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Abstract. A systematic search for optimal lattice rules of specified trigono-
metric degree d over the hypercube [0, 1)s has been undertaken. The search
is restricted to a population K(s, δ) of lattice rules Q(Λ). This includes those
where the dual lattice Λ⊥ may be generated by s points h for each of which
|h| = δ = d + 1. The underlying theory, which suggests that such a restriction
might be helpful, is presented. The general character of the search is described,
and, for s = 3, d ≤ 29 and s = 4, d ≤ 21, a list of K-optimal rules is given.
It is not known whether these are also optimal rules in the general sense; this
matter is discussed.

1. Introduction

We consider cubature rules for [0, 1)s of trigonometric degree d. Such a rule in-
tegrates correctly all s-dimensional trigonometric polynomials of degree d. Specif-
ically, it integrates exp(2πih · x) correctly for all h := (h1, h2, . . . , hs) ∈ ZZs that
satisfy |h| :=

∑s
i=1 |hi| ≤ d. Lattice rules have played a significant role in the

development of this area. For background information of a general nature on lat-
tice rules, we refer to [SJ94] and to [CS96] for lattice and other rules of specified
trigonometric degree.

Definition 1.1. An s-dimensional lattice rule is a cubature formula that can be
expressed in the form
(1.1)

Qf = Q[t, D, Z, s]f :=
1

d1d2 . . . dt

d1∑
j1=1

d2∑
j2=1

. . .

dt∑
jt=1

f

({
j1z1

d1
+

j2z2

d2
+ . . . +

jtzt

dt

})
,

where di are positive integers and zi ∈ ZZs for all i.

In this theory it is conventional to refer to ZZs (the set of points all of whose com-
ponents are integers) as the s-dimensional unit lattice denoted by Λs

0. The abscissas
of the lattice rule Qf lie on an integration lattice Λ, that is, a discrete subset of IRs

that is closed under addition and subtraction and that contains Λs
0. The arguments

in the right-hand member in (1.1) may be assembled into two matrices. These are
the t × t matrix D = diag{di} and the t × s matrix Z whose ith row is zi. The
rank and invariants of a lattice rule play no major role in the theory treated in this
paper, and their definitions are omitted. However, we remark that much of the
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previous work in this area has been restricted to rank-1 simple lattice rules. These
are rules that can be expressed in form (1.1) above with t = 1 and z1 having 1 as
its first component.

All cubature rules Q have an abscissa count N(Q) and have a trigonometric
degree, say, d(Q). It turns out to be more convenient to work with

(1.2) δ := d + 1,

which we term the enhanced degree An optimal rule of enhanced degree δ is one
whose abscissa count is known to be as small as or smaller than the abscissa count
N(Q′) of any other rule Q′ of this same enhanced degree δ. In this case we denote
this count by Nmin(s, δ). A standard goal, which is our ultimate goal, is to find
optimal rules.

Optimal rules are already known for s = 1 and 2 for all δ; they are also known
for all s with δ = 1, 2, 3, 4 and for (s, δ) = (3, 6). In each of these cases, at least one
of these optimal rules is a lattice rule. Except in the cases just mentioned, no rule
is known to be optimal, and it is not known whether there is any case in which one
of the optimal rules is not a lattice rule.

A lower bound on Nmin(s, δ), based on the character of the set of moment equa-
tions and denoted here by NME(s, δ), is available for all s and d; however, except
in the aforementioned cases, it is not known whether this bound is attained. In
particular:

(1.3)

NME(1, δ) = δ
NME(2, δ) = δ2/2 δ even

= (δ2 + 1)/2 δ odd
NME(3, δ) = δ(δ2 + 2)/6 δ even

= δ(δ2 + 5)/6 δ odd
NME(4, δ) = δ2(δ2 + 8)/24 δ even

= (δ4 + 14δ2 + 9)/24 δ odd

A completely different bound, valid only for lattice rules, follows from apply-
ing Minkowski’s celebrated theorem about admissible lattices to an s-dimensional
octahedron Ω(s, δ) defined in (2.3). In the present context, this provides a bound
N ≥ δs/s! for lattice rules. A much deeper result of his introduces a “critical lat-
tice” for s = 1, 2, and 3. The consequence for us is that a bound exists that is
specific for lattice rules:

(1.4) N ≥ NCL(s, δ) :=
δs

s!θ(s)
.

