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Optimization Under Uncertainty:
An Overview

Urmila Diwekar
CUSTOM (Center for Uncertain Systems: Tools for
Optimization and Uncertainty), Carnegie Mellon University,
Pittsburgh, PA 15213 (urmila@cmu.edu).ﬂ

1This overview is based on the chapter entitled “Optimiza-
tion Under Uncertainty” from Introduction to Applied Opti-
mization[T].

1. Introduction

Deterministic optimization literature classifies prob-
lems as Linear Programming (LP), NonLinear
Programming (NLP), Integer Programming (IP),
Mixed Integer LP (MILP), and Mixed Integer NLP
(MINLP), depending on the decision variables, ob-
jectives, and constraints. However, the future can-
not be perfectly forecasted but instead should be
considered random or uncertain. Optimization un-
der uncertainty refers to this branch of optimization
where there are uncertainties involved in the data
or the model, and is popularly known as Stochastic
Programming or stochastic optimization problems.
In this terminology, stochastic refers to the random-
ness, and programming refers to the mathematical
programming techniques like LP, NLP, IP, MILP,
and MINLP. In discrete (integer) optimization, there
are probabilistic techniques like Simulated Anneal-
ing and Genetic Algorithms; these techniques are
sometimes referred to as the stochastic optimization
techniques because of the probabilistic nature of the
method. In general, however, Stochastic Program-
ming and stochastic optimization involves optimal
decision making under uncertainties.

2. Types of Problems and Gener-

alized Representation

The need for including uncertainty in complex deci-
sion models arose early in the history of mathemat-
ical programming. The first model forms, involving
action followed by observation and reaction (or re-
course), appear in [2, B]. The commonly used ex-
ample of a recourse problem is the news vendor or
the newsboy problem described below. This prob-
lem has a rich history that has been traced back to
the economist Edgeworth [4], who applied a variance



to a bank cash-flow problem. However, it was not
until the 1950s that this problem, like many other
OR/MS models seeded by the war effort, became a
topic of serious and extensive study by academicians

).

Example: The simplest form of a stochastic pro-
gram may be the news vendor (also known as the
newsboy) problem. In the news vendor problem, the
vendor must determine how many papers (z) to buy
now at the cost of ¢ cents for a demand which is un-
certain. The selling price is s, cents per paper. For
a specific problem, whose weekly demand is shown
below, the cost of each paper is ¢ = 20 cents and
the selling price is s, = 25 cents. Solve the problem,
if the news vendor knows the demand uncertainties
but does not know the demand curve for the com-
ing week a-priori (Table [[[). Assume no salvage value
s = 0, so that any papers bought in excess of demand
are simply discarded with no return.

Table 1: Weekly demand and its uncertainties.

‘Weekly demand Uncertainty

i | Day Demand | j | Demand | Probability
(di) (d5) (ps)

1 | Monday 50 1 50 5/7

2 | Tuesday 50 2 100 1/7

3 | Wednesday 50 3 140 1/7

4 | Thursday 50

5 | Friday 50

6 | Saturday 100

7 | Sunday 140

Solution: In this problem, we want to find how
many papers the vendor must buy (x) to maximize
the profit. Let r be the effective sales and w be
the excess which is going to be thrown away. This
problem falls under the category of Stochastic Pro-
gramming with recourse where there is action (z),
followed by observation (profit), and reaction (or re-
course) (r and w). We know that any papers bought
in the excess are just thrown away. It is obvious
that we should minimize the waste but increase the
sales. Our first instinct to solve this problem is to
find the average demand and find the optimal sup-
ply x corresponding this demand. Since the average
demand from the Table [[ is 70 papers, = 70 should
be the solution. Let us see if this represents the op-
timal solution for the problem. Table B shows the
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observation (profit function) for this action.

Table 2: Supply and profit.

1 | Day Supply, | Profit,
x; cents
1 | Monday 70 -150
2 | Tuesday 70 -150
3 | Wednesday 70 -150
4 | Thursday 70 -150
5 | Friday 70 -150
6 | Saturday 70 350
7 | Sunday 70 350
Average Weekly - - 50

From Table B, it is obvious that if we take the
average demand as the solution, then the news ven-
dor will be making a loss of 50 cents per week. This
probably is not the optimal solution. Can we do bet-
ter? For that we need to propagate the uncertainty
in the demand to see the effect of uncertainty on the
objective function and then find the optimum value
of x. This formulation is shown below.

Maximize Z = Profitayg(u)

T

subject to

1
Profitaye(u) :/ [—cx + Sales(r, w, p(u))]dp
0

= ij Sales(r, w, d;) — cx
J
=Spr; + Swj

Sales(r, w, d;)

where
r; = min(x,d;)
= it » <d;
= d, if « >d;
w; = max(z—dj,0)
=0, if x <d;
= x; —d;, if x; > d;

The above information can be transformed for daily
profit as follows: if di < x < ds,

Profit = —cx +5/7spd1 +1/Tspx +1/7s,z, (1)
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Profit = —cx +5/7spdi +1/Tspdo + 1/Tspz. (2)

Notice that the problem represents two equations
for the objective function, Equations [ and B, mak-
ing the objective function a discontinuous function
and is no longer an LP. Special methods like the L-
shaped decomposition or stochastic decomposition
are required to solve this problem. However, since
the problem is simple, we can solve this problem as
two separate LPs. The two possible solutions to the
above LPsarex = di =50 and x = dy = 100
respectively. This provides the news vendor with an
optimum profit of 1750 cents per week from Equation
[ and with a loss of 2750 cents per week from Equa-
tion B. Obviously Equation [l provides the global
optimum for this problem.

The difference between taking the average value
of the uncertain variable as the solution as com-
pared to using stochastic analysis (propagating the
uncertainties through the model and finding the ef-
fect on the objective function as above) is defined
as the Value of Stochastic Solution, VSS. If we take
the average value of the demand, i.e. x = 70, as
the solution, we obtain a loss of 50 cents per week.
Therefore, the value of stochastic solution, VSS, is
1750 — (—=50) = 1800 cents per week.

Now consider the case where the vendor knows
the exact demand (Table [l)) a-priori. This is the
perfect information problem where we want to find
the solution x; for each day i. Let us formulate the
problem in terms of x;.

Maximize Profit; = —cx; + Sales(r, w, d;)
T
subject to
Sales(r, w, d;) SpTi + sw;
ri = min(z;,d;)
= x;, if z; <d;
= d;, if z;>d;
w; = max(z; —d;,0)
= 0, if z;<d;
= x;—d;, if x;>d;

Here we need to solve each problem (for each 1)
separately, leading to the following decisions shown
in Table B.

Table 3: Supply and profit.

i | Day Supply, | Profit,
€T; cents
1 | Monday 50 250
2 | Tuesday 50 250
3 | Wednesday 50 250
4 | Thursday 50 250
5 | Friday 50 250
6 | Saturday 100 500
7 | Sunday 140 700
Average Weekly - 2450

One can see that the difference between the two
values, (1) when the news vendor has the perfect in-
formation and (2) when he does not have the perfect
information but can represent it using probabilistic
functions, is the Expected Value of Perfect Infor-
mation, EVPI. EVPI is 700 cents per week for this
problem.

The literature on optimization under uncertainties
very often divides the problems into categories such
as “wait and see”, “here and now” and “chance con-
strained optimization” [B, [7].
wait until an observation is made on the random el-
ements, and then solve the deterministic problem.
The last formulation described in terms of prob-
lem under perfect information, falls under this cate-
gory. This is similar to the “wait and see” problem
of Madansky [R], originally called “Stochastic Pro-
gramming” by Tintner [d], is not in a sense, one of
decision analysis. In decision making, the decisions
have to be made “here and now” about the activity
levels. The “here and now” problem involves opti-
mization over some probabilistic measure— usually
the expected value. By this definition, chance con-
strained optimization problems can be included in
this particular category of optimization under un-
certainty. Chance constrained optimization involves
constraints which are not expected to be always sat-
isfied; only in a proportion of cases, or “with given
probabilities”.

In “wait and see” we

These various categories require different methods
for obtaining their solutions. As stated earlier, we
can easily divide these problems into two main cat-
egories (1) here and now problems, and the (2) wait
and see problems. It should be noted that many



problems have both here and now, and wait and see
problems embedded in them. The trick is to divide
the decisions into these two categories and use a cou-
pled approach.

Here and Now Problems: The “here and now”
problems require that the objective function and
constraints be expressed in terms of some proba-
bilistic representation (e.g. expected value, variance,
fractiles, most likely values). For example, in chance
constrained programming, the objective function is
expressed in terms of expected value, while the con-
straints are expressed in terms of fractiles (proba-
bility of constraint violation), and in the Taguchi’s
off-line quality control method [I0], the objective is
to minimize variance. These problems can be classi-
fied as here and now problems.

