s error, or a
geometric measure such as minimizing the maximum dis-
tance between any point in design space and the nearest
data site. (See, e.g., [2,3,10] for discussions of site selec-
tion methods.) All the optimal methods tend to produce
data sites that are well spread out in design space.

Unfortunately, optimal site selection methods require
solution of a global optimization problem that has dimen-
sion equal to the number of data sites times the number
of design parameters. For example, 30 design parameters
and 150 data sites requires solution of a 4,500 variable
global optimization problem. In addition, these optimiza-
tion problems can have huge numbers of local minimizers.
This is because every permutation of a local minimizer’s
design parameters yields another local minimizer. Thus,
the optimal site selection methods are only practical for
relatively small problems.

The above difficulties can be avoided by using good and
readily computable, nonoptimal methods. One such class
of methods are orthogonal array-based Latin hypercubes
[1]. Roughly speaking, these methods produce “gridlike
projections” onto certain subspaces.

The above discussion relates to selecting data points for
an initial global model. Many research issues involve se-
lecting the number and location of additional data points,
after an initial model has been formed. These issues are
discussed subsequently. However, it seems reasonable to
this author that a minimum number of data sites for an
initial interpolating model is a multiple, say three to ten,
of the number of design space dimensions.
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3. SELECTING AND COMPUTING
AN INTERPOLATING MODEL

The criteria for selecting an interpolating model is that
it be as robust and accurate as possible. In general, this
means that the model be “taut”, i.e. it doesn’t intro-
duce big oscillations that are not warranted by the data.
For example, both the solid and dashed curves in Figure
1 interpolate the data points (indicated by large dots).
However, it is clear that the dashed curve is the superior
interpolator. One way to quantify this superiority is to
say that the integral of the square of high-order deriva-
tives is much smaller for the dashed curve than for the
solid curve. In fact, there are modeling methods based on
minimizing the “energy” in higher derivatives, such as the
thin plate spline methods, see e.g. [6]. (They are called
thin plate splines because they assume the minimum en-
ergy configuration of a material that has no resistance to
deformation.)

Minimal cross-validation error is a property closely re-
lated to minimal energy in higher derivatives. At any data
site, the one-at-a-time cross-validation error is the error at
that point, for a model built using all data points except
the given point. The total one-at-a-time cross-validation
error is the sum of the one-at-a-time cross-validation er-
rors at the data points. General cross-validation error is
the total error obtained at deleted subsets of points, for
all possible subset sizes.

A modeling method that produces a “wiggly” interpo-
lator, such as the solid curve in Figure 1, would probably
have a very large cross-validation error. This is because
the large excursions are bound to yield high errors at some
data points, when data at those points are left out of the
interpolating model.

Figure 1

—
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One interpolating model having the minimal cross-
validation error is the maximum likelihood estimator
(MLE) model from the statistical field of Design of Ex-
periments (DOE) [3,2,4,8]. (Here, cross validation means
the general, all possible deleted subset, type of cross val-
idation.)

The DOE interpolating model m(z) at a point z € ®"
in design space has the form

(1)

where y € R™ is the vector of dependent variable values
at the data sites. Thus, at each at z, the value of the
DOE model is a linear combination of the data values at
the sites. The weighting factor vector ¢(z) is determined
from the statistical paradigm by selecting those correla-
tion parameters that maximize the likelihood of having
obtained the observed data values. A constraint on the
maximization is that the model have the same mean as
the data.

The intuitively appealing aspect of the DOE interpo-
lating model is that the value of the model at any point
is a weighted sum of the analysis values at the data sites.
Also, if an exponential correlation function is selected,
the weighting factor declines with distance from z to the
data site. The rate of decline is determined by the data,
via the MLE computation.

Forming the maximum likelihood DOE model requires
global optimization over n correlation parameters. Each
function evaluation for the optimization requires factoring
an m by m, positive definite correlation matrix. However,
once the DOE model is formed, evaluation of the model
is quite inexpensive. The leading cost is computation of
the correlations between z and the data sites.