Clearly θ(s) ≤ 1. The only known values of θ(s) are θ(1) = θ(2) = 1 and θ(3) =
18/19. In the literature on geometry of numbers [GL87], θ(s) is known as the
“density of closest (or densest) lattice packing” for the s-dimensional octahedron.
Nontrivial upper bounds for θ(s), s ≥ 4, appear to be unknown. Every lattice
rule provides a lower bound for θ(s). Examination of our recent results in Table
2 establishes θ(4) ≥ 512

621 . This improves the result of Klyuchnikov and Reztsov
[KR95], θ(4) ≥ 128

159 , by a margin of approximately 0.02. In our context, N is an
integer, so the above inequality may be sharpened to

(1.5) N ≥ NCL(s, δ) := �NCL(s, δ)�.
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For s = 1 and 2, NCL = NME . For s = 3 and δ = 8 and ≥ 10, NCL ≥ NME .
Numerical values of NME and NCL are given in Tables 1 and 2.

A small amount of literature (mostly in Russian) has been devoted to optimal
cubature rules. The optimal rules mentioned above appear in papers by Mysovskikh
[Mys85, Mys87, Mys88] and Noskov [Nos85, Nos88a, Nos88b] and are elaborated
by Beckers and Cools [BC93], Cools and Sloan [CS96] and Cools and Reztsov
[CR97]. The three-dimensional rule is classical and due to Minkowski (see [Fro77]
and [Min67], Chapter XIX).

Furthermore, Noskov and Semenova have published many nonoptimal individual
three-, four-, and five-dimensional rank-1 simple lattice rules and several families;
see, for example, [Nos88a, Nos91, NS96, Sem96]. Each family is a one-parameter
system (the parameter being essentially the degree) of rank-1 simple lattice rules;
and, since the parameter is unbounded, these include rules of arbitrarily high degree.
It is not revealed how they were discovered, but clearly careful effort was expended,
and they are far more economic than those (such as the center and vertex rule)
previously available. However, it appears that none is likely to be particularly close
to optimal. To our knowledge these are the only lattice rules available that are
reasonably efficient from the trigonometric point of view.

We have carried out a large-scale computer search with a view to clarifying the
situation as far as optimal lattice rules in dimensions 3 and 4 are concerned. We
have managed to reach degree 30 in three dimensions and to reach degree 24 in four.
In this paper, we describe this search and give some background in the context of
other analogous searches. We present some of the results.

Our search is however restricted to a subset of the lattice rules, namely, K(s, δ)
of Definition 2.7 below. There are compelling reasons for believing that the optimal
lattice rules are members of this set, but this has not been proved. We have come
across no counterexample nor any suggestion that such a counterexample may exist.
Nevertheless, we retain the distinction and refer to the optimal lattice rules of this
set as K-optimal lattice rules.

2. Underlying Theory

The theory on which our search is based is closely analogous to the theory on
which some searches for good lattices are based. We give a brief description here,
mainly to introduce the standard notation.

A lattice Λ may be defined in terms of an s × s matrix A known as a generator
matrix. This means that all elements of Λ are of the form x = λA, where λ ∈ ZZs.
The dual lattice Λ⊥ may be defined as one having generator matrix B = (AT )−1.
The reader will recall that, since Λ is an integration lattice, that is Λ ⊇ Λs

0, its dual
Λ⊥ is an integer lattice and may be generated by an integer-valued matrix B.

When U is any unimodular matrix, H = UB is also a generator matrix for Λ⊥.
For any given B, there exists a particular choice for U that will provide a generator
matrix H = UB that is in Hermite normal form (utlf). That is,

(2.1)
Hc,c > 0
Hr,c = 0 r > c
Hr,c ∈ [0, Hc,c) r < c.
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A (1–1) correspondence exists between the set of s-dimensional lattice rules and the
set of s × s matrices in Hermite normal form. This has been exploited previously
to organize searches [LS93] but is not exploited in that way here.

The quantity | detB| is conventionally known as the order of the lattice Λ⊥. The
simplex whose s + 1 vertices make up the s rows of B, namely, bj (j = 1, 2, . . . , s),
together with the origin O is known as a basic cell of Λ⊥. (Any simplex obtained
in this way using any generating matrix UB is also a basic cell, as is any simplex
obtained by translating one of these simplices.) The s-volume of a basic cell is
| detB|/s!. In fact, all s-dimensional simplectical regions whose vertices are distinct
elements of Λ⊥ have s-volume k| detB|/s!, where k is some nonnegative integer.
(Any set of vertices for which k = 1 forms a basic cell.) The relevance of the basic
cell to our search lies in the fact that the abscissa count of Q coincides with | detB|
(see [Lyn89]), that is,

N(Q(Λ)) = | detB| =
s∏

i=1

Hi,i.

This may be reexpressed as follows.

Theorem 2.1. The abscissa count N of Q(Λ) coincides with the order of Λ⊥.