The “here and now” problem, where the decision
variables and uncertain parameters are separated,
can then be viewed as:

Optimize J = Pi(j(z,u)) (3)

subject to

Py(h(z,u)) =0
Ps(g(z,u) >0) > «

where u is the vector of uncertain parameters and
P represents the cumulative distribution functional
such as the expected value, mode, variance, or frac-
tiles.

Unlike the deterministic optimization problem, in
stochastic optimization one has to consider the prob-
abilistic functional of the objective function and con-
straints. The generalized treatment of such problems
is to use probabilistic or stochastic models instead of
the deterministic model inside the optimization loop.

Figure [la represents the generalized solution pro-
cedure, where the deterministic model is replaced
by an iterative stochastic model with sampling loop
representing the discretized uncertainty space. The
uncertainty space is represented in terms of the mo-
ments like the mean, fractiles, or the standard de-
viation of the output. In chance constrained for-
mulation, the uncertainty surface is translated into
input moments, resulting in an equivalent determin-
istic optimization problem. This is discussed in the
next section.

Wait and See: In contrast to here and now prob-
lems, which yield optimal solutions that achieve a
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Figure 1: Pictorial representation of the stochastic
programming framework.

given level of confidence, wait and see problems in-
volve a category of formulations that shows the ef-
fects of uncertainty on optimum design. A wait and
see problem involves deterministic optimal decision
at each scenario or random sample, equivalent to
solving several deterministic optimization problems.
The generalized representation of this problem is
given below.

(4)

Optimize Z = z(z,ux)
subject to

h(z,ux) =0
9(x,ux) <0

where ux is the vector of values of uncertain variables
corresponding to each scenario or sample. This op-
timization procedure is repeated for each sample of
uncertain variables u and a probabilistic representa-
tion of the outcome is obtained.
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Figure b represents the generalized solution pro-
cedure, where the deterministic problem forms the
inner loop, and the stochastic modeling forms the
outer loop. The difference between the two solutions
obtained using the two frameworks is the Expected
Value of Perfect Information (EVPI). The concept of
EVPI was first developed in the context of decision
analysis and can be found in classical references such
as [[1]. From Figures [l it is clear that by simply in-
terchanging the position of the uncertainty analysis
framework and the optimization framework, one can
solve many problems in stochastic optimization and
Stochastic Programming domain [I]. Recourse prob-
lems with multiple stages involve decisions that are
taken before the uncertainty realization (here and
now) and recourse actions which can be taken when
information is disclosed (wait and see). These prob-
lems can be solved using decomposition methods.

As can be seen from the above description, both
here and now and wait and see problems require
representation of uncertainties in the probabilistic
space and then the propagation of these uncertain-
ties through the model to obtain the probabilistic
representation of the output. This is the major dif-
ference between stochastic and deterministic opti-
mization problems. Is it possible to propagate the
uncertainty using moments (like mean and variance),
thereby obtaining a deterministic representation of
the problem? This is the basis of the chance con-
strained programming method, developed very early
in the history of optimization under uncertainty,
principally by Charnes and Cooper [1Z].

3. Chance Constrained Program-

ming Method

In the chance constrained programming (CCP)
method, some of the constraints likely need not hold
as we had assumed in earlier problems. Chance con-
strained problems can be represented as follows:

Optimize J = Pi(j(z,u)) = E(z(z,u)) (5)

subject to
P(g(z) <u) < a

(6)
In the above formulation, equation B is the chance

constraint. In chance constraint formulation, this
constraint (or constraints) is (are) converted into a

deterministic equivalent under the assumption that
the distribution of the uncertain variables, u, is a
stable distribution. Stable distributions are such
that the convolution of two distribution functions
F(x — my/v1) and F(x — mg/ve) is of the form
F(xz —dmu/v), where m; and v; are two parameters
of the distribution [[3]. Normal, Cauchy, Uniform,
and Chi-square are all stable distributions that allow
the conversion of probabilistic constraints into deter-
ministic ones. The deterministic constraints are in
terms of moments of the uncertain variable u (in-
put uncertainties). For example, if the constraint
¢ in equation B has a cumulative probability distri-
bution F' then the deterministic equivalent of this
constraint is given below. Deterministic equivalent
of the chance constraint B:

g(z) < F~Y(a) (7)

where F~! is the inverse of the cumulative distribu-
tion function F.

The major restrictions in applying the CCP for-
mulation include that the uncertainty distributions
should be stable distribution functions, the uncer-
tain variables should appear in the linear terms in
the chance constraint, and that the problem needs
to satisfy the general convexity conditions. The ad-
vantage of the method is that one can apply the
deterministic optimization techniques to solve the
problem.

4. Uncertainty Analysis and Sam-

pling

The probabilistic or stochastic modeling (Figure [I))
iterative procedure involves:

1. Specifying the uncertainties in key input param-
eters in terms of probability distributions.

2. Sampling the distribution of the specified pa-
rameter in an iterative fashion.

3. Propagating the effects of uncertainties through
the model and applying statistical techniques to
analyze the results.

4.1 Specifying Uncertainty Using Proba-
bility Distributions

To accommodate the diverse nature of uncertainty,
the different distributions can be used. The type



of distribution chosen for an uncertain variable re-
flects the amount of information that is available.
For example, the uniform and log-uniform distribu-
tions represent an equal likelihood of a value lying
anywhere within a specified range, on either a linear
or logarithmic scale, respectively. Further, a nor-
mal (Gaussian) distribution reflects a symmetric but
varying probability of a parameter value being above
or below the mean value. In contrast, lognormal and
some triangular distributions are skewed such that
there is a higher probability of values lying on one
side of the median than the other. Once probability
distributions are assigned to the uncertain parame-
ters, the next step is to perform a sampling oper-
ation from the multi-variable uncertain parameter
domain.

4.2 Sampling Techniques

One of the most widely used techniques for sampling
from a probability distribution is the Monte Carlo
sampling technique, which is based on a pseudo-
random generator used to approximate a uniform
distribution (i.e., having equal probability in the
range from 0 to 1). The specific values for each input
variable are selected by inverse transformation over
the cumulative probability distribution.

Importance Sampling: Crude Monte Carlo
methods can result in large error bounds (confi-
dence intervals) and variance. Variance reduction
techniques are statistical procedures designed to re-
duce the variance in the Monte Carlo estimates
[T4]. Importance sampling, Latin Hypercube Sam-
pling (LHS) [I5, 6], Descriptive Sampling [['7], and
Hammersley Sequence Sampling [IR] are examples of
variance reduction technique. In importance Monte
Carlo sampling, the goal is to replace a sample using
the distribution of v with one that uses an alterna-
tive distribution that places more weight in the areas
of importance. Obviously such a distribution func-
tion is problem dependent and is difficult to find.
The following two sampling methods provide a gen-
eralized approach to improve the computational ef-
ficiency of sampling.

Latin Hypercube Sampling: The main advan-
tage of Monte Carlo method lies in the fact that
the results from any Monte Carlo simulation can be
treated using classical statistical methods; thus re-
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sults can be presented in the form of histograms,
and methods of statistical estimation and inference
are applicable. Nevertheless, in most applications,
the actual relationship between successive points in
a sample has no physical significance; hence the ran-
domness/independence for approximating a uniform
distribution is not critical [T9]. Once it is apparent
that the uniformity properties are central to the de-
sign of sampling techniques, constrained or stratified
sampling techniques become appealing [20].

Latin hypercube sampling [I5, [6] is one form of
stratified sampling that can yield more precise esti-
mates of the distribution function. In Latin hyper-
cube sampling, the range of each uncertain parame-
ter X; is sub-divided into non-overlapping intervals
of equal probability. One value from each interval is
selected at random with respect to the probability
distribution in the interval. The n values thus ob-
tained for X; are paired in a random manner (i.e.,
equally likely combinations) with n values of Xa.
These n values are then combined with n values of
X3 to form n-triplets, and so on, until n k-tuplets
are formed. In median Latin Hypercube sampling
(MLHS) this value is chosen as the mid-point of the
MLHS is similar to the descriptive sam-
pling described by [7]. The main drawback of this
stratification scheme is that it is uniform in one di-
mension and does not provide uniformity properties
in k-dimensions.

interval.

