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1. Introduction

Active noise control consists of trying to quiet a des-
ignated area by sending out noise signals that match
the amplitude of the noise, but have opposite phase.
Thus, when the noise and “anti-noise” are summed
the result is quiet. Examples of where this technol-
ogy could be used are in quieting noisy machines
on a factory floor, quieting the passenger cabin of
a vehicle or aircraft, quieting the hum of superfast
express elevators, or quieting a noisy air compressor.

A typical setup of an active noise control system
is shown in Figure 1.1. Noise is generated by one
or more disturbances and is sensed by an array of
microphones. This information is passed to the mi-
croprocessor that computes the optimal signals to
send through an array of loudspeakers. The output
from the loudspeakers meets the original noise at the
quiet zone, canceling it out. Control microphones
are placed in the quiet zone to monitor how good a
performance of canceling we are achieving. They can
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Figure 1.1: Multichannel Active Noise Control Sys-
tem

also be hooked to the microprocessor so their infor-
mation can be used to adapt the controller to adjust
to noise sources that are changing. The signals gen-
erated by the loudspeakers travel to the quiet zone
and also back to the control microphones, causing
feedback. The microprocessor generates another sig-
nal to neutralize this coupling from the loudspeakers
back to the microphones. Often there are multiple
sensing and control microphones, loudspeakers, and
sometimes there are several noise sources. These sys-
tems are referred to as MIMO, for multiple-input-
multiple-output. All the sensor/microphone pairs
are wired together, so the complexity quickly rises
as their numbers increase.

A schematic of the plant (the combination of
the sensors and microphones) and the controller
(the FIR filters for anti-noise and neutralization)
are shown in Figure 1.2. We describe the plant
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Figure 1.2: Plant and Controller Topology and No-
tation
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by four finite-length impulse response matrices: D
(for disturbance) is the disturbance-to-quiet-zone re-
sponse, S (for sensor) is the disturbance-to-control-
sensor response, A (for actuator) is the control-
actuator-to-quiet-zone response, and C (for cou-
pling) is the control-actuator-to-control-sensor re-
sponse. The number of disturbance inputs is ng,
the number of control sensors is ng, the number of
control actuators is 7n,, and the number of quiet
zone microphones is ng,. The data D is dimen-
sion (ng4,nq,lq), A is dimension (ng,ng,lq), S is di-
mension (ng,ng,ls), and C is dimension (ns,ng, ),
where [, j = {d, a, s, c} represents the length of the
respective FIR matrices.

The controller shown in Figure 2 is designed to
cancel out the unwanted noise in the quiet zone. The
simplest such controller has a neutralization path
that negates the coupling (i.e., N = —C). The prob-
lem becomes one of finding the FIR filter weights W,
of dimension (n4, ns, ly,) such that A@ W &S closely
matches —D, where ® is the discrete time convolu-
tion operator. Thus, the minimization problem is

min [D+A®W ®S]|.
w

Specifications, in the form of constraints, are
placed on the controllers. For example, we could en-
sure that the controller does not enhance the noise
out of the frequency band of interest, or that the
controller remains stable over certain conditions, or
that the signals sent to the loudspeakers are not over-
loading the voltage on them, all while ensuring that
the performance over the frequency band of inter-
est does not suffer. The constrained problem can be
written as

min
A\

Do + Ao ® W @ S|,
subject to [D; +A; @ W ® S, < oy,

(1)
for j = 1,...,k, where the norms can be any com-
bination of Hy and H,. At SRI International we
have developed a software package MINCODE, for
Mixed-Norm Controller Design, that solves (1). For
brevity, I will limit the remainder of this article to
considering just the Hy norm on both the objective
and constraints.

The Hy norm of X, a closed-loop transfer function
associated with the controlled plant, can be com-

puted from its impulse response matrix by

XL, = 32> (i (m)* (2)

This norm can also be viewed as the RMS value of
the multichannel output signal when the inputs are
driven by independent white noise. The Ho norm is
used primarily to minimize the RMS response of the
system for white or colored noise disturbances.