When Q(Λ) is the lattice rule whose integration lattice is Λ, the associated
Poisson summation formula reduces to an expression for the discretization error,
namely,

EQ(Λ)f := Q(Λ)f − If =
∑
h∈Λ⊥
h �=0

f̂h,

where f̂h is the Fourier coefficient of f and Λ⊥ is the dual lattice of Λ. When f

is a trigonometric polynomial of degree d or less, f̂h = 0 when |h| > d, so all but
a finite set of terms in this sum vanish. Thus, the condition that Q(Λ)f is exact
for these polynomials reduces to the condition that Λ⊥ has no elements, other than
the origin itself, in the region |h|≤d, which we denote by Ω(s, d). We may restate
this as follows:

(2.2) δ(Q(Λ)) := d(Q(Λ)) + 1 = min
h∈Λ⊥
h �=0

|h|.

This equation relates the location of points h ∈ Λ⊥ with the enhanced degree δ of
Q(Λ). We may use classical terminology to reexpress the import of this equation
in terms taken from the geometry of numbers [GL87].

Definition 2.2. (Classical) A lattice L is “admissible” with respect to a region Ω
if all its elements (other than the origin) lie outside Ω.

Such a lattice is conventionally known as an Ω-admissible lattice. Applied to our
region

(2.3) h ∈ Ω(s, δ) when |h|≤δ,

we have the following definition.

Definition 2.3. An Ω(s, δ)-admissible lattice is an integer lattice having no ele-
ments, other than the origin, in the interior of Ω(s, δ).

Using this terminology, we may write the content of (2.2) as follows:
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Theorem 2.4. Q(Λ) is of enhanced degree δ or greater if and only if Λ⊥ is Ω(s, δ)-
admissible.

This theorem, together with Theorem 2.1, leads to the following geometric char-
acterization.

Theorem 2.5. Q(Λ) is an optimal lattice rule of enhanced degree δ when Λ⊥ is an
Ω(s, δ)-admissible lattice and no other Ω(s, δ)-admissible lattice has a lower order.

In passing, it is pertinent to mention that many other criteria are in use to
characterise efficient cubature rules, and that some, like the enhanced degree in
(1.2) above, are based on exact evaluation of specified sets of Fourier coefficients.
Some of these latter are discussed in Lyness [Lyn88] and may be described in terms
of Ω-admissible lattices with Ω redefined appropriately. The two most familiar
choices are illustrated in, e.g., [BC93]. Other choices are investigated in [CR97]
and [LS97].

We now return to the problem at hand. In this paper, Ω is defined in (2.3) and
we are treating the enhanced degree, defined in (1.2).

A dynamic approach to the problem of finding an optimal rule might involve
perturbing any given Ω(s, δ)-admissible lattice Λ⊥, with a view to reducing the
s-volume of its unit cell but keeping it Ω(s, δ)-admissible, that is, not allowing any
lattice point to enter the fixed region Ω(s, δ).

It is reasonable to believe that the process of making this unit cell small, that
is, making the lattice Λ⊥ denser and reducing its order, would, in general, move
lattice points towards the origin. This process would be seriously inhibited by the
boundary of Ω(s, δ). Ultimately, (as the wiggle room disappears) one would expect
progress to come to a complete stop (grind to a halt) at a stage where many points
of Λ⊥ were (jammed) on this boundary. Thus, it is plausible to believe that the
lattice Λ of an optimal lattice rule Q(Λ) of enhanced degree δ will have a dual lattice
Λ⊥ with many elements on this boundary. The underlying feature of our search is
that it is limited to dual lattices having this property.

The (s−1)-dimensional facet-pair of an s-crosspolytope is the s-dimensional gen-
eralization of a two-dimensional pair of opposite faces of a regular (three-dimensional)
octahedron. We recall the following notation:

|x| = |(x1, x2, x3, . . . , xs)| = |x1| + |x2| + |x3| + . . . + |xs|
h ∈ Ω(s, δ) when |h|≤δ.

h ∈ Ω̄(s, δ) when |h| = δ.

In the sequel, σi stands for +1 or for −1.

Definition 2.6. The facet-pair F (δ, σ1, σ2, σ3, . . . , σs) comprises h satisfying

h ∈ Ω̄(s, δ) and

either
hi = σi|hi| for all i = 1, 2, 3, . . . , s

or
hi = −σi|hi| for all i = 1, 2, 3, . . . , s.

Definition 2.7. The population K(s, δ) comprises all s-dimensional lattices that
may be generated by s point pairs, each of which belongs to a distinct (s − 1)-
dimensional facet-pair of the s-octahedron (s-crosspolytope) Ω(s, δ).
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Note that a lattice in K(s, δ) cannot have enhanced degree exceeding δ because,
by definition, it includes points h having |h| = δ. In general such a lattice is of
degree less than δ.

We search this population for the rule or rules defined as follows.

Definition 2.8. A K(s, δ)-optimal rule is a rule of minimum abscissa count among
those of enhanced degree δ whose dual lattice Λ⊥ is in K(s, δ).