Another robust method for forming interpolators is
based on careful selection of polynomial basis functions
[11]. The method onmly includes basis functions in the
model if they are well-determined by data at the given
site locations. Basis functions are successively added
to the multidimensional polynomial model until all the
data points are interpolated. The method favors low-
degree terms over higher degree terms, but will choose
higher-degree terms if the lower-degree terms are not well-
determined. The above method will work for any number
of runs and tends to produce low-degree interpolators.

m(z) = c(z)"y,

4. ANALYSIS OF INTERPOLATING MODELS

One of the main uses of interpolating models is to gain
insight into the global behavior of the underlying func-
tion. For example, the model can be used to estimate
main effects and interactions. The main effect of variable
z; at a specific value Z;, is obtained by setting z; = z;,
integrating the model over all the other variables, and
subtracting the mean value of the model over the design
space. Similarly, the interaction between variables z; and
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z; at specific values (Z;, Z;) is obtained by integrating the
model over all the other variables, subtracting the sum
of the main effects of z; at Z;, z; at Z;, and subtract-
ing the mean value of the model over the design space.
Higher-order interactions are similarly defined. This is an
illustration of an analysis of variance (ANOVA) decompo-
sition (see e.g., [9].) In general, ANOVA decompositions
can be used to determine the amount of the total design
surface variation due to the main effect of each variable
and each of the interactions among variables.

Plots of main effects and interactions can be used
to eliminate ineffective variables from the problem, i.e.
screentng. They can also be used to locate interesting
regions for further exploration. Use of the ANOVA de-
composition is intuitively appealing for obtaining global
trends of (possibly) nondifferentiable functions. This is
because the ANOVA decomposition measures integrated
effects and its existence requires only square integrability.

A statistical estimate of the model error at any point
z can be computed for a DOE interpolating model (see
e.g., [4,5]). Basically, the predicted model error increases
with increasing distance from z to the nearest data sites,
and increases with the nonlinearity exhibited by the data.
Model error estimates provide one useful measure for de-
termining where to take new data.

5. MODELING AND OPTIMIZATION

Since an interpolating model is comparatively cheap
to evaluate, it is reasonable to seek a global optimizer
for the model. This process is facilitated if a smooth
interpolating model is used. The major difficulty is that
the interpolator is a model of the truth (the “truth” being
the expensive analysis code) rather than the truth itself.
Issues arise regarding refinement of existing models, and
optimizing over sequences of models.

A minimalist approach is to run the expensive code
only at the global optimizer of the model. However, in the
likely event that this process does not yield a satisfactory
stopping point, a more sophisticated strategy is required.
Sequential modeling strategies are discussed below.

Since the interpolating models are generally simple for-
mulas, it is reasonable to consider computation of the gra-
dient and the Hessian of the model at any point in design
space. These can be used to form quadratic model of the
basins of interesting minimizers. It is also possible to in-
fer the extents of model minimizer basins more directly
by determining the coordinate distances from the local
minimizer to some particular higher level set. The above
tools can be used to determine regions in the locality of
interesting model minimizers. More data points can be
taken in these regions and used to form new interpolat-
ing models, applicable over the restricted regions. This
“zoom-in” process can be repeated to produce interpo-
lators of ever-increasing fidelity. In the terms of global
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optimization of the true problem, the “zoom-in” method
is a purely “local” approach. That is, locally interest-
ing regions are explored further, but the remainder of the
design space is ignored.

A more “global” approach to the overall optimization
problem is to obtain new data at points with the highest
predicted modeling errors. This has the effect of encour-
aging global exploration, i.e. searching in regions with
the potential for significant improvement.

In traditional global optimization it is usually best to
balance local and global search. This is probably the
case in sequential modeling as well. A simple method for
balancing local and global concerns is to allocate some
fraction of the new data points based on each criterion.

Related to the above approaches, is the idea of sequen-
tially modeling over restricted regions, where the centers
of the regions move in design space. This is essentially the
trust-region concept generalized to interpolating models.
Dennis and Torczon [12] have proven local convergence,
in the absence of derivatives, for a trust-region based
algorithmic framework, covering very general classes of
models. Conn and Toint [13], and Powell [14] describe
derivative-free, trust-region based modeling algorithms
for local optimization. These methods could be used for
local search, once global modeling has identified regions
of interest.

6. CONCLUSIONS & AREAS OF RESEARCH

Optimization using interpolating modeling is a promis-
ing tool for global search on expensive functions. How-
ever, further research is required in several areas. One
area, discussed above, is techniques and theory for opti-
mization using sequences of models.

Another research area is dealing with constraint func-
tions that are composed of outputs from the expensive
code. Interpolating models can be computed for each
constraint function, as well as for the objective function.
However, the optimization process must account for in-
feasibilities due to discrepancies between the models of
the constraints and the true constraints.