Hammersley Sequence Sampling: Recently,
an efficient sampling technique (Hammersley se-
quence sampling) based on Hammersley points has
been developed by Kalagnanam and Diwekar|Ig],
which uses an optimal design scheme for placing the
n points on a k-dimensional hypercube. This scheme
ensures that the sample set is more representative
of the population, showing uniformity properties in
multi-dimensions, unlike Monte Carlo, Latin hyper-
cube, and its variant, the Median Latin hypercube
sampling techniques. The paper by Kalagnanam
and Diwekar|[[[8] provides a comparison of the perfor-
mance of the Hammersley sampling (HSS) technique
to that of other techniques. It was found that the
HSS technique is at least 3 to 100 times faster than
LHS and Monte Carlo techniques and hence is a pre-
ferred technique for uncertainty analysis as well as
optimization under uncertainty.
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4.3 Sampling Accuracy and Different
Algorithms

As stated earlier, the Stochastic Programming for-
mulations often include some approximations of the
underlying probability distribution. The disadvan-
tage of sampling approaches that solve the ~-th ap-
proximation completely is that some effort might
be wasted on optimizing when approximation is
not accurate [ZI]. For specific structures where
the L-shaped method is applicable, two approaches
avoid these problems by embedding sampling within
another algorithm without complete optimization.
These two approaches are the method of Dantzig[22]
which uses importance sampling to reduce variance
in each cut based on a large sample, and the stochas-
tic decomposition method proposed by Higle and
Sen[23]. Please refer to article by Dr. Rico-Ramirez
on stochastic linear programming for details.

In almost all stochastic optimization problems, the
major bottleneck is the computational time involved
in generating and evaluating probabilistic functions
of the objective function and constraints. The accu-
racy of the estimates for the actual mean (u) and the
actual standard deviation (o) is particularly impor-
tant to obtain realistic estimates of any performance
or economic parameter. However, this accuracy is
dependent on the number of samples. The number of
samples required for a given accuracy in a stochastic
optimization problem depends upon several factors,
such as the type of uncertainty, and the point val-
ues of the decision variables[?d]. Especially for opti-
mization problems, the number of samples required
also depends on the location of the trial point solu-
tion in the optimization space. Figure B shows how
the shape of the surface over a range of uncertain
parameter values changes since one is at a differ-
ent iteration (different values of decision variables)
in the optimization loop. Therefore, the selection of
the number of samples for the stochastic optimiza-
tion procedure is a crucial and challenging problem.
A combinatorial optimization algorithm that auto-
matically selects the number of samples and provides
the trade-off between accuracy and efficiency is pre-
sented in the article by Dr. Ki-Joo Kim in this issue.

Cost
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Figure 2: Uncertainty space at different optimization
iterations.

5. Summary

The problems in optimization under uncertainty
involve probabilistic objective function and con-
straints. These problems can be categorized as (1)
here and now problems, and (2) the wait and see
problems. Many problems involve both here and
now, and wait and see decisions. The difference in
the solution of these two formulations is the expected
value of perfect information (EVPI). Recourse prob-
lems normally involve both here and now, and wait
and see decisions and hence are normally solved by
decomposition strategies like the L-shaped method.
The major bottleneck in solving stochastic optimiza-
tion (programming) problems is the propagation of
uncertainties. In chance constrained programming,
the uncertainties are propagated as moments, result-
ing in a deterministic equivalent problem. However,
chance constrained programming methods are appli-
cable to a limited number of problems. A generalized
approach to uncertainty propagation involves sam-
pling methods that are computationally intensive.
New sampling techniques like the Hammersley Se-
quence sampling reduce the computational intensity
of the sampling approach. Sampling error bounds
can be used to reduce the computational intensity of
the stochastic optimization procedure further. This
strategy is used in some of the decomposition meth-
ods and in the stochastic annealing algorithm de-
scribed in the next two articles. For stochastic non-
linear problems, a new algorithm called Better Opti-
mization of Nonlinear Uncertain Systems (BONUS)
is also presented in the last article by Dr. Kemal
Sahin.
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Two-Stage Stochastic Linear
Programming: A Tutorial

Vicente Rico-Ramirez
Instituto Tecnologico de Celaya, Mexico

(vicente@iqcelaya.itc. mx)El

1. Introduction

There is a huge body of literature on stochastic lin-
ear programming including surveys and numerous
articles (e.g., [2, B, B]). The main class of stochastic
linear problems with recourse (SLPwR) involves two
stages. In the first stage, the choice of the decision
variable x is made. In the second stage, following
the observation of the value of u and the evaluation
of the objective function, a corrective action (repre-
sented by the second stage decisions, v) is suggested.

The standard mathematical form of a SLPwR
problem is given by Equations () and (B). Equa-
tion ([]) is referred as the first stage problem :

Min cf'z+Q(z)
Az a'b
>0

s. t.

(1)

where A is a coefficient matrix, c is a coeflicient vec-
tor, « is used to represent any of =,> or <, Q(z) is
the recourse function defined by Q(z) = E,[Q(x, u)],
and Q(z,u) is obtained from the second stage prob-
lem, Equation (f):

Q(z,u) = Min ¢ (u)v
s.t. W(u)v a h(u)—T(u) z (2)

1Visiting scientist, CUSTOM, Carnegie Mellon University.
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v>0

where ¢ is a coefficient vector and W, h and T are
coefficient matrices which in principle might depend
on the random variables u. The matrix W is of par-
ticular interest and is known as the recourse matrix.

Observe that the problem given by Equation ([)
has linear constraints and a convex objective func-
tion, so that there is a rather complete optimiza-
tion theory with necessary and sufficient conditions.
However, SLPwR problems are difficult to solve since
in general it is very demanding to generate evalua-
tions of the recourse function (Q(x)) and its gradi-
ent. Some of the difficulties disappear when the re-
course structure is simple, as in problems with fixed
and complete recourse. Fixed recourse means that
the recourse matrix, W, is independent on u (sim-
ply a coefficient matrix), whereas complete recourse
means that any set of values that we choose for the
first stage decisions, x, leaves us with a feasible sec-
ond stage problem.

The two main algorithms for stochastic linear
programming with fixed recourse are the L-Shaped
method [0, 2] and the Stochastic Decomposition al-
gorithm (SD) [4, 5]:

1. The L-Shaped method is used when the random
variables of the problem are described by dis-
crete distribution functions. As a result, ex-
act computations for the lower bound of the
recourse function are possible.

2. On the other hand, the SD algorithm uses sam-
pling when the random variables are repre-
sented by continuous distribution functions.
As a result, estimations for the lower bound
of the recourse function are based on expecta-
tion.

2. Feasibility and Optimality Cuts
Both of the algorithms (L-Shaped and SD) are based
on the addition of linear constraints (known as cuts)
to the first stage problem. Hence, there are two types
of cuts successively added during the solution proce-
dure: Feasibility cuts and optimality cuts.

A feasibility cut is a linear constraint which en-
sures that a first stage decision is second stage fea-
sible. Notice that a complete recourse problem does

not need the addition of feasibility cuts. There ex-
ists a formal notation to indicate that any decision
we take on the first stage should leave us with a sec-
ond stage problem which is feasible:

Min
s. t.

'z +Qx)

x € (K1NKo) (3)

where the set K; contains any possible decisions
which satisfy the constraints of the first stage, while
the set K9 contains those decisions which are second
stage feasible. That is, K1 = { z| Az =b, z> 0}
and Ko = { z|Q(z)< oo}. Very often, the problem
in Equation B is reformulated as:

Min lr+0
s. t. Q(x) <0
xr € (Kl ﬂKQ) (4)

On the other hand, an optimality cut is a linear
approximation of Q(x) on its domain of finiteness,
and is determined based on the dual of the second
stage problem. As such, each optimality cut provides
a lower bound (linear support) on Q(x). The dual
of the second stage problem defined by Equation (B)
is given by:

Max nl (h — Tx)
s.t. W <q

()

where the dual variables, 7, corresponds also to the
lagrange multipliers of the problem given by Equa-
tion (). Next we show how these types of cuts are
derived ([2]).

2.1 Optimality Cut

Assume that we are solving a SLPwR with either
the L-Shaped or the SD method. Assume also that
we are performing the v — th iteration of the algo-
rithm which considers the k — th realization of the
random variables. Using the duality theorem, the
value of the objective function of the second stage
problem would be given by:

Q(z",uF) =

and therefore, because of convexity:

()" (e — T, 2") (6)

Qx,u*) > (w{)" (b — Ty x) (7)
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If we consider now a discrete distribution for u (L-
Shaped method) and assume that the probability for
the k — th realization of u to happen is pg, then
the expected value of the objective function given
by Equation (B) is:

Q") = B Q(z",u")] = E[(m})T (hy — Tya")]
=S o [(@)T (b — Tia”)]  (8)

Hence, also because of convexity:

K
Q(ﬂC)ZZPk ()" (h — T 2)] (9)
=1

Finally, by defining

K

K
9= ()" b, G = pe(r))" Ti
k=1 k=1

and recalling that 6 > Q(z), then by substituting g
and G in Equation (J), we get the optimality cut as
a result:

Gz +0>g (10)

2.2 Feasibility cut

As explained above, the role of a feasibility cut is to
ensure that a first stage decision is second stage feasi-
ble. A first stage decision x¥ is second stage feasible
if a finite vector v exists such that the constraints of
the second stage problem are satisfied. To test for
the feasibility of such constraints, one can solve the
problem:

z= Min el (v + v7)
s.t. Wo 4+ vt — o =
v>0,v7>0,v7 >0

h —T 2'(11)

or its equivalent dual:

z= Max ol (h — T z")
ol W <0

lo| <e

s. t.