In the next section, we shall require subsets of K(s, δ). These will be denoted
by K(s, δ; X), where X will identify the particular subset in question.

3. The Search Programs

In this section we describe the implementation of programs based on the ideas
and definitions introduced at the end of the preceding section. It has turned
out that the four-dimensional program is significantly more complicated than the
three-dimensional program. For this reason, after introducing some common s-
dimensional notation, we describe the three-dimensional program first. Then, with
the underlying ideas exposed in the simpler context, we treat the four-dimensional
program.

In three or more dimensions, significant effort can be saved by exploiting the
existence of sets of symmetrically equivalent lattices. A group of linear transfor-
mations takes the s-cube, or the s-octahedron, into itself. Applying one of these
transformations to a rule or a lattice provides another (generally different) rule or
lattice having the same geometric characteristics. Naturally, two lattices related
in this way have the same (enhanced) degree and the same order (abscissa count).
A set of symmetrically equivalent lattices may have as many as s!2s−1 members.
Once one member of such a set is established to be optimal, the other members
of the set may be rapidly identified and are also optimal. Thus, if we are able to
subdivide the search population in such a way that a search over one part will re-
cover only symmetric equivalents of a search over another part, we may exploit this
by searching only one of these parts. A search over the second part can be safely
omitted, as it would reveal only optimal lattices that are symmetric equivalents of
optimal lattices already identified.

In three dimensions, it is particularly easy to exploit the concept of sets of
symmetrically equivalent lattices. In view of Definition 2.7 above, the set K(3, δ)
includes all lattices generated by three points b1,b2, and b3, where each lies on a
different facet-pair. We define a subset of K(3, δ), which we denote by K∗. This
includes only lattices generated by

b1 ∈ F (δ, +, +, +)
b2 ∈ F (δ, +, +,−)(3.1)
b3 ∈ F (δ, +,−, +).

It is straightforward to show that all lattices in K(3, δ) have a symmetrically equiv-
alent lattice in K∗. Thus, we may restrict our search to the elements of K∗ and
then include, in addition, all symmetric equivalents. The outcome is the same as
if we had treated all the elements of K(3, δ), but is obtained at approximately one
fourth the cost. (The corresponding statement in four dimensions is not true.)

Our search module has two principal modes of operation. In mode 1 (its usual
mode) it requires as input numerical values of δ and NL and NU . It also requires
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a specification of the population to be treated. (When s = 3, this is simply the
set K∗ discussed above. For s = 4, as described later, several different population
specifications may be used in different runs.) It carries out a search over this
population set and either

(A) provides the generator matrix of a lattice Λ⊥ for which the rule Q(Λ) is
of enhanced degree δ, the order N of this rule satisfies N ∈ [NL, NU ], and
there is no rule of lower order in this interval; or

(B) reports that no lattice Λ⊥ is of enhanced degree δ with N ∈ [NL, NU ] exists
in the specified input population.

To obtain this information, the search module proceeds as follows. It carries out
a loop over all matrices B whose rows b1,b2, . . . ,bs are elements of their respective

facet-pairs (see (3.1) above). Thus, there are possibly
(

s + δ − 1
s − 1

)s

matrices B

to consider. For each, the order | detB| is evaluated. Unless | detB| ∈ [NL, NU ],
this matrix B is abandoned, and the next matrix B is treated.

In the relatively few cases in which | detB| is within these limits, an algorithm
for determining the enhanced degree of Λ⊥ (or an upper bound on this) is invoked.
Unless this enhanced degree is δ, this matrix B is abandoned and the next one
is treated. Should this enhanced degree turn out to be δ, ipso facto one lattice
satisfying (A) above is available. In mode 1, the search immediately downgrades
NU to N − 1 and continues (unless N = NL, in which case it stops).

In all cases, if the module encounters no Ω(s, δ)-admissible lattice of enhanced
degree δ, the conclusion (B) above is reported.

The module can also be run in mode 2. This requires the same input as in mode
1. However, instead of downgrading NU to N − 1 when one lattice satisfying (A)
is encountered, it downgrades NU to N and continues until all matrices B have
been treated. This mode is normally used when the optimal Nopt has already been
determined and is invoked to see whether there are several different solutions. One
sets NL = NU = Nopt.

The list of rules in Table 3 was obtained as follows. For each value of δ, the search
module was used with NU large and NL = max(NME(3, δ), NCL(3, δ)) as given in
(1.3) and (1.5). The value of N returned in item (A) was used in a second run
using mode 2. Finally, the list of matrices was processed to remove all symmetric
equivalents. Note that, without the second run, one of the entries for each of δ =
5 and 11 in Table 3 would have been missed.