The objective function and constraints in (1) are
convex, making this a convex optimization problem.
In the case of controller design, the convex optimiza-
tion technique will either find a controller to mini-
mize the norm of the closed-loop transfer function
or determine that no realizable controller exists that
satisfies all the constraints.

In the next section I discuss an easier formulation
of the controller design problem by posing it as a
semi-definite program.

2. Problem Formulation as SDP

We can translate (1) to a semi-definite program
(SDP). An SDP minimizes a linear function subject
to an affine combination of symmetric matrices being
semi-definite. In particular, the SDP can be written

as

minimize ¢z

subject to F(z) >0 3)

where

m
F(z)=Fy+ Zﬂfz’Fi, F; symmetric.
=1

(4)

We can convert the minimization problem in (1) to
minimizing a linear function by adding a new vari-
able t,

minimize ¢ 5
subject to |[D+A®W®S| g, <t. (5)

The Hy norm of a closed-loop impulse response
| X|| can be written equivalently as || Xw+d||; where
X is a matrix composed of the S and A data , w is
a vector version of the design variable W, and d is
a vector version of the D data. Then the expression
|X]||? < t can be written equivalently as the matrix
inequality
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I Xw+d

(Xw+d)T t 20,

(6)
where the unknown variable z in (3) is now {¢,w}.
The matrix depends affinely on the variables {¢,w}
and (6) can be expressed as

F(.’]}) =F+xiF+...+x,F, >0. (7)

The matrices F; in (7) are

| o
Tl xE, 0

where X; is the jth column of X. The coefficient
c in the objective function ¢’z in (3) becomes ¢ =
(1,0,...,0).

It is straightforward to incorporate the (multiple)
constraints from (1) into an SDP. Simply let the
F; matrices in (7) be block diagonal matrices with
the first block corresponding to the appropriate F;
block of the objective and each successive block cor-
responding to the appropriate F; block of the kth
constraint.

We solve the SDP by considering the primal and
dual problems together. To lead up to the algorithm,
let me first make some definitions. The duality gap
is defined as

duality gap = ¢’z + trace(Fy Z) = trace(F(z)Z),

where the gap is nonnegative and equal to zero at
the optimum. Define ¢ to be a primal-dual barrier
function:
#(z,Z) = logdet F(z)™' +logdet Z~!
= —logdet(F(z)Z2).

The primal-dual central path is parameterized by 7
in

(@*(n), Z2™(n)) = P(z, 2).

argmin
xz,Z feasible
'z + Trace(FyZ) =1

The deviation from centrality of (z, Z) is
= ¢(z,Z) — logdet F (s (1)) "
—logdet Z*(n) !

and this can be evaluated without

z*(n), 2" (n)-

The two important quantities in interior point op-
timization are the duality gap and the deviation from
centrality ¢. The primal-dual potential function for
strictly feasible x, Z is a weighted sum of the duality
gap and deviation from centrality:

finding

vv/nlog(gap) + ¢ (z, Z)
(n + vvn)log(cf & + trace(FyZ))
—log det F(z) — logdet Z — nlogn,

o(z,Z)

where v > 1 is a weighting parameter. The first term
rewards a decrease in duality gap, and the second
term keeps (F'(z), Z) close to the central path. We
solve semidefinite programs by minimizing ¢. Thus,
the algorithm consists of finding feasible search di-
rections dx and dZ, and performing a plane search:

min ¢(z + pdz, Z + q6 7).

P,gER
The minimization is continued until the duality gap
is small enough.

There are many different ways to compute the
search directions, and each way yields a different al-
gorithm. The plane search step is a 2-dimensional
minimization problem (in p,q) and is greatly aided
by computing the generalized eigenvalues (F'(dz), F)
and (67, Z). The total cost of the plane search is in-
significant compared to the least squares solutions
needed to find the primal search direction.

Here are a few summary statements about primal-
dual algorithms. There is a decrease in duality gap
without moving too far from the central path. It’s
the most efficient set of algorithms in practice (i.e.
treating both dual and primal problems together)
because the number of iterations is approximately
constant over a wide range of problems, the over-
all complexity equals the effort to compute dz,dZ,
and the behavior is similar over a very wide range
of problem sizes and problem types, and finally,
super-efficient algorithms exploit engineering prob-
lem structure to compute the search directions. This
last statement is what we needed to do in order to
incorporate our large problem sizes.