(12)

where e is the vector of ones. Note that the prob-
lem given by Equation ([d]) comes from the modifi-
cation of the second stage problem by adding the
positive variables vt and v~. Clearly, 2>0. If
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z = 0, it means that the second stage constraints
are satisfied and, therefore, ¥ is second stage fea-
sible. However, if z > 0, then the original second
stage problem is infeasible (and its dual unbounded).
Hence, the second stage problem is infeasible because
z = (¢¥)T (h — T %) is greater than zero (recall
the duality theorem). Therefore, in order to ensure
the feasibility of the second stage problem, the con-
straint:

(@) (h = Ta)<0 (13)
must be added. If for some k — th realization of the
random variable the second stage problem is infeasi-
ble, then, according to Equation ([[J), we define:

D= ("' Ty, d= ()" hy
in order to obtain the feasibility cut:

Dzx>d

3. SLPwR Algorithms

In this section the algorithmic steps of the L-Shaped
method and the SD method are given.

3.1 L-Shaped Algorithm

The steps of the L-Shaped method are the following
([2]):
e StepO0Setr=s=v=0

e Step 1 Set v = v + 1 and solve the so called
Current Problem (CP)

Min lr+6
s. t. Axr = b
Dy x > d l=1---r
Gix +0>¢g l=1---5

Let ¥ and 0¥ be the optimal solution. If not
optimality cuts exist (s = 0), set # = —oo and
do not consider it in CP.

e Step 2 For k =1 --- K (K is the number of
discrete realizations) solve the problem:

. T _
z= Min €' (vf + v;)
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s.t. Wy +v,j — v, =

v >0, ’U;ZO, v, >0

If for any k the optimal value is z > 0, add a
feasibility cut, set » = r + 1 and return to Step
1. Otherwise go to Step 3. The feasibility cut
is given by

Dyyy x> dry

where D, 41 = (o¥)T Ty, dry1 = (0})" hy, and
oy are the Lagrange multipliers of the above
problem.

e Step 3 For k=1 --- K solve the problem:

Min q,{ Vi
s.t. Wwo, = hy =Ty 2"
v >0

(or its dual) to calculate the Lagrange multipli-
ers 7y and define:

K

gst1 = Y pr(m)" Iy (15)
k=1
K

Gepr = Y _pe(mp)" T, (16)
k=1

u o= gs+1 — Gs+1 x”

If 0¥ > u”, stop, z¥ is the optimal solution. Oth-
erwise, add the optimality cut:

0" > gs+1 — Gs+1 x

Set s = s+ 1, and return to Step 1.

3.2 SD Algorithm

In the SD algorithm, it is necessary to sample at each
iteration from a continuous probability distribution.
For that reason, the estimation of the lower bound
of Q(x) is based on expectation. In the L-Shaped
algorithm, the optimality cut is calculated in terms
of Equations ([f) and (L[g). On the other hand, in
the SD algorithm it is calculated in terms of:

1< T 1 < -
v _ v v __ vl
g I/E (Wk) i, G I/E (ﬂ—k) k

k=1 k=1

hk —Tk z¥

11

where v is the number of samples (which is equal to
the number of iterations). The algorithm presented
here corresponds to that provided by [5]. Higle and
Sen [4, 5] assume complete recourse (no feasibility
cuts are needed) and provide a simplification involv-
ing a restricted solution set for the dual of the second
stage problem in order to decrease the computational
effort. The steps of that algorithm are given next.

e Step 0 Set v = 0, Vo = {0}, 6 = —o00. z!is
assumed as given.

e Step 1 Set ¥ = v 4+ 1 and sample to generate
an observation u” independent of any previous
observation.

e Step 2 Determine the coefficients of a piecewise
linear approximation to Q(x):

a) Solve the program

Max 7% (h, — T, V)
s. t. ' W < q
to find the values of the vector m, 7/, and
make V, =V,_; Uy,
b) Get the coefficients of the optimality cut

1 v v

v v 12 1 v
g = -2 e GY= 23 (w)" T

k=1 k=1

where 77/ is the solution to the problem (for
all k|k # v):

Max 7«7 (h — Ty z¥)
s. t. T eV,

Observe that the solution vector to this
problems can only be one of the vectors
already included in the set of solutions, V,,
(the solution set is restricted to decrease
effort).

c) Update the coefficients of previous cuts

v—1

Gy ==Lart k=1-v-1
e Step 3 Solve
Min e+ 67
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s. t. Axr = b

0 +Glr>g; k=1---v
to obtain 2. Go to Step 1

e The algorithm stops if the change in the objec-
tive function is small or if no new dual vectors
are added to the set of dual solutions, V.

4. Illustrative Examples

This section presents in detail the beginning of the
solution procedure of two illustrative examples in or-
der to show the application of both of the algorithms.

4.1 L-Shaped Method

The example consists on solving the problem:

Min —0.75z + E,[Q(z, u)]

s. t. x <5 (17)
x>0
where
Q(z,u) =Min —wv; +3vy +v3 +vg
s.t. —wv1 +vy —v3 +vg = u—l—%x
—v vy +vz —vg = 1+ utga
U1, V2, U3, 04>0 (18)

and u is defined by a uniform discrete distribution,
with K = 11 realizations between 0 and -1 {0,-0.1,-
0.2,-0.3,-0.4,-0.5,-0.6,-.07,-0.8,-0.9,-1.0}. Each real-
ization has a probability pr, = 1/11. The dual of the
second stage problem, Equation ([[§), is given by:

Q(z,u) = Max m(u+ g2) + 721 +u+ )
s. t. — M —7('23_1

m 4+ m <3

—m +m <1

m o —m <1 (19)

Solution

e Step0r=s=v=0
o Step 1 v =1, #' = —oo. Solve:

Min —-0.75x
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s.t. x<5H
x>0

the solution is ! = 5.

e Step 2 For k=1 --- K solve:

z = Min ”:1 +v,j2 +ug + U,
s.t. —vp1 +vger —vk3 +Uka + ”1—:1
—vg; = uF+ 12!
—Ug1 +Vk2 + U3 — Uka + ’U];B
v = 1+ uF+ 12t
Uk, Vk2, Uk3, Vpa>0
U1 Vg Vi1 Vga =0 (20)

Recall that ' = 5. For instance, for k = 1,
uF = 0 (first discrete value), then problem (R0)
would become:

z=Min of] +vfy +vy; +vp
s.t. —vi1 +vi2 —viz +vg + Uf—l
vy, = 2.5
—v11 +vi2 +v13 —vi4 + Ufrg
—v, = 2.25
V11, V12, V13, V14>0

VI U, 1, V120 (21)

The solution to (2I]) is z = 0. The results of all
of the problems (k = 1---11) are summarized in
Table . Variables not shown are equal to zero.
Observe that no feasibility cuts are needed in
this iteration (z = 0 in all of the cases). As
a matter of fact, the example used here is a
problem with complete recourse.

e Step 3 For k=1 --- K solve:

z=Min —vg1 + 3vks + Vi3 + Vs
s.t. —vg1 + U2 — Vg3 +URg =
uk + % x!
Vg1 +tUk2 + U3 —Upa =
14+ uF+ % x!
Uk1, Vk2, Vg3, Vpa>0 (22)

Recall that ' = 5. For instance, for k = 1,
uF = 0, then Equation (R9) would become:

z=Min —wv11 +3v12 +vi3 + V14
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Table 1: Determining feasibility of the second stage.

k uk Zk Vk2 Vk4
1 0 0 | 2.375 | 0.125
2 1-0.11] 0 | 2275 | 0.125
3 1-021] 0 | 2175 | 0.125
4 |-03] 0 | 2.075 | 0.125
5 1-041] 0 1.975 | 0.125
6 | -0.5| 0 | 1.875 | 0.125
7 1-061] 0 | 1.775 | 0.125
8 | -0.7] 0 | 1.675 | 0.125
9 |-0.8] 0 1.575 | 0.125
10| -09 | 0 1.475 | 0.125
11 (-1.0| 0 1.375 | 0.125
s.t. —v1 +vi2 —viz +vie = 2.5

—v11 +vig +vi3 —vig = 2.25

V11, V12, V13, 014>0 (23)
The solution to Equation (B3) is z = 3.5, v =
2.375, vi4 = 0.125, 7}, = 2, % = 1. The
results of all of the problems (k = -11) are

summarized in Table B.
Recall that pr = 1/11. Also note that, for in-
stance,
()" h = 7wy (uh) +7ip (1 + uh)
()" v = mfy (=5) +7ly (—3)
so that g1 = —0.5 and G; = 1.25. Therefore,

the optimality cut is 6> — 0.5 + 1.2x. Now we
return to Step 1 and begin another iteration.

e Step 1 v = 2. Solve:

Min —0.75z + 6
s. t. r <5
0> —-05+ 125« (24)
x>0

The solution is 22 = 0 and 62 = -0.5. The proce-
dure continues until optimal solution. The solu-
tion to the problem is z = 0.533 and 6 = 1.142.