The 4-octahedron has eight facet-pairs.
F0 F (δ, +, +, +, +) E
F1 F (δ,−, +, +, +) O
F2 F (δ, +,−, +, +) O
F3 F (δ,−,−, +, +) E
F4 F (δ, +, +,−, +) O
F5 F (δ,−, +,−, +) E
F6 F (δ, +,−,−, +) E
F7 F (δ,−,−,−, +) O

Each has been assigned a serial number, which appears as a subscript in col-
umn 1. For later convenience, in column 3 we have assigned a parity to each.
F (δ, σ1, σ2, σ3, σ4) is of even parity E if the set (σ1, σ2, σ3, σ4) contains an even
number of elements +1.
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Every lattice Λ⊥ in K(4, δ) is generated by four points on four distinct facet-
pairs. We term such a set of facet-pairs a quartet (of facet-pairs). If we were to
take no account of the symmetric equivalents, we would need to treat every distinct
quartet separately. There are seventy distinct quartets, this being the number of
ways of choosing four facet-pairs from the total of eight facet-pairs listed above.
The following discussion is devoted solely to establishing Theorem 3.4 below, which
assures us that only four of these quartets need be searched to ensure that we
recover at least one symmetric equivalent of every optimal rule.

Definition 3.1. An individual quartet, denoted by q(N1, N2, N3, N4) where 0 ≤
N1 < N2 < N3 < N4 ≤ 7 comprises a set of four distinct facet-pairs FN1 , FN2 , FN3

and FN4 .

The type of a quartet q is min(NE, NO) where NE is the number of even facet-
pairs and NO is the number of odd facet-pairs in q. For example, q(0, 4, 5, 6)
contains three even facet-pairs, namely, F0, F5, and F6, together with one odd
facet-pair, F4. Thus its type is 1, this being the minimum of NE = 3 and NO = 1.

Definition 3.2. Let q(N1, N2, N3, N4) be one of these 70 quartets. The population
K(4, δ; q) comprises any lattice that may be generated by four points bi, where
bi ∈ FNi , i = 1, 2, 3, 4.

The union of all seventy of these populations K(4, δ; q) includes all lattices that
may be generated by four distinct points, each of which lies on a distinct facet-pair
of the 4-octahedron, and so coincides with K(4, δ).

Let Gi be an element of the group G of 384 affine transformations that take the
4-octahedron into itself. Specifically, this transformation takes any facet-pair FNj

into some other facet-pair FNk
, which we may denote by Gi FNj . By the same

token, this transformation takes separately each of a set of four facet-pairs into
another set of four facet-pairs.

Definition 3.3. Let q = q(N1, N2, N3, N4) be one of these 70 quartets. The quartet
comprising the four facet-pairs Gi FNj , j = 1, 2, 3, 4, is termed a symmetric copy of
q(N1, N2, N3, N4) and is denoted by Giq.

Let q1 stand for the quartet q(0, 2, 4, 7). Clearly, a search over K(4, δ;Giq1) will
yield only lattices that are symmetrically equivalent to those obtained in the same
search over K(4, δ; q1). It is a trivial calculation to obtain all symmetric equivalents
of a particular lattice. Thus, carrying out a search over more than one quartet
belonging to the set of quartets Giq1 is unnecessary. A straightforward calculation
(elaborated in the Appendix) reveals that there are only 32 distinct quartets of this
form. Thus, S1 is a set of order 32, and we need to search over only one of these
32 quartets. Our choice for q1 could be replaced by any other member of S1 with
the same result.

We repeat this operation starting with the three specific quartets given in the
theorem.

Theorem 3.4. Let q0 = q(1, 2, 4, 7), q1 = q(0, 2, 4, 7), q2a = q(0, 2, 4, 6), and
q2b = q(0, 2, 4, 5) and the sets of quartets constituting symmetric copies of qj be
denoted by Sj. Then the sets Si are mutually disjoint. They are of orders 2, 32,
12, and 24, respectively, and their union includes all seventy quartets.
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Proof. The sets S0, S1, S2a, S2b, are listed in the Appendix. The theorem may
be verified by four sets of 384 simple calculations. One calculates q = Giqj (i =
1, . . . , 384), j = 0, 1, 2a, 2b, and verifies that each is a member of the expected set
Sj. The reader will note that all elements of Si, i = 0, 1, are of type i and elements
of S2a and S2b are of type 2. It is straightforward to show that none of the 384
transformations alters the type of the quartet. The Appendix provides further
details. �

The results of our computer searches for four-dimensional optimal rules are pre-
sented in Table 5. This is in four parts. For each value of δ ∈ [1, 13] we have made
four distinct runs and (unless there are calculational errors) we have a complete list
of all optimal K(4, δ) rules.