We present a general outline of the primal-dual
potential reduction algorithm used to solve the SDP

[3]-
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Algorithm:
given strictly feasible primal and dual points
repeat until stopping criterion is small enough

1. Solve for the primal search direction, dz.

2. Compute dual search direction, 6Z.

3. Plane search: find the minimum point along
the plane defined by primal and dual
directions

e Compute primal eigenvalue decomposition
e Compute dual eigenvalue decomposition

The suitable directions are found by Newton’s
method, and the minimizations along these direc-
tions can be carried out very efficiently, after some
precomputations, using a guarded Newton method
based on work by Nesterov and Nemirovsky [1].

The storage and manipulation of the matrices re-
quired in the algorithm can quickly become imprac-
tical as the data and design variables grow in number
and size. The algorithms for SDP problems directly
access the F; matrices in (7), which are very large
and sparse for our applications. Thus, we need to
fine tune the SDP algorithms to take advantage of
the structure, which is briefly discussed in the next
section.

3. Using Numerical Tools

The two labor-intensive portions of the algorithm
are finding a least squares solution for the primal
Newton direction, and performing an eigenvalue de-
composition in preparation for the plane search.
Finding the primal feasible search direction re-
quires solving a large least squares problem. We
use the Conjugate Gradient method, where comput-
ing the matrix-vector product is simplified by us-
ing FFTs and Kronecker product identities. The
dual feasible search direction can be calculated di-
rectly from the primal direction without solving an-
other least squares problem. Further simplification
is aided by factoring the dual variable Z into a rank
r update of the scaled identity matrix as follows:
Z = apI + A M, AL, (9)
where q;, is a scalar, Ay € R™"*" for small r, and
Mj, is a weighting matrix. At the first iteration of

the algorithm, Ay is the empty matrix, and grows
by two columns at each iteration.

To search for the minimum along the two feasible
directions (primal and dual) we first find the gener-
alized eigenvalues of

(F(6z), F(x)) and (2, Z), (10)

where F(z) is from (4), F(dz) is evaluated along
the primal direction and 0Z is the dual direction.
Finding the eigenvalues associated with the primal
direction relies on algebraic manipulation to reduce
the problem to finding the eigenvalues of a 2 x 2
system.

Finding the eigenvalues associated with the dual
direction relies on using pre- and post-multiplication
to reduce the size of the problem, and then comput-
ing a truncated singular value decomposition on the
transformed problem.

For more details of the numerical techniques used
to speed up the steps of the algorithm, I refer the
reader to Olkin and Titterton [2].

4. Results

In this section, I present results for a control exper-
iment to minimize the far-field pressures in a hemi-
sphere above a beam when excitation points along
the beam are excited.

The experimental setup consists of an aluminum
beam, 1.016m long by 38.1mm wide by 1.27cm thick
(40in long by 1.5in wide by .5in thick), clamped on
both ends in an infinite baffle. Twenty-one possible
excitation points are considered on this beam (points
correspond to finite element nodal locations). Al-
though two degrees of freedom (transverse displace-
ment and rotation) were available, only the trans-
verse degrees of freedom were considered. Thus, all
excitation forces correspond to normal point forces.
The far-field pressure field is sampled at 325 equally
spaced points over a hemisphere 100 meters in ra-
dius. The transfer function relating the input ex-
citations to the far-field pressure were calculated
for eleven frequencies between 50Hz and 400Hz. A
representation of the beam is shown in Figure 1.3.
There are 21 equally spaced nodes on the beam, with
nodes numbered 1 and 21 located at the two ends.