4.2 Stochastic Decomposition

The example consists of solving again the problem
defined by Equations ([7) and (L[§). However, u is

13

Table 2: Obtalmng an optlmahty cut

k ’U,]C Z Vk2 Vka ﬂ—kl 7Tk2
1 0 3.5 | 2375 | 0.125 2 1
2 1-0.11 3.2 2275 | 0.125 2 1
3 1-021]29] 2175 | 0.125 2 1
4 1-0.3126 | 2075 | 0.125 2 1
5 |-041 23| 1975 | 0.125 2 1
6 |-0.51]20 ]| 1875 | 0.125 2 1
7 |-06 | 1.7 | 1.775 | 0.125 2 1
8 [-0.7] 14| 1.675 | 0.125 2 1
9 | -08] 1.1 | 1.575 | 0.125 2 1
10 | -0.9 | 0.8 | 1.475 | 0.125 2 1
11 | -1.0 | 0.5 | 1.375 | 0.125 2 1

now defined by a uniform continuous distribution
(—1,0), so that sampling is necessary. Here, a single-
dimension uniform sampling is used.

Solution. Iteration 1

e Step0v=0,0"=—o0, Vo= {0}, 2! =0
e Step 1 v = 1. From the sampling, u' = —0.3.

e Step 2
a) Solve the problem

Max iy (ul 4+ 321) + 7l (1 + u! + Lat)
= —03nmh + 077,
st —mh —mh < —1
T+ Ty <3
—my 7y <1
T — Ty <1
The solution is 71 = [71; 7|7 = [1 2]T.
Set Vi =Vouni = {(1,2)}
b) Coefficients of the cut for the first iteration

The resulting cut is then gi —Glz = 1.1+x.

¢) No updating of cuts is necessary in the first
iteration.
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e Step 3 Solve:

Min —0.75z + 6!
s. t. r <5
' > 1.1 + =«
>0

The solution is 22 = 0 and ! = 1.1.

Iteration 2

e Step 1 v = 2. From sampling u? = —0.9. Recall
2?2 =0 and u!' = —0.3.

e Step 2
a) Solve the problem:

Max 73, (u? + $22) + 73, (1 4+ u? + 12?)

= —0973 + 017

s.t. —m3 —mh,< —1
T3+ m5 <3
—73) +mh <1
T3 T <1
The solution is 7% = [3; 72]7 = [0 1]T.

Set Vo = Vi Und = {(1,2),(0,1)}

b) Get the coefficients of the cut for the sec-
ond iteration. It is necessary to calculate
72 by using the first sample u'. Solve:

Max 77 (u! + $22) + 7, (1 4+ u! + 12?)
= —0.77% + 0.3 7%

s.t. 7 € Vo=m}€{(1,2),(0,1)}

The solution is 7} = [73; 75T = [1 2]T.
Then, the coefficients of the optimality
cut for the second iteration are g5 =
${[1(-0.3)+2(0.7)] +[0(—0.9) +1(0.1)]} =
0.6 and G3 = 5{[1(—5)+2(=7)]+[0(—3)+
1(—1)]} = —0.625

The resulting cut is then g3 — G3x = 0.6 +
0.625zx.

c) Update previous cuts

gi =191 =055, G =1G{ =05
g3 — G2z = 0.55+ 0.5z

SIAG/OPT Views-and-News

e Step 3 Solve the problem:

Min
s. t.

—0.75x + 602
r <5
6?2 > 0.55 + 0.5z
6?2 > 0.6 + 0.625z
x>0

the solution is 23 = 5 and 6% = 3.725. The pro-
cedure continues in the same way. The solution
to the problem after 1000 samples is x = 0.4646
and 6 = 1.077744.

5. Conclusion

This article presented the fundamentals and a de-
scription of the two main algorithms for solving
SLPwR problems: The L-Shaped method and the
Stochastic Decomposition method. Two examples
were used to illustrate in detail the application of
each of the algorithms.
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1. Introduction

Stochastic integer programming (SIP) refers to that
branch of integer programming problems where
there are uncertainties involved in the data or model.
The main difficulty of stochastic programming
stems from evaluating the uncertain functions and
their expectations. A common method to propagate
the uncertainties is to use a sampling method, and
a generalized stochastic framework for solving op-
timization under uncertainty problems involves two
recursive loops: (1) the inner sampling loop and (2)
the outer optimization loop (Figure [ll). Since prop-
agating uncertainties and evaluating the uncertain
functions are computationally very intensive, this
article presents a computationally efficient SIP al-
gorithm based on a new sampling method, called
Hammersley sequence sampling (HSS), in the inner
sampling loop and the interaction between the inner
sampling loop and the outer optimization loop.

Optimal
Design < / Optimizer
Probabilistic \ .
Lo . Decision
objective function variables
& Constraints /(/ s
\ Stochastic
/7/ Modeler \
Objective function Uncertain
& Constraints variables
Model

Figure 1: Pictorial representation of stochastic pro-
gramming framework.

2. Stochastic Annealing - Theory

The stochastic annealing (STA) algorithm [1, 2, 7]
is a variant of the simulated annealing [6], and is an

'Research supported by the National Science Foundation
Goali Project (CTS-9729074).
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algorithm designed to efficiently optimize stochas-
tic integer programming problems. In the stochas-
tic annealing algorithm, the optimizer not only ob-
tains the decision variables but also the number of
samples required for the stochastic model. Further-
more, the stochastic annealing algorithm reduces the
CPU time by balancing the trade-off between com-
putational efficiency and solution accuracy by the
introduction of a penalty function in the objective
function. This is necessary, since at high tempera-
tures the algorithm is mainly exploring the solution
space and does not require precise estimates of any
probabilistic function. The algorithm must select a
greater number of samples as the solution nears the
optimum.

Annealing temperature schedule (more precisely,
cooling schedule) is used to decide the weight (b(t))
on the penalty term for imprecision in the proba-
bilistic objective function. The choice of a penalty
term also depends on the error bandwidth (€) of the
function that is optimized, and must incorporate the
effect of the number of samples. The new objective
function in stochastic annealing therefore consists of
a probabilistic objective value P and the penalty
function (b(t)e), which is represented as follows:

min Z(cost) = P(x;u) + b(t)e. (1)

The weighting function b(t) can be expressed in
terms of the temperature levels (), and is given by
b(t) = b,/k' where b, and k are constants. The error
bandwidth of the MCS samples (epcs) is estimated
from the central limit theorem while the error band-
width of the HSS samples (epgg) is determined from
a fractal dimension analysis [2, 3.

3. Efficiency Improvements in the

HSTA Algorithm

As SA is a probabilistic method, several random
probability functions are involved in this algorithm.
The random probability A;; is used for acceptance
determination in Metropolis criterion while the ran-
dom generation probabilities G;; are used to gener-
ate subsequent configurational moves. It is known
that SA is affected little by the use of different ac-
ceptance probability distributions [8]. However, Gj;
for generating configuration j from ¢ can significantly
affect the overall efficiency of the annealing process.
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Figure 2: G;; from MCS and HSS.

The G;j of the conventional SA algorithms rely
on pseudo-random number generators such as MCS,
which results in clustered moves over the configura-
tion surface. Therefore, a larger number of moves
or generations are required to cover the whole con-
figuration surface evenly, and this results in a larger
number of moves (i.e., Markov chain length) at each
temperature level. The HSS technique, a quasi-
random number generator, can generate uniform
samples over the k-dimensional hypercube. In this
work, we have used the HSS technique for the gen-
eration probabilities G;; to develop a new SA algo-
rithm called efficient simulated annealing (ESA).

Figure ] shows G;; probabilities of HSS and MCS
for the following test function, f(y) = Z}ﬂl y?. Be-
cause there are 10 elements in the discrete decision
vector y, the ideal probability of selecting any ele-
ment is 0.1, and the value of a selected element can
be randomly bumped up or down with a probability
of 0.5. The circle and cross symbols in this figure
are for the G;; values from HSS and MCS, respec-
tively. Since HSS can generate more uniform sam-
ples in the multivariate space, G;; from HSS is closer
to the ideal probabilities than G;; from MCS. Thus
HSS requires less number of moves to approximate
the ideal probabilities.