For δ ∈ [14, 17] we reduced the population to K(4, δ; q1), where, as before, q1 =
q(0, 2, 4, 7). This restriction to a single quartet reduces the overall run time by a
factor of 4.

Beyond δ = 18, even this became too time consuming, and we reduced the
population once more to K(4, δ; q+

1 ). The symbol q+
1 is used here to denote a subset

of q1 that includes all of F2, F4, and F7, but only the part of F0 = F (δ, +, +, +, +)
for which x1 ≥ x2 ≥ x3 ≥ x4 This reduces the size of the population by a factor of
up to 24. But almost certainly some optimal rules are missed. Finally, for δ = 23
and 24, this search was curtailed.

We have described the three searches above in terms of the results. In the order
of implementation, we first carried out a search using population K(4, δ; q+

1 ) for
δ up to 22. Next, we used K(4, δ; q1) for δ up to 17. Finally, we carried out a
complete search, using four choices for q, for δ up to 13.

4. New Results

In Subsections 4.2 and 4.3, we present some of our three- and four-dimensional
results, respectively. Subsection 4.1 is devoted to careful definitions of the notation
used in the tables.

4.1. Abscissa Counts. In this first subsection we present the progress toward
determining Nopt(s, δ), the optimal abscissa count for any s-dimensional rule of
enhanced trigonometric degree δ. We have in general obtained well-defined bounds
on this quantity. These are denoted by NX(s, δ), where the subscript X indicates
a limitation to the class of rules considered.

The five principal abscissa count functions we have listed are as follows:
• NME : A theoretical lower bound for any rule of enhanced degree δ, based

in the relevant Moment Equations.
• NCL: The Minkowski lower bound for any lattice rule of enhanced degree

δ, based on the existence of the critical lattice (known only for dimensions
s = 1, 2 and 3).

• NKO: The lowest count for any K(s, δ)-optimal rule. (We also list variants
of NKO.)

• Nr1s: The lowest abscissa count for any optimal rank-1 simple rule.
• Nprev: The lowest abscissa count for any rule published in references [Nos88a,

NS96]. These are all rank-1 simple.
Formulas for NME are given for all (s, δ) in reference [CS96] and repeated by us

for s ≤ 4 in (1.3) above. NCL is simply (1.5) above. The principal contribution
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Table 1. Three-dimensional abscissa counts

δ NME NCL NKO Nr1s Nprev ρ(NKO)
= d + 1

1 1 1 1 1 1 0.167
2 2 2 2 2 2 0.667
3 7 5 7 7 7 0.643
4 12 12 12 12 12 0.889
5 25 22 27 27 27 0.772
6 38 38 38 38 38 0.947
7 63 61 70 70 70 0.817
8 88 91 92 92 92 0.928
9 129 129 144 145 145 0.844

10 170 176 178 178 178 0.936
11 231 235 260 260 260 0.853
12 292 304 304 312 312 0.947
13 377 387 421 421 421 0.870
14 462 483 486 486 486 0.941
15 575 594 635 635 635 0.886
16 688 721 724 724 724 0.943
17 833 865 921 921 921 0.889
18 978 1026 1026 1038 1038 0.947
19 1159 1207 1276 1276 1319 0.896
20 1340 1408 1412 1412 1412 0.944
21 1561 1630 1708 1723 1771 0.904
22 1782 1874 1878 1878 1942 0.945
23 2047 2141 2240 2255 2327 0.905
24 2312 2432 2432 2448 2532 0.947
25 2625 2749 2865 2865 2977 0.909
26 2938 3093 3098 3098 3218 0.946
27 3303 3463 3591 3591 3751 0.914
28 3668 3862 3868 3868 4032 0.946
29 4089 4291 4445 4445 4635 0.915
30 4510 4750 4750 4770 4958 0.947

of our work is the list of values of NKO and some variants in Tables 1 and 2. We
obtained the fourth abscissa count Nr1s for s = 3 (δ ≤ 30) and s = 4 (δ ≤ 13)
using a simple search program not discussed here. The fifth abscissa count Nprev

is readily gleaned from the cited literature.
The three-dimensional abscissa counts listed in Table 1 are all precisely as defined

above. The four-dimensional abscissa counts listed in Table 2 are also precisely as
defined above for δ ≤ 13. For higher values of δ, the entries under NKO refer to
the results of restricted searches, as indicated in Table 5 and specified at the end of
the preceding section. The corresponding entries under Nr1s may not be optimal.
Rules corresponding to every abscissa count given in the columns labeled NKO and
Nr1s are specified in Tables 3, 4, 5, and 6.