In the experiment two excitation forces are placed
at two different nodes of the beam and the far-field
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Figure 1.3: Aluminum beam with 21 nodes, clamped
at both ends. A hemisphere of far-field pressure
points, 100 meters in radius, are measured along 18
strips in 10-degree increments from 0° to 170°

pressure in the hemisphere above the beam is mea-
sured. For the figures included here, the excitation
forces were placed symmetrically along the beam, at
nodes 7 and 14. Figure 1.4 shows the pressure field
when the controller is off. Figure 1.5 shows the re-
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Figure 1.4: Far-field pressure with controller off

sults when the controller is turned on. The darker
colors signify better quieting, or less pressure. No-
tice that the pressures overall are diminished. The
pressure over the entire hemisphere with the con-
troller on is 80dB below the pressure field with no
controller.
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-Chairman’s Column

by Jorge J. Moré

-10

Much has happened since the last time that you
all received the last Views & News newsletter.

One of the main events was the selection of
Juan Meza as the new editor for the SIAG/OPT
newsletter. This announcement was made at the
SIAG/OPT business meeting in Victoria. Juan
brings a wide range of talents to this task, but he
will need help from all of us. Obtaining good con-
tributions to the newsletter is not easy, so if you
have any ideas or suggestions, please contact Juan
at meza@ca.sandia.gov.
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Another important event was our conference: The
5th STAM Conference on Optimization in Victoria,
Canada, from May 20 to May 22. The organizing
committee was chaired by Andy Conn and Mar-
garet Wright and included John Betts, John Birge,
Jonathan Borwein, Georg Bock, and Bert Buckley.
The meeting was attended by 465 researchers, a new
record, with substantial participation by scientists
from outside North America.

Most attendees felt extremely positive about the
conference. There were exciting developments in
theory, algorithms, software, and applications. The
biggest complaint was that there were too many
good talks in parallel. This situation seems to be
unavoidable in a conference of this size that is lim-
ited to three days.

We have already started to make plans for the next
SIAG/OPT conference in 1999. Phil Gill and Tim
Kelley agreed to serve as co-chairs. Please contact
them if you have any suggestions on how to improve
the conference.

The first STAM Activity Group on Optimization
(SIAG/OPT) Prize was awarded at the Victoria
meeting to Michel X. Goemans and Dimitris J. Bert-
simas, both from MIT, for their paper Survivable
networks, linear programming relaxations and the
parsimonious property, which appeared in Mathe-
matical Programming 60 (1993) 145-166. The com-
mittee awarded honorable mention to three papers:
On the optimal design of columns against buckling,
SIAM J. on Math. Anal. 23 (1992) 287-325, by
Steve Cox of Rice University and Mike Overton
of NYU; Steepest-edge simplex algorithms for lin-
ear programming, Math. Prog. 57 (1992) 341-
374, by John Forrest of IBM and Don Goldfarb
of Columbia University; Lipschitzian optimization
without the Lipschitz constant, JOTA, 79 (1993)
157-181 by Don Jones of General Motors Research,
and C. Perttunen and B. Stuckman of Brooks and
Kushman.

Awarding a prize of this importance is not an
easy task. The selection committee, which consisted
of Tim Kelley (chair), Clyde Monma, Mike Powell,
Bobby Schnabel, and Mike Todd, deserve praise for
their hard work.

A full announcement of the prize appeared in the
July/August meeting of STAM News. You can also
find it in our STAM Activity Group on Optimization

Web site at
http://www.siam.org/siags/siagop/siagop.htm

In addition to organizing the SIAG/OPT Opti-
mization conference, we also sponsor smaller con-
ferences on optimization. We have recently spon-
sored High Performance Software for Nonlinear Op-
timization: Status and Perspectives, June 1995, or-
ganized by Gerardo Toraldo; International Confer-
ence on Complementarity Problems: Engineering &
Economic Applications and Computational Methods,
November 1995, organized by Michael Ferris and
Jong-Shi Pang; and Conference on Network Opti-
maization, February 1996, organized by Bill Hager,
Don Hearn, and Panos Pardalos. If you are inter-
ested in getting sponsorship for an optimization con-
ference, please contact our program director, Phil
Gill, at peg@ucsd.edu.

We sponsored minisymposia at the 1995 ICIAM
meeting, but did not sponsor any minisymposia at
the 1996 SIAM meeting because we were having our
meeting that year. We will be sponsoring minisym-
posia at the 1997 STAM meeting in San Francisco.