Figure B shows trajectories of the objective value
for the test function with different Markov chain
lengths. ESA found the global solution with a
Markov chain length of 45 at each temperature while
the traditional SA exploited a Markov chain length
of 75 to reach the same solution. Thus, ESA provides
a significant reduction in moves at each temperature,
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Figure 3: Objective trajectories of ESA and SA.

and ESA is approximately 30 ~ 54 % more efficient
than the conventional SA [d].

The same idea of using the HSS technique for the
generation probability G;; can be applied to STA.
The efficient stochastic annealing (ESTA) algorithm
integrates the HSS for the generation probability,
but still uses the central limit theorem to evaluate
the sampling errors. A new variant of stochastic an-
nealing, HSTA (Hammersley stochastic annealing),
therefore, incorporates (i) HSS for the generation
probability Gj;, (ii) HSS in the inner sampling loop
for Ngamp determination, and (iii) the HSS-specific
error bandwidth (eygg) in the penalty term.

Table 1: Efficiency improvements.

Stochastic algorithm Total moves
SA + fixed Ngamp 274,200
ESA + fixed Ngamp 170,000
STA 5,670
ESTA 3,265
HSTA 1,793

Test function :

321 (“l Ti —

;N2
= 10) + 52020 (uiy?) — T1;2, cos(dmu; yy)

Table M shows total number of configurational
moves of different stochastic optimization methods.
The first two algorithms are (conventional) stochas-
tic optimization algorithms with a fixed Ngamp while
the last three algorithms are stochastic annealing al-
gorithms with a varying Nsamp. We can see that
there is significant improvement when we use the
STA algorithms instead of the conventional stochas-
tic optimization methods. In addition, HSTA is 68%
more efficient that the basic STA algorithm.



Volume 00 Number 00 January 2002

4. Numerical Example

This section describes step-by-step simulations of the
HSTA algorithm. The test function is

min Y7, (ui % y7)
20 <y <20
u ~ N(0.5,0.16)

(2)

The initial configuration of y is (20,20), and the un-
certainty variable u follows normal distribution with
a mean of 0.5 and a standard deviation of 0.16.8 The
simulation conditions for HSTA are summarized in
the following Table B.

Table 2: HSTA conditions.

Initial temperature 1
Temperature decrement (o) 0.85
Markov chain length (T) 20
Initial Naamp 30
bo 0.005
k 0.940

Step 1 is to generate 20 (i.e., Markov chain length)
sets of six random numbers using HSS. Two random
numbers are used for the G;;, three random num-
bers (Hj) for determining Ngamp, and the A;; for
the Metropolis criteria.

Step 2 is to generate a next configuration. If Gj;1
for random selection is less than 0.5, then y; is se-
lected for random bump. If G2 for random bump
is less than 0.5, then the value of the selected y; is
decreased. If the bumped value resides outside the
bounds, the random bump is increased to the origi-
nal y; value. In this example, since the G;; are 0.2031
and 0.6914, y; is increased to 21. But this is outside
the bounds, and thus y; becomes 19.

Step 3 is to determine Ngamp for trade-off be-
tween efficiency and solution accuracy. To determine
Nsamp, three random numbers (H},) generated by the
HSS technique are used. If Hj is less than 0.5, then
Nsamp + 5 x Hay becomes a new Ngamp. Otherwise,
Nsamp — 5 X Hz becomes a new one. The new Ngamp
is 28.

Step 4 is to generate Ngamp samples for the uncer-
tain variable u using HSS. Then the probabilistic

2The 0.001 and 0.999 quantiles of this distribution are 0
and 1.
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Table 3: Configurations at the first TL.
I | y1 y2 | Gijn Gij2 | Nsamp Penalty | E[z]
0 | 20 20 800.00
1 |19 20 02031 0.6914 28 1.3E-5 | 219.36
2 | 19 19 | 0.8281 0.3580 27 1.4E-5 | 210.86
3 | 18 19 | 0.3281  0.0247 31 1.IE-5 | 196.78
4 | 18 20 | 0.5781 0.9753 35 0.9E-5 | 208.18
5 | 18 19 | 0.0781 0.6420 30 1.2E-5 | 208.06
6 | 18 18 | 0.8906 0.3086 26 1.5E-5 | 189.02
7 | 19 18 | 0.3906 0.8642 21 2.2E-5 | 202.63
19 | 15 16 | 0.3672 0.7160 27 1.4E-5 | 140.30
20 | 14 15 | 0.6172 0.3827 24 1.7E-5 | 121.28

objective, constraints, expected value, and penalty
function are evaluated. The expected value of the
objective is 219.36, and the penalty term is 1.3E-5.
We can see that the penalty term is very small as
compared to the expected value because of a HSS-
specific e.

Step 5 is to determine if the current configuration
is accepted or not based on the Metropolis criterion.
Since AE[z] = E[z|new — F[#]old is negative, the cur-
rent configuration (19,20) is accepted.

Step 6 is to repeat the Steps from 2 to 5 if the
current iteration point is smaller than Markov chain
length. Table B shows this full 20 iterations at the
first temperature level (TL).

Step 7 is to check the stopping criteria and decrease
temperature. If any of the stopping criteria is sat-
isfied, then the simulation is terminated with a suc-
cessful result. Otherwise, the new temperature be-
comes T' = T, and simulation goes back to Step 2.
Table @] shows the simulation results with respect to
the temperature level (TL). The optimum solution
is found at the 10th temperature level. This table
also shows the STA simulation results for compar-
ison. Since MCS is used for the G;; and the error
bandwidth, the STA requires a greater number of
temperature levels (i.e., 15 levels in this table).

5. Conclusion

This article presented hierarchical improvements in
the SA based algorithms for solving large-scale com-
binatorial optimization problems under uncertainty,
and also presented step-by-step example calculations
of the HSTA algorithm. The HSTA algorithm in-
corporates the uniformity property and fast conver-
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Table 4: HSTA and STA simulation results.
HSTA STA with MCS
TL Elz]  b(t)e w1 w2 Elz]  b)e w1y
1 | 121.28 2E5 14 15 | 140.82 0.126 16 15
2 5341 4E5 9 10| 80.92 0.104 13 10
3 1204 4E5 4 5| 3840 0074 10 5
4 000 4E5 0 0| 1699 0040 7 2
5 059 3E5 1 -1 546 0015 4 1
6 059 3E5 1 -1 032 0001 1 0
7 031 3E5 1 0 032 0001 -1 0
8 031 3E5 1 0 032 0001 -1 0
9 031 4E5 1 0 061 0.001 -1 -1
10 000 5E5 0 0 061 0.001 -1 -1
11 061 0.002 -1 -1
12 061 0.002 -1 -1
13 061 0.002 -1 -1
14 061 0.002 -1 -1
15 000 0000 0 O

gence property of the HSS technique, and the error
bandwidth based on the HSS technique. Thus, it is
found that the HSTA algorithm is 68% more efficient
than the conventional STA algorithm. The HSTA
algorithm can be a useful tool for large-scale com-
binatorial stochastic programming problems, and a
real world case study of computer-aided molecular
design under uncertainty can be found in the au-
thor’s paper [5].
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Stochastic Nonlinear Optimization
- The BONUS Algorithm

Kemal H. Sahin
CUSTOM, Carnegie Mellon University, Pittsburgh, PA
15213 (khsahin@andrew.cmu. edu).El

1. BONUS Background

This article describes a new algorithm for the op-
timization of nonlinear, uncertain systems devel-
oped by our research center [1]. General techniques
for these types of optimization problems determine
a statistical representation of the objective, such
as maximum expected value or minimum variance.
Several decomposition algorithms have been devel-
oped for linear problems; however, nonlinear for-
mulations are solved through evaluating the model
for a series of samples. Once embedded in an op-
timization framework, the iterative loop structure
emerges where decision variables are determined, a
sample set based on these decision variables is gen-
erated, the model is evaluated for each of these sam-
ple points, and the probabilistic objective function
value and constraints are evaluated, as shown by
the black arrows in the center of Figure [I. When
one considers that nonlinear optimization techniques
rely on an objective function and constraints evalua-
tion for each iteration, along with derivative estima-
tion through perturbation analysis, the sheer num-
ber of model evaluations rises significantly to render
this approach ineffective for even moderately com-
plex models.