For odd δ > 14 some rules have been published, but these use more points than
published rules of higher degree. We have omitted these.
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Table 2. Four-dimensional abscissa counts

δ NME NKO Nr1s Nprev ρ(NKO)
1 1 1 1 0.042
2 2 2 2 0.333
3 9 9 9 0.375
4 16 16 16 0.667
5 41 45 46 46 0.579
6 66 68 70 70 0.794
7 129 152 152 156 0.658
8 192 212 212 212 0.805
9 321 375 398 414 0.729

10 450 516 522 522 0.807
11 681 857 857 1076 0.712
12 912 1064 1092 1092 0.812
13 1289 1601 1601 1709 0.743
14 1666 1958 [1958] 3075 0.818
15 2241 2834 [2834] 0.744
16 2816 3312 [3376] 3522 0.824
17 3649 4628 [4633] 0.752
18 4482 5354 [5354] 6242 0.817
19 5641 7081 [7081] 0.767
20 6800 8148 [8148] 8840 0.818
21 8361 10552 [10552] 0.768
22 9922 11886 [11886] 14102 0.821
23 11969 15167 [15167] 0.769
24 14016 16812 [17208] 0.822

In Figures 1 and 2 we present much of the material in Tables 1 and 2 graphically.
For any abscissa count N , we can calculate the associated packing factor

(4.1) ρ(N) :=
δs

s!N
.

This is a measure of the efficiency of any rule Q(Λ) of enhanced degree δ and
abscissa count N and is the packing factor of the dual lattice Λ⊥. The packing
factor is bounded by θ(s). In the final section we shall illustrate our discussion of
some of these results using these figures.

Many of the entries in the tables specify rank-1 simple rules. When Q(Λ) is
an s-dimensional rank-1 simple rule, the Hermite normal form (see (2.1) above) of
the generator matrix of Λ⊥ has a readily recognisable form as its principal minor
coincides with the identity matrix. The D − Z form (see (1.1)) of this rule is then
Q[1, D, z, s] with

D = N = Hs,s; z = (N − H1,s , N − H2,s , . . . , N − H(s−1),s , 1).

Naturally, this is in the same equivalence class as the rule specified by

D = N = Hs,s; z = (1 , H1,s , H2,s , . . . , H(s−1),s).
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Table 3. Three-dimensional K-optimal lattice rules

Hermite Normal Form of Dual Lattice
δ N H11 H12 H13 H22 H23 H33 μ Rank
2 2 1 0 1 1 1 2 1 1
3 7 1 0 2 1 3 7 8 1
4 12 1 0 3 1 5 12 12 1
5 27 1 0 4 1 10 27 24 1

1 1 4 3 6 9 4 2
6 38 1 0 7 1 11 38 8 1
7 70 1 0 16 1 25 70 24 1
8 92 1 0 9 1 39 92 24 1
9 144 1 1 11 4 16 36 8 2

10 178 1 0 11 1 75 178 24 1
11 260 1 0 40 1 94 260 24 1

1 0 48 2 56 130 24 2
12 304 2 0 14 2 22 76 8 3
13 421 1 0 16 1 182 421 24 1
14 486 1 0 41 1 57 486 24 1
15 635 1 0 146 1 274 635 8 1
16 724 1 0 49 1 79 724 24 1
17 921 1 0 81 1 222 921 24 1
18 1026 3 0 21 3 33 114 8 3
19 1276 1 0 222 1 538 1276 24 1
20 1412 1 0 59 1 665 1412 24 1
21 1708 1 1 121 2 338 854 8 2
22 1878 1 0 75 1 731 1878 24 1
23 2240 1 0 166 4 255 560 24 1 (not simple)
24 2432 4 0 28 4 44 152 8 3
25 2865 1 0 222 1 965 2865 24 1
26 3098 1 0 423 1 1299 3098 24 1
27 3591 1 0 278 1 1718 3591 8 1
28 3868 1 0 205 1 975 3868 24 1
29 4445 1 0 750 1 1635 4445 24 1
30 4750 5 0 35 5 55 190 8 3

4.2. Three-Dimensional Lattice Rules. For every abscissa count we have listed,
we have specified at least one cubature rule. Table 3 contains specifications of thirty-
one K-optimal rules. This list is complete in the sense that every K-optimal rule
of enhanced degree thirty or less is included here or is symmetrically equivalent to
one listed here. This specification comprises the nontrivial elements of the Hermite
normal form of Λ⊥ (unique to the rule). See (2.1) above.