An additional research issue arises from the possibil-
ity that the analysis may be undefined, or the expensive
analysis code may fail, in certain regions of design space.
And, it may not be possible to predict the nature of these
undefined regions. In fact, one potential use of DOE mod-
els is to characterize undefined regions.
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BULLETIN BOARD

Announcement and Call for Papers

International Conference

on Nonlinear Programming
(Beijing, Sept 2-5, 1996)

An International Conference on Nonlinear Program-
ming will be held at the Institute of Computational Math-
ematics and Scientific/Engineering Computing, Chinese
Academy of Sciences, Beijing, China, from September 2-5,
1996. It is organized by the Chinese Academy of Sciences
and the Chinese Natural Science Foundation. Invited lec-
tures on recent advances of nonlinear programming will
be given. Invited Speakers (Preliminary list) will include:

J. Burke R. Byrd T. Coleman
AR.Conn J. Moré L. Nazareth
J. Noceddl M.J.D. Powell R.B. Schnabel
M. Overton K. Tanabe R. Tapia

Ph. Toint H. Wolkowitz M.H. Wright

A limited number of short (20 minutes) papers will be
accepted for presentation. Papers on theoretical, compu-
tational and practical aspects of nonlinear programming

“are welcome.

In part, this meeting is intended to honour the many
contributions of Professor M.J.D. Powell to Optimization.
It is hoped that this meeting will be similar to the one
that Professor M.J.D. Powell organised in Cambridge in
1981. There will be no parallel sessions. Apart from the
invited lectures and submitted short talks, there will also
be discussion sessions. The conference proceedings will
be published by an international publisher, and all the
papers will be reviewed.

One or two sightseeing tours, including visiting the
Great Wall, will be organized by the conference. There
is also a possibility of organizing a post conference tour
to Xi-an, an ancient capital of China, depending on the
number of participants who are interested in such a trip.

Prospective participants (except invited speakers)
should send their preregistration information giving ad-
dress (postal and e-mail, if available) and accommodation
preference(single or double bedroom in hotel) to the ad-
dress below by post or e-mail. A further announcement
will be sent to all those who preregister.
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International Organizing Committee:

A.R. Conn, (IBM Watson Research Center, Yorks. USA)
J. Noceddl (Northwestern University, USA)

Ph. Toint (University of Namur, BELGIUM)

Y. Yuan (Chinese Academy of Sciences, CHINA)

Address for correspondence:  For further information,
please contact the following address or any of the Inter-
national organizing committee.

Prof. Ya-xiang Yuan

State Lab. of Scientific and Engineering Computing
ICMSEC, Chinese Academy of Sciences

P.O. Box 2719, Beijing 100080, China

Tel: +86-10-255-9001, +86-10-254-5820

FAX: +86-10-254-2285

e-mail: yyx@lsec.cc.ac.cn

ERRATA IN ISSUE NO. 6 FEATURE

In the feature article of the previous issue, the surname
of Stuart Kauffman was consistently misspelled as ‘Kauf-
mann’ (the Germanic form). The correct reference to his
book is: Stuart A. Kauffman, The Origins of Order: Self-
Organization and Selection in Evolution, Oxford Univer-
sity Press, Oxford and New York, 1993. To make matters
worse, there is yet a third way to spell this name, namely,
‘Kaufman’. Mea culpa! - Ed.

SELECTED UPCOMING ARTICLES
FOR SIAM J. OPTIMIZATION

Some Convergence Properties of the Modified Log Barrier
Method for Linear Programming M.J.D. Powell

Fast Interior Point Methods for Bipartite Matching Lov
K. Grover

Convergence of a Factorized Broyden-like Family for Non-
linear Least Squares Problems Hiroshi Yabe and Naokazu
Yamaks

Sequential Quadratic Programming with Penalization of
the Displacement J. F. Bonnans and G. Launay

Global Optimality Conditions and Their Geometric Inter-
pretation for the Chemical and Phase Equilibrium Prob-
lem Y. Jiang, W. R. Smith, and G. R. Chapman

The Molecule Problem: Exploiting Structure in Global
Optimization Bruce Hendrickson

An Information Global Optimization Algorithm with Lo-
cal Tuning Yaroslav D. Sergeyev

Potential Transformation Methods for Large-Scale Global
Optimization Jack W. Rogers, Jr. and Robert A. Don-
nelly
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Existence and Regularity of Solutions to a Variational
Problem of Mumford and Shah: A Constructive Ap-
proach Yang Wanyg

Augmented Lagrangian-SQP-Methods in Hilbert Spaces
and Application to Control in the Coefficients Problems
Kazufumi Ito and Karl Kunisch

Convex Analysis on the Hermitian Matrices A. S. Lewis
Classical Optimality Conditions Under Weaker Assump-
tions Simon Di

An Infinite-Dimensional Convergence Theory for Re-
duced SQP Methods in Hilbert Space F.-S. Kupfer

Dini Derivatives of the Marginal Function of a Non-
Lipschitzian Program D. E. Ward