The Better Optimization of Nonlinear Uncertain
Systems (BONUS) algorithm, indicated in Figure [[
by the thick grey arrows, samples the solution space
of the objective function at the beginning of the anal-
ysis by using a base distribution covering the entire
feasible range. As decision variables change, the un-
derlying distributions for uncertain values change,
and the proposed algorithm estimates the objective

'Research supported by Sandia National Laboratories.
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Figure 1: Density estimation approach to optimiza-
tion under uncertainty.

function value based on the ratios of the probabili-
ties for the current and the base distributions, which
are approximated using kernel density estimation
(KDE) techniques. Thus, BONUS avoids sample
model runs in subsequent iterations.

The algorithm can be summarized in the following
outline:

1. Generate base samples and calculate respective
KDEs, evaluate model for each base sample.
2. Optimization.

a. Generate sample around the decision vari-
ables.

b. Determine KDEs for each sample point
with respect to base distribution.

c. Estimate objective function value through
reweighting scheme.

d. SQP or similar state of the art nonlin-
ear optimization approaches that rely on
quasi-Newton methods perturb each deci-
sion variable to estimate gradient informa-
tion. Use same approach as in steps (a)-(c)
to estimate the objective function value us-
ing KDE and reweighting at the perturbed
point.

e. Optimizer generates new vector of decision
variables, repeat until convergence.

As seen above, the model is only evaluated for the
base sample, the objective function value is then es-
timated using the base sample data and the respec-
tive probabilities for the base sample points and the
samples generated during optimization.
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2. Illustrative Numerical Exam-

ple

To illustrate the concepts behind the BONUS algo-
rithm, we present a numerical example to explain
the approach:

2.1 Model

min E[Z] = E[(Z1 — 7)* + (Z2 — 4)] (1)
st. 21 € N[p=2],0 =0.033 - 27] (2)
i€ U0.9 25,1225  (3)
4<x <10 (4)

0 § T2 S 5 ( )

Here, E represents the expected value, and the goal
is to minimize the mean of the objective function cal-
culated for two uncertain decision variables, x1 and
x2. The optimizer determines the value x7, which
has an underlying normal distribution with + 10%
of the nominal value of z} as the upper and lower
0.1% quantiles. Similarly, Z is uniformly distributed
around %, with cutoff ranges at [—10%, +20%).

Step 1: The first step in BONUS is determining the
base distributions for the decision variables, followed
by generating the output values for this model. In
order to capture the entire possible range of uncer-
tain variables, these base distributions have to cover
the entire range, including variations. For instance,
for x4, the range extends to (0-0.9) < x9 < (5-1.2)
to account for the uniformly distributed uncertainty.
Due to space limitations, the illustrative presenta-
tion of the kernel density and reweighting approach
is performed for a sample size of 10, while the re-
mainder of the work uses N = 100 samples. A sam-
ple realization using Monte Carlo sampling is given
in Table (.

After this sample is generated, KDE for the base
sample is applied to determine the probability of
each sample point with respect to the sample set.
This is performed for each decision variable sepa-
rately by approximating each point through a Gaus-
sian kernel, and adding these kernels to generate the
probability distribution for each point, as given in
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Table 1: Base sample.

Sample No. T To Z

1 5.6091 | 0.3573 | 15.2035

2 3.7217 | 1.9974 | 14.7576

3 6.2927 | 4.2713 | 0.5738

4 7.2671 | 3.3062 | 0.5527

5 4.1182 | 1.3274 | 15.4478

6 7.7831 | 1.5233 | 6.7472

7 6.9578 | 1.1575 | 8.0818

8 5.4475 | 3.6813 | 2.5119

9 8.8302 | 2.9210 | 4.5137

10 6.9428 | 3.7507 | 0.0654
Mean 6.2970 | 2.4293 —
Std. Dev 1.5984 | 1.3271 —

Equation g [2].

. 1 X
f(zi(k)) = N—hz

=1

‘ e_%(w);zimf ©)

¥l
3

Here, h is the width for the Gaussian kernel and

depends on the variance ¢ and sample size N of the
data set as follows:

h=106-0-N"5 (7)

For our example, h(z1) = 1.06 - 1.5984 - 10792 =

1.0690 and h(z2) = 1.06 - 1.3271 - 10792 = 0.8876.

Using the first value, one can calculate f(z1(1)) =

1 (B @) ;

1010690 Z; 1 \/ﬁ -e = 0.1769. This

step is repeated for every point, resulting in the ker-
nel density estimates provided in Table B.

Table 2: Base sample kernel density estimates.

T f(z1) T3 f(z2)
5.6091 | 0.1769 | 0.3573 | 0.1277
3.7217 | 0.0932 | 1.9974 | 0.2114
6.2927 | 0.2046 | 4.2713 | 0.1602
7.2671 | 0.2000 | 3.3062 | 0.2190
4.1182 | 0.1110 | 1.3274 | 0.2068
7.7831 | 0.1711 | 1.5233 | 0.2117
6.9578 | 0.2090 | 1.1575 | 0.1992
5.4475 | 0.1691 | 3.6813 | 0.2100
8.8302 | 0.0920 | 2.9210 | 0.2152
6.9428 | 0.2092 | 3.7507 | 0.2063

Step 2: All these steps were preparations for the
optimization algorithm, where repeated calculations
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of the objective function will be bypassed through
the reweighting scheme.

Step 2a: For the first iteration, assume that the
initial value for the decision variables is 1 = 5 and
x9 = 5. For these values, another sample set is gen-
erated, as shown in Table B, accounting for the un-
certainties described in Equations P and B.

Table 3: Sample - optimization iteration 1.

Sample No. z1 To

1 4.7790 | 5.7625

2 4.9029 | 5.5740

3 5.0347 | 5.9199

4 4.9686 | 5.8697

5 4.9001 | 5.9967

6 4.9819 | 5.1281

7 5.0316 | 5.4877

8 5.0403 | 5.4841

9 4.9447 | 5.7557

10 5.0344 | 4.7531
Mean 4.9618 | 5.5731
Std. Dev | 0.0836 | 0.3862

The expected value of Z, which is to be minimized
during optimization, is calculated as 6.7695. This
value will be estimated using a reweighting approach
[8], given in Steps 2b and 2c.

Step 2b: Now, the KDE for the sample (f(z;))
generated around the decision variables has to be
calculated. The Gaussian kernel width h(2;) =
1.06.-0.0837 100 = 5,508 -10=%. Using this value,
one can calculate f(z1(1)) =

1 (5609—9&1(])

e ? W) = 5.125- 10723, Again, this step is
repeated for every point of the sample with respect
to the base distribution data, resulting in the kernel
density estimates provided in Table f.

Step 2c: Using these and the base KDE values,
weights are calculated for each sample point j as

- >
10-5.598-10—2 31\/%

f(@1(4)) |
f(x1(5))

wj:

In our illustrative example, the only two non-zero
weights are ws = 1.699-107%%) and wg = 4.152-1071°.
These weights are normalized and multiplied with
the output of the base distribution to estimate the
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Table 4: Optimization iteration 1 - KDE.

No 1 f(z1) Z2 f(x2)
1 | 5.6091 | 5.125-10-23 | 0.3573 0
2 | 3.7217 0 1.9974 | 2.989.10~26
3 | 6.2927 0 4.2713 | 2.777-102
4 | 7.2671 0 3.3062 | 2.376-10~8
5 | 4.1182 | 3.918.1073! | 1.3274 | 9.958-10—40
6 | 7.7831 0 1.5233 | 1.745-103°
7 | 6.9578 0 1.1575 | 1.303-10~43
8 | 5.4475 | 5.218-10712 | 3.6813 | 2.826-107°
9 | 8.8302 0 2.9210 | 1.844-10712
10 | 6.9428 0 3.7507 | 8.311.10°°

objective function value:

N

E“Z) = w;- Z(j)

J
For our illustrative example, this reduces to
E®' 7] = wg - Z(8) = 1.0000-2.5119 = 2.5119 (10)

as the normalization eliminates all but one weight.
Note that this illustrative example was developed
with an unrealistically small sample size. Hence,
the efficiency of the estimation technique cannot be
judged from this example. Further, due to the in-
accuracy of the estimate resulting from the small
sample size, we will not present results for Steps
2d and 2e for just 10 samples, but use 100 sam-
ples. Also note that Steps 2d and 2e basically re-
peat the procedures in Steps 2a through 2c¢ for a
new sample set around a perturbed point, for in-
stance r1 + Az; =5+ 0.001 - 5 = 5.005.

Table 5: Optimization progress at N = 100.

Iteration | o | B%Z]
0 5.000 | 5.000 | 5.958
1 9.610 | 2.353 | 9.238
2 7.065 | 3.814 | 0.258

The results obtained using the BONUS algorithm
for optimization converge to the same optimal solu-
tion as obtained using a ’brute force’ analysis nor-
mally used in stochastic NLPs where the objective
is calculated for each iteration by calculating the
objective function value for each generated sample
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point. In this example BONUS used only 100 model
runs, while the brute force optimization evaluated
the model 600 times for the two iterations.