What are the plans for the future?

We will organize the 6th STAM Optimization Con-
ference in 1999, and we plan to award the 2nd
SIAG/OPT Prize.

We also plan to expand the scope of the
SIAG/OPT Views & News Newsletter by adding
more articles/information on applications.

We would like to update the STAG/OPT Web
page on a regular basis. The aim is to make the
SIAG/OPT Web page an important source of infor-
mation for the optimization community. If any of
you is interested in taking over one of the sections in
our Web page, drop me a note. Juan Meza has added
a pointer to previous newsletters from our Web page,
and this has worked out well. Check it out.

We have also added a section in our Web page on
members. At last count we had about 100 members
listed here. Are you listed? If not, please send a
message to Laura Helfrich at helfrich@siam.org
with your name and the http address for your Web
page. We have about 630 members, and we would
like to have more members sign up. This page is a
useful resource for finding about research being done
by other members.

We are especially interested in adding more mem-
bers from the discrete optimization area and from
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the applications area. We are the second largest
SIAG! Having a strong, active STAG gives us a
stronger voice in SIAM. Encourage others to join.
As a reminder, student members of STAM can join
for free.

What else? If you have any interesting proposals,
drop me a note.

Optimization
Practices

Getting a Little More Robustness
Todd Plantenga

Sandia National Laboratories, Livermore, CA

email: tdplant@ca.sandia.gov

This essay discusses algorithmic improvements
that enhance the robustness of a particular nonlin-
ear optimization method. The improvements might
be casually described as “software implementation
details” because on well-behaved problems they are
often unnecessary. Nevertheless, they stem from ba-
sic optimization theory, and may play a significant
role on more “pathological” problems. This work
was specifically motivated by an application in com-
putational chemistry that requires highly accurate
local minima of large, badly conditioned functions
[6].

Here we suppose our problems are large (thou-
sands to millions of variables), unconstrained, and
smooth. Analytic gradients are computable at mod-
erate cost, but the Hessian is irregularly structured
and/or not very sparse. To obtain a solution with
several digits of accuracy under these circumstances,
it is appropriate to use a Hessian-free truncated New-
ton method. This class of algorithm dates back to
Dembo, Eisenstat and Steihaug [3] and O’Leary
[11]. It has proved quite useful [4, 8, 9, 14], and
various source codes are available from NETLIB (BTN
[10] in TOMs/711, TN [7] in oPT/TN, and TNPACK
[13] in TOMS/702). In what follows we will develop
a version of the algorithm gradually, considering im-
plementation issues as we go. The intent is not to

derive some universally applicable method, but to
reveal how small details contribute to robust perfor-
mance.

The basic algorithm outline is that of a Newton
method in which the Newton step is computed ap-
proximately by an inner conjugate gradient itera-
tion. At the outer level the algorithm finds the New-
ton step dyw for f(z) at the point zg; i.e., solves the
system (V2fi)d = —V fi (assume for now that the
Hessian is positive definite). Let us define the model
objective at x; as

¢e(d) = fe +d Vi +05d7 (V2 fi)d, (1)
and note that the Newton step is the unique mini-
mizer of ¢. Equations (2)-(8) describe a computa-
tional approach for calculating the Newton step dyw

(this is standard CG except for the two cryptic lines
(3A) and (4B) that will be explained later).