A Generalized Convexity and Variational Inequalities
for Quasiconvex Minimization Phan Thien Thach and
Masakazu Kojima

An Efficient Newton Barrier Method for Minimizing a
Sum of Euclidean Norms Knud D. Andersen

On Long Step Path Following and SUMT for Linear and
Quadratic Programming Kurt M. Anstreicher

A Superlinear Infeasible-Interior-Point Affine Scaling Al-
gorithm for LCP R. D. C. Monteiro and S. J. Wright
On the Complexity of the Production-Transportation
Problem Dorit S. Hochbaum and Sung-Pil Hong

On the Relationship Between the Curvature Integral and
the Complexity of Path-Following Methods in Linear Pro-
gramming Gongyun Zhao

The Mehrotra Predictor-Corrector Interior-Point Method
as a Perturbed Composite Newton Method R. Tapia, Y.
Zhang, M. Saltzman, and A. Weiser

An Infeasible Interior-Point Predictor-Corrector Algo-
rithm for Linear Programming Florian A. Potra
Restricted Step and Levenberg-Marquardt Techniques in
Proximal Bundle Methods for Nonconvex Nondifferen-
tiable Optimization Krzysztof C. Kiwiel

SIAG/OPT Views-and-News

REGARDING THE V&N

As mentioned in the Chair’s column, a new editor will
take over the reins following this issue. A periodic change
is highly desirable in order to bring fresh input, direc-
tion, format (and perhaps even mode of distribution) to
the views-and-newsletter. It has been a great pleasure
to have been able to serve the optimization community
in this capacity, and to have been given a free hand to
define the V&N, during the past four years.

Larry Nazareth, Editor

Department of Pure and Applied Mathematics
Washington State University

Pullman, WA 99164-3113

email: nazareth@alpha.math.wsu.edu -
or nazareth@amath.washington.edu
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Fifth SIAM . C?dtﬁfzer,ence on

OPT IMIZATION

British Columbia

Canada

May 20-22, 1996
Victoria Conference Center
Sponsored by SIAM Activity Group on Optimization

ABOUT THE CONFERENCE

The field of optimization is a fascinating and
lively blend of theoretical analysis, algorithm and
software development, and scientific computing.
This fifth conference will address the most
important recent developments in linear,
nonlinear, and discrete optimization. It will feature
recent advances in optimization algorithms and
software, as well as important applications of
optimization in control, networks, manufacturing,
chemical engineering, and operations research.
An important emphasis of the meeting is also the
increasing variety of connections between
optimization and other fields of numerical
analysis and scientific computing, such as
differential equations. The organizers have made
a particular effort to highlight some less
traditional themes.

The conference will bring together
mathematicians, operations researchers,
computer scientists, engineers, and software -
developers. The wide scope of the conference
should provide an excellent opportunity tor
sharing ideas and problems among specialists in
and users of optimization from academia,
government and industry.

CONFERENCE THEMES
Connections between continuous and discrete
optimization

+ Convex analysis and applications
Differential-algebraic equations and their
connections to optimization
Derivative-free methods
Industrial methodology and applications

+ Nondifferentiable/structural optimization

+  Semidefinite programming

+ Stochastic programming

MINISYMPOSIA

A minisymposium is a
two-hour session
consisting of four
presentations on a well-
focused topic. Several
sessions are being
planned by the
organizing committee.
These will appear in
future announcements
in SIAM News.

ABOUT VICTORIA
Victoria is one of the
top destinations in the
Pacific Northwest.
Mountains and sky,
island and sea;
everything meets here!
Victoria offers an
unforgettable
experience for your
next SIAM

Conference — the Fifth
SIAM Conference on
Optimization. Do come
and participate!

SIAM SHORT COURSES

Immediately preceding the conference —
May 19, 1996

(offered simultaneously) on:

- Differential-Algebraic Equations and Their

Connections to Optimization
« Optimization Software

INVITED PRESENTATIONS

Differential-algebraic Equations and Contlnuous
Optimization

Uri M. Ascher, University of British Columbia,
Vancouver, Canada

The Impact of Mathematics and Optimlzation at
Boeing

Albert M. Erisman, Boeing Information and Support
Services, Seattle, Washington, USA

Continuous Optimization Techniques in Discrete
Optimization Problems

Martin Grétschel, Konrad-Zuse-Zentrum, Berlin,
Germany

Convex Analysis and Applications

Adrian S. Lewis, University of Waterloo, Waterloo,
Canada

Stochastlc Programming

Andrzej Ruszczynski, International Institute for Applied
Systems Analysis, Vienna, Austria