The BONUS Algorithm has been applied to ex-
tend studies in off-line quality control of continu-
ously stirred tank reactors to include optimization,
and to capacity expansion studies for electric utili-
ties. For further information, please contact the au-
thor at khsahin®@andrew.cmu.edu.
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Bulletin

Call for Papers for Special Issue of
Annals of Operations Research on
“Applied Optimization under
Uncertainty”

Robust decision making under uncertainty is of
fundamental importance in numerous disciplines and
application areas. For many practical issues, de-
cision making involves multiple, often conflicting,
goals and poses a challenging and complex optimiza-
tion problem. Recent innovations in the techniques
underlying multi-objective optimization, in the char-
acterization of uncertainties, and in the ability to de-
velop and apply these methods outside of traditional
application domains greatly enhances their utility
and promise. The main focus of this special issue
of Annals of Operations Research on “Applied Opti-
mization Under Uncertainty” is to provide research
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papers related to systematic algorithms, methods,
and approaches for rapid and reliable multi-objective
decision making under uncertainty and to success-
fully apply these methods in diverse application ar-
eas. The wide scope of this area can be over-
whelming and mandates extensive interactions be-
tween various disciplines both in the development of
the methods and in their fruitful application to real
world problems. The issue is dedicated to bringing
together papers on the development of the theory of
optimization under uncertainty methods and appli-
cations to practical problems. Papers on perspec-
tives and overviews that pose new challenges for the
development of the theory and methods are also en-
couraged.

Annals of Operations Research is one of the most
renowned journals in the field. The Center for Un-
certain Systems: Tools for Optimization and Man-
agement (CUSTOM), Carnegie Mellon University is
holding a mini-conference, sponsored by Sandia Na-
tional Laboratories, on the topic of “Applied Op-
timization and Under Uncertainty,” in December
2001. This special issue and mini-conference provide
an excellent opportunity to advance the knowledge
of this evolving and widely applicable area.

AREAS OF INTEREST. For the special is-
sue, we expect original papers of high quality pro-
viding theoretical and/or computational results for
algorithms and applications of optimization under
uncertainty, and multi-objective optimization. We
invite papers in the following general areas:

1. Algorithms, Methods, and Tools for Multi-
objective, Stochastic Programming and Opti-

mization

2. Challenges and Opportunities for Multi-
objective,  Stochastic Programming and
Optimization

3. Materials and Molecular Modeling
4. Manufacturing, Planning, and Management
5. Energy and Environment

REVIEWING. The submitted papers will be
peer-reviewed in the same manner as any other sub-
mission to a leading international journal. The ma-
jor acceptance criterion for a submission is the qual-
ity and originality of the contribution.

SUBMISSION. The deadline for submission is
May 1, 2002. (This is a Sunday.)
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Manuscripts must be written in English and
should be submitted electronically in a platform-
independent format such as postscript or pdf. Please
send your submission to custom@cmu.edu. Please
follow the instructions for authors for Annals of Op-
erations Research.

Best Regards,

Urmila Diwekar, CUSTOM, Carnegie Mellon Uni-
versity, Pittsburgh, PA 15213.

Reha Tutuncu, CUSTOM, Carnegie Mellon Uni-
versity, Pittsburgh, PA 15213.

Andrew Schaefer, CUSTOM, University of Pitts-
burgh, PA 15261.

Comments from the Chair
and Editor

Seventh STAM Conference on Optimization

Greetings to all members of STAG/OPT and read-
ers of the Newsletter.

After Sept 11, many of us contacted each other
by email just to say hello to friends. As one email
message stated: “It is hard to imagine the hatred
that could lead people to do this.” and: “Give hugs
to everyone you know today!” and: “The world has
changed forever today.” The events following Sept.
11 were also harrowing and stressful. The organizers
(including me) of the upcoming conference on opti-
mization (in May in Toronto) were expecting a poor
turnout, with few people risking airtravel. However,
I am happy to announce that this is not the case.
The program schedulé for the Seventh Siam Conter-
ence on Optimization is ready and it is full; talks
start at 8:15AM and end at 7PM (followed by re-
ceptions, poster sessions and meetings for some of
us). One problem was that there were not enough
slots for all the contributed talks. (Thanks go to
Ariela Sofer and Tom Coleman for all the hard work
involved in making up the schedule.) We (the orga-
nizers) hope to see you all in Toronto this spring.

Two short courses (on Numerical Optimization
- Algorithms and Software and on Automatic


http://www.siam.org/confpart/program.cfm?CONFCODE=OP02
http://www.siam.org/meetings/op02/index.htm
http://www.siam.org/meetings/op02/index.htm
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Differentiation) immediately preceed the confer-
ence, on Sunday May 19. Sunday is also Don
Goldfarb Day, with Technical Sessions from 5:15
PM to 7:00 PM and a Banquet at 7:30 PM.
In addition, there will be a group of visitors
(in optimization) before/during/after this SIAM
Conterence on Optimization. The group will be
visiting the Fields Institute Toronto, Ontario, see
URL: www.fields.utoronto.ca/. This is part of the
Thematic Year on Numerical and Computational
Challenges in Science and Engineering (NCCSE)
from August 2001 to July 2002. A schedule of
visitors and talks is available with URL:
http://orion.math.uwaterloo.ca/ hwolkowi/henry/
reports/talks.d/t02talks.d /02optfields.d /group.html
Following the conference, there will also be two
(Fields) workshops:

May 23 - 25, 2002, Workshop on Validated Com-
puting, Harbour Castle Hotel, Toronto, Organizers:
George Corliss, Ken Jackson, Baker Kearfott,
Vladik Kreinovich, Weldon Lodwick;

May 27 - 31, 2002, Informal Working Group on
Validated Methods for Optimization , Organizers:
George Corliss, Tibor Csendes, Ken Jackson, Baker
Kearfott.

SIAM 50th Anniversary and 2002 Annual
Meeting The annual meeting this summer is also
a celebration of SIAM’s 50th birthday. This special
annual meeting will look at the strides made by in-
dustrial and applied mathematics during the past 50
years. The meeting themes cover STAM’s interests,
including optimization.

Miscellaneous We need to thank Juan Meza
again for his excellent job as editor of our Newslet-
ter. This is the last issue edited by him. I am
pleased to announce that Jos Sturm has accepted
the STAG/OPT committee’s invitation to be the new
editor.

The SIAG/OPT Web
www.siam.org/siags/siagopt.htm,
points to our own SIAG/OPT webpage,
handled by Natalia Alexandrov URL:
mdob.larc.nasa.gov/statf /natalia/siagopt/.

We will continue to make this web page useful and
interesting.

site, URL:
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We continue to encourage members with home
pages to register their home pages with STAM. If
you wish to be listed, send a message to Laura Hel-
frich at helfrich@siam.org with your name and the
URL for your Web page.

The e-mail forum continues. You can use this fo-
rum for technical questions, announcements of pa-
pers, conferences, books, and software. In partic-
ular, technical questions are encouraged. Perhaps,
this will lead to interesting discussions. You can use
this forum by sending a message to opt@siam.org.

Here is one question that I find interesting. The
class of problems that we can solve today in opti-
mization has grown tremendously, due both to soft-
ware and hardware. In particular, the size of prob-
lems has grown and the speed has decreased dra-
matically. The motivation behind many papers now
is larger and faster. However, there seems to be
much less emphasis put on the quality of the so-
lution. (Though some work on robust optimization
is being done.)

Question: Which algorithms can solve large
classes of large scale problems robustly?
Which property is more important for an
algorithm: speed or robustness?

Multi-Media

1. Optimization Online deserves being mentioned
again, URL: www.optimization-online.org/.
This is a repository for eprints.

2. Eric Weisstein’s World of Mathematics is (back)
at: mathworld.wolfram.com/. This is definitely
worth a look - every day.

3. The Mathematics Genealogy Project is at:
hcoonce.math.mankato.msus.edu/. The intent
of this project is to compile information about
all the mathematicians of the world. They so-
licit information from all schools who partici-
pate in the development of research level math-
ematics and from all individuals who may know
desired information. (Go and research your ge-
nealogy tree!)


http://www.siam.org/meetings/op02/index.htm
http://www.siam.org/meetings/op02/index.htm
http://www.fields.utoronto.ca/
http://www.fields.utoronto.ca/numerical.html
http://www.fields.utoronto.ca/numerical.html
http://www.siam.org/meetings/SIAM50/
http://www.siam.org/siags/siagopt.htm
http://mdob.larc.nasa.gov/staff/natalia/siagopt/
http://www.optimization-online.org/
http://mathworld.wolfram.com/
http://hcoonce.math.mankato.msus.edu/
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