dy=0, 1o ==V, po=ro
loop
(check positivity of Hessian)
a; = riri/p] (V2 fi)pi
div1 = d; + a;p;
(check [ di1]) (4
rit1 =71i — o5 (V2 fi)pi
if (lriall/l[roll <7
then return dnw < d;41
Bi=rlrivi/rir
Pi+1 = Ti+1 + Bipi
continue

~~~
I3
w >

N N
Uj e~
N N N e’ i i’

—_~
S O

For positive definite V2 f;, each d;11 in (4) is the
minimizer over a Krylov subspace spanned by con-
jugate directions {pg,...,p;}.- In exact arithmetic
CG computes the Newton step in a finite number of
steps, but here we stop when the relative residual
meets the test in (6), returning a truncated approxi-
mation to the Newton step.

The Hessian matrix shows up in (3) and (5), in
both places post-multiplied by the vector p;. We ob-
tain a Hessian-free algorithm by approximating this
product by a finite difference directional derivative.
For instance, a forward difference approximation is

V2 f(zk)p = [V f(zx, +op) = V(zp)l/o.  (9)
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Thus, the Hessian can be eliminated at the cost of
one extra gradient evaluation per CG iteration. Of
course, finite differences also introduce additional er-
ror that may degrade performance or even “break”
the algorithm. (Automatic differentiation can some-
times provide Hessian-vector products at reasonable
cost, and they avoid finite differencing errors.)

Classical asymptotic convergence rates were estab-
lished by Dembo et al. in [3]. If xj is close to an
isolated local minimum of f, and if exact Hessian-
vector products are used in (3) and (5), then the
truncated Newton method converges at a rate de-
termined by the choice of 7 in (6). The situation is
summarized in (10):

T a constant € (0,1) — linear rate
7 proportional to 1/k — superlinear rate
T proportional to ||rg|| — quadratic rate .

(10)

If we use an approximation such as (9) to give a
Hessian-free algorithm, the theory becomes more
complicated. Brown proved convergence rates anal-
ogous to (10) for a truncated Newton Jacobian-free
method based on GMRES for solving systems of non-
linear equations [1]. In [2, Thm 3.6] his argument is
extended to cover our situation. Briefly, if o goes to
zero sufficiently fast, then the convergence rates por-
trayed by (10) still hold for the Hessian-free method.

Not everyone uses (6) and (10) in practice. Nash
[7, 8] replaces (6) with a test that stops the CG loop
when the model function ¢ (d) fails to decrease sub-
stantially. It is also common to end the inner CG
loop after a maximum number of iterations, usually
some fraction of the number of unknowns n. Exam-
ples range from min{50,7/2} [7] to n [13].

The choice of ¢ in (9) is quite important when cal-
culating minima to high accuracy. A small value of
o reduces the error due to Taylor series truncation,
but magnifies roundoff errors made in computing the
gradient V f. The ideal ¢ balances these two errors,
but it cannot be computed without knowing or es-
timating the true Hessian (see [5] for a complete
description). On well-behaved problems simple as-
sumptions can be made that lead to the “textbook”
value

0 = 2y/€machine max{1, ||z |}/ |lpl- (11)

Even if the ideal o is computed, the relative error
in (9) becomes unavoidably large near a solution.

For high accuracy at the solution the usual strategy
is to switch to a central difference approximation in
place of (9), at the cost of two extra gradient evalu-
ations per CG iteration.

On badly conditioned problems (11) is inadequate.
Hessian curvature may be steep in the direction p,
exacerbating the Taylor series truncation error, or it
may be shallow, in which case gradient error domi-
nates. Sometimes the ill-conditioning can be fixed by
a simple scaling of the variables or with an inexpen-
sive preconditioner. Often it cannot, and the choice
of o is problematic. We could use central differences
all the time, or estimate V2f; in the direction p;
[5], but both these schemes are twice as expensive
in terms of gradient calculations. A more practical
compromise is to use (9) and (11) until errors be-
come severe, then switch to central differences. But
if we allow “severe” errors, we must also be careful
to safeguard our algorithm. This brings us to the
central topic of the essay.

Algorithm robustness depends heavily on imple-
menting a strategy that ensures global convergence.
The two most prevalent strategies are line searches
and trust regions. We pursue the latter in the man-
ner of [16, 17]. The idea is to add a constraint to the
Newton step calculation, requiring that ||dxw|| be no
larger than some constant Ag. It turns out that the