Direct Search Methods

Virginia Torczon, College of William and Mary,
Williamsburg, Virginia, USA
Nondifferentiable/Structural Optimization
Jochem Zowe, Universitdt Bayreuth, Bayreuth, Germany

ORGANIZING COMMITTEE

Andrew R. Conn (Co-chair), IBM T.J. Watson
Research Center, Yorktown Heights, New York
Margaret H. Wright (Co-chair), AT&T Bell
Laboratories, Murray Hill, New Jersey

John T. Betts, Boeing Computer Services, Seattle,
Washington

John R. Birge, University of Michigan, Ann Arbor,
Michigan

Jonathan M. Borwein, Simon Fraser University,
Burnaby, Canada

Georg H. Bock, University of Heidelberg,
Heidelberg, Germany

Albert G. Buckley, University of Victoria, Victoria,
Canada

TO PARTICIPATE

The conference preliminary program and information on transportation,
hotel, and registration will appear in the March 1996 issue of SIAM News.
To receive your copy, contact meetings@siam.org.

Additional information is available through SIAM's World Wide Web site
(http.//www.siam.org/conf.htm) or by contacting SIAM, 3600
University City Science Center, Philadelphia, PA 19104-2688; Phone 215
382-9800; Fax 215-386-7999.




[terative Methods
for Linear and
Nonlinear Equations

C. T. Kelley

1995
xiii + 165 pages
Softcover
ISBN 0-89871-352-8
List Price $32.50
SIAM Member Price $26.00
Order Code FR16

To
ORDER

Use your credit card

(AMEX, MasterCard, and VISA):

Call toll free in USA: 800-447-SIAM

Outside USA call: 215-382-9800

Fax: 215-386-7999; E-mail: service@siam.org
Or send check or money order to:

SIAM, Dept. BKAG95, P.O. Box 7260
Philadelphia, PA 19101-7260

Payments may be made by wire transfer

to SIAM’s bank:

PNC Bank, 3535 Market Street, Philadelphia, PA
19104; ABA Routing #031000053; Account
Name: Society for Industrial and Applied
Mathematics; Account #8550970454

Shipping and Handling

USA: Add $2.75 for the first book

and $.50 for each additional book.

Canada: Add $4.50 for the first book

and $1.50 for each additional book.

Outside USA/Canada: Add $4.50 per book.

Al overseas delivery is via airmail.

SidM.

Science and Industry
Advance with Mathematics

Frontiers in Applied
Mathematics 16

Linear and nonlinear systems of equations are the basis for many, if not most, of the
models of phenomena in science and engineering, and their efficient numerical
solution is critical to progress in these areas. This is the first book to be published
on nonlinear equations since the mid-1980s. Although it stresses recent
developments in this area, such as Newton-Krylov methods, considerable material
on linear equations has been incorporated. This book focuses on a small number of
methods and treats them in depth.

The author provides a complete analysis of the conjugate gradient and
generalized minimum residual iterations as well as recent advances including
Newton-Krylov methods, incorporation of inexactness and noise into the analysis,
new proofs and implementations of Broyden's method, and globalization of inexact
Newton methods.

Examples, methods, and algorithmic choices are based on applications to
infinite dimensional problems such as partial differential equations and integral
equations. The analysis and proof techniques are constructed with the infinite
dimensional setting in mind and the computational examples and exercises are
based on the MATLAB environment.

Contents

Preface; How to Get the Software; Part I: Linear Equations. Chapter 1: Basic Concepts and
Stationary lterative Methods; Chapter 2: Conjugate Gradient Iteration; Chapter 3: GMRES
Iteration; Part II: Nonlinear Equations. Chapter 4: Basic Concepts and Fixed Point
Iteration; Chapter 5: Newton’s Method; Chapter 6: Inexact Newton Methods; Chapter 7:
Broyden’s Method; Chapter 8: Global Convergence; Bibliography; Index.

Audience

This book can be used as a tutorial and a reference by anyone who needs to solve
nonlinear systems of equations or large linear systems. It may also be used as a
textbook for introductory courses in nonlinear equations or iterative methods or as
source material for an introductory course in numerical analysis at the graduate
level. The reader should be familiar with elementary numerical analysis, linear
algebra, and the central ideas of direct methods for the numerical solution of dense
linear systems.

About the Author

Professor Kelley has an appointment in the Department of Mathematics and is a
member of the Center for Research in Scientific Computation at North Carolina
State University. He is the current vice-chair of the SIAM Activity Group on
Optimization and serves on the editorial board of the SIAM Journal on

Optimization.

W, Completetablesof contents and additional information about SIAM publications are available through
ﬁw the World Wide Web (http.//www.siam.org) or via SIAM’s Gopher server (gopher.siam.org).