approximate steps d; computed by (2)-(8) are mono-
tonically increasing in magnitude when measured by
the /2 norm [16], so we impose ||dNw|l2 < Ag. This
trust region constraint translates into two new stop
tests, (3A) and (4B), within the CG iteration. The
first test handles points at which the Hessian is not
positive definite:

if pf (V2fe)pi/pipi <e
then find o to min ¢ (d; + ap;)
subject to ||d; + api||2 < Ak,
return dyw < d; + ap;

(34)

This can be interpreted as a restriction on the
eigenspaces that CG is allowed to explore. Usually,

The other new test stops CG if d; 1 goes beyond
the trust region:

if ||di+1||2 > Ak
then find « to min ¢ (d; + ap;)
subject to ||d; + api||2 < Ak,
return dnw < d; + ap;

(4B)
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Using a trust region, the top level of our trun-
cated Newton method is shown as (12)-(18). The
key step is (16)-(18), which says the approximate
Newton step is accepted only if the actual reduction
in f is reasonably close to the predicted reduction
¢r(d). The value of 7 and the precise rules for up-
dating Ak in (17) and (18) have deliberately been
left vague. These may affect algorithm performance
on particular problems, but they have little influence
on robustness.

choose g, Ay (12)
loop
if zy is close to a minimum (13)
then stop
compute dyw from inner loop (2)-(8) (14)
zt =z, + dnw (15)
if [f(zk) — f(&T)]/¢r(d) > n (16)
then Tk+1 = zT s Ak—}—l > Ak (17)
else Tyl = Tk , Ak—f—l < Ag (18)

continue

The global convergence property of trust region
methods stems from a fundamental requirement
[12, 15]: a good approximation to the steepest de-
scent step must be used when Aj; becomes suffi-
ciently small. Our algorithm complies with this re-
quirement because (4B) will terminate CG on the
first iteration, with pg = —V fi. Note that the
calculation of this steepest descent direction is not
corrupted by approximate Hessian-vector products.
However, errors still can be made at the outer level of
the trust region algorithm in step (16), because the
predicted reduction ¢y (d) is based on the quadratic
model (1). To avoid the finite difference error, we
change the model: let ¢x(d) in (16) be calculated
from the rule

if dnw is a steepest descent step
then ¢y(d) = fr +d"Vf;
else  ¢p(d) = fr +d'V i +0.5d7 (V2fy)d.

This modification fits naturally into the trust region
framework (an alternative fix might be to make a line
search in the steepest descent direction). Though
seemingly minor, it can have significant practical
value. On a badly conditioned chemistry problem

the algorithm was observed to struggle at a partic-
ular point (still far from a minimum). It finally ac-
cepted two tiny steepest descent steps, then opened
up the trust region and ultimately converged at a
quadratic rate. The steepest descent steps were re-
jected by (16) when ¢ (d) was computed by (1).

Another simple modification helps catch severe er-
rors during the CG iteration and salvage the work
done up to that point. The relative change in ¢, be-
tween steps d; and d;;1 can be computed at the cost
of two vector dot products [7]. The new step should
always cause a relative decrease in ¢;. An increase
indicates severe error in the Hessian-vector product,
and our action is to exit the CG loop with dyw + d;
(that is, ignore the badly calculated step d;11). An
increase also suggests that we should switch to cen-
tral differences.

Computation time can be decreased by devising
clever schemes for switching back and forth between
forward and central difference approximations. Here
we simply emphasize that central differences are less
sensitive to the choice of o [5] and therefore make
the algorithm more robust.

A short essay has room for only a few ideas, and
certainly much more could be said. Hopefully, the
developers of nonlinear optimization codes will be
spurred to think a little more deeply about software
robustness in their algorithms. My thanks to Jorge
Nocedal for his helpful comments.
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Bulletin Board

The Mathematical Programming Society has set
up a committee consisting of Jose Mario Mar-
tinez (martinez@ime.unicamp.br), Lex Schrijver
(Lex.Schrijver@cwi.nl), and Mike Todd (mike-
todd@CS.Cornell. EDU), chair, to provide input to
Mathematical Reviews and Zentralblatt fuer Math-
ematik on their proposed update of the 1991 Math-
ematics Subject Classification. Tt is not envisioned
that this will be a major update, but it needs to
incorporate new areas of research and possibly ap-
propriately reorganize existing areas. The commit-
tee expects to concentrate its attention on the or-
ganization of 90CXX, mathematical programming,
but may also make suggestions on other parts of the
classification, such as 656KXX, 68QXX, 05DXX, and
90BXX.

The existing classification can be found on the
world wide web at URL http://www.ams.org/msc/,
or copies may be obtained by e-mail or regular mail
from the committee members.

We welcome suggestions from the mathematical
programming community, which can be sent by e-
mail to any or all of the committee members, or by
regular mail to the address below. We would ap-
preciate receiving input before or during the Inter-
national Symposium on Mathematical Programming
to be held in Lausanne, Switzerland, in August 1997.

Michael J. Todd

School of Operations Research and
Industrial Engineering

Rhodes Hall

Cornell University

Tthaca, NY 14853-3801

USA

CPS

Center for Research on Parallel Computing
and Supercomputers

Short Conference on
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HIGH PERFORMANCE SOFTWARE FOR
NONLINEAR OPTIMIZATION:
STATUS AND PERSPECTIVES

Ischia, Italy 4 - 6 June 1997
HPSNO 97

The Centro di ricerche per il calcolo Parallelo e i
Supercalcolatori (CPS), a joint research center of the
CNR (Consiglio Nazionale delle Ricerche) and the
University of Naples “Federico I1”, will host a short
conference entitled ”High Performance Software for
Nonlinear Optimization” on 4-6 June 1997 in Ischia
(Italy). The Conference, which is planned to be or-
ganized biennially, follows the HPSNO95 Conference
that was held in June 95, and whose main contri-
butions were published in a special issue of Com-
putational Optimization and Applications. Putting
together the recent progress in computer technol-
ogy with the latest algorithmic developments in the
field of numerical optimization represents an exciting
challenge for researchers and an interesting opportu-
nity for dealing with very large “real life” problems.
The focus of the conference is to cover the latest re-
sults in optimization software and, in particular, op-
timization software for high performance computers.
The conference will provide an overview of the non-
linear optimization field, including algorithms, soft-
ware evaluation, implementation issues, applications
and future areas of research through autoritative lec-
tures given by some of the most active researchers in
the field. The Conference aims to promote research
activities and cooperation among scientists in the
field and therefore it will provide ample opportunity
for informal exchange of ideas among researchers.

The Conference will include lectures given by
guest speakers and by authors of selected con-
tributed papers. The list of invited speakers in-
cludes: C. H. Bischof, Nick Gould, W. Hager,J.J.
More’, P. Pardalos, M.C. Resende, P.L.Toint, M.
Wright.

CONFERENCE COMMITTEE

e Prof. Jorge More’ (Argonne National Labora-
tory, Argonne, USA)

e Prof. Almerico Murli (CPS, ITALY)

e Prof. Panos Pardalos (University of Florida,
Gainesville, USA)
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For further information point your browser at
http://pixel.dma.unina.it/Events/HPSNO97.html
or send e-mail to hpsno@matna2.dma.unina.it.

You may also send a fax or a letter to

Almerico Murli or to Gerardo Toraldo
CPS - Via Cintia

Monte S.Angelo 80126

Napoli - ITALY

FAX: +39-81-7662106

e-mail:
e murli@matna2.dma.unina.it

e toraldo@matna2.dma.unina.it

Editor’s Comments

First of all, let me say that I’'m happy to be the
new editor for the Views and News. You may have
already noticed that there have been a few changes
to the style. Hopefully, the same high standards set
by the previous editor will be preserved.

The first change is the addition of two new sec-
tions, one on industrial case studies and another on
optimization practices. I will try to have at least
one article that includes an actual case study from
industry in which optimization plays an important
role. Secondly, I will try to have an article that talks
about optimization practices out in the field. Two
new columns that I would really like to get some help
on are a section on international news and a stu-
dent corner. As STAM grows, I would like to make
sure that this newsletter serves the needs of both the
optimization community internationally and also at-
tracts the new students of optimization. Any and all
suggestions are welcome. So please drop on by our
web page or send me email.

Juan C. Meza, Editor
Sandia National Laboratories
PO Box 969, MS 9214
Livermore, CA 94551

email: meza@Qca.sandia.gov