The final column contains μ, the number of distinct rules (symmetric copies) in
the symmetry group that contains the listed rule. These may be obtained from the
listed rule by coordinate reversal and interchange. Naturally, we list only one rule
of the μ possibilities. This is chosen to be the first in a lexicographic ordering based
on the diagonal elements, followed by the nondiagonal elements in the order used
in the table. In the language of [LS93], this provides a senior. Also, if the rank is
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Table 4. Three-dimensional optimal rank-1 simple lattice rules

Hermite Normal Form of Dual Lattice
δ N H11 H12 H13 H22 H23 H33 μ
9 145 1 0 9 1 61 145 24

12 312 1 0 13 1 115 312 24
1 0 29 1 67 312 24

18 1038 1 0 35 1 365 1038 24
1 0 119 1 421 1038 24

21 1723 1 0 24 1 464 1723 24
1 0 79 1 755 1723 24

23 2255 1 0 100 1 172 2255 24
24 2448 1 0 199 1 479 2448 24

1 0 199 1 479 2448 24
30 4770 1 0 131 1 689 4770 24

1 0 131 1 689 4770 24

1, this provides a rank-1 simple rule, unless there happens to be no rank-1 simple
rule in the set.

The eight rules of enhanced degree δ = 6k with k > 1 are simply k-copy versions
of the eight rules of enhanced degree 6. These are of rank 3.

A supplementary list of three-dimensional optimal rank-1 simple lattice rules is
given in Table 4. This list is of the same character as the previous list. It includes
all optimal rank-1 simple rules for those degrees for which such a rule does not
appear in the previous list.

4.3. Four-Dimensional Lattice Rules. We have reported our four-dimensional
results in almost the same way as the three-dimensional results. The differences
arise from having to curtail our effort because of the higher computational expense.
As in the three-dimensional case, we have specified in Table 5 the optimal rules we
have found. As mentioned in Section 3, any of these may be actual optimal rules of
the stated enhanced degree. We have found all the K-optimal rules for δ ∈ [1, 13],
all the K(4, δ; q1)-optimal rules for δ ∈ [14, 17], and all the K(4, δ; q+

1 )-optimal
rules for δ ∈ [18, 22]. The rules quoted for δ = 23, 24 were found in an abbreviated
search. The supplementary Table 6 simply specifies some rank-1 simple rules whose
abscissa counts appear in Table 2 but are not specified elsewhere.

5. Further Comments

Any historical perspective on rules of specified trigonometrical degree would
mention the widespread use of the product trapezoidal rule, and the center and
vertex rule since the beginning of the twentieth century. However, the serious study
of such rules seems to have started in the final fifteen years of that century. The
earlier work of this period, mainly by Russian authors, has been strictly limited to
rank-1 simple rules. They have produced and established the optimal degree rules
up to δ = 4. These authors have been concerned mainly with rule families in three,
four, and five dimensions. Each family contains rules of arbitrarily high degree.
Other economic rules seem to have been provided only as spin-off, and no claim
has been made for optimality. However, in retrospect we have ascertained that in
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Table 5. Four-dimensional K-optimal lattice rules

Hermite Normal Form of Dual Lattice
δ N H11 H12 H13 H14 H22 H23 H24 H33 H34 H44 μ Rank

Full Search over K(4, δ)
1 1 1 0 0 0 1 0 0 1 0 1 1 1
2 2 1 0 0 1 1 0 1 1 1 2 1 1
3 9 1 0 1 1 1 1 2 3 0 3 8 2

1 0 0 2 1 0 3 1 4 9 64 1
4 16 1 1 1 1 2 0 2 2 2 4 2 3

1 0 1 2 1 2 1 4 0 4 12 2
1 0 0 3 1 1 2 2 6 8 24 2
1 0 0 3 1 0 5 1 7 16 48 1

5 45 1 0 0 4 1 1 6 3 9 15 24 2
6 68 1 0 0 13 1 1 6 2 16 34 48 2
7 152 1 0 0 16 1 0 28 1 37 152 96 1
8 212 1 0 0 9 1 0 33 1 87 212 192 1
9 375 1 1 1 6 5 0 10 5 10 15 24 3

10 516 1 0 0 15 1 0 83 2 118 258 192 2
11 857 1 0 0 188 1 0 207 1 351 857 48 1
12 1064 1 0 0 153 1 0 259 2 98 532 96 2
13 1601 1 0 0 40 1 0 310 1 408 1601 48 1

Full Search over K(4, δ; q1)
14 1958 1 0 0 107 1 0 229 1 525 1958 192 1
15 2834 1 0 0 892 1 0 1123 1 1314 2834 96 1

1 0 0 294 1 1 117 2 507 1417 96 1 (not simple)
16 3312 1 0 0 495 1 0 737 2 450 1656 96 2
17 4628 1 0 0 1123 1 1 327 2 1032 2314 96 2

Full Search over K(4, δ; q+
1 )

18 5354 1 0 0 83 1 0 1253 1 1863 5354 192 1
19 7081 1 0 0 241 1 0 1433 1 1616 7081 48 1
20 8148 1 0 0 371 1 0 1401 1 3299 8148 192 1
21 10552 1 0 0 1670 1 0 2111 1 2746 10552 192 1
22 11886 1 0 0 457 1 0 3753 1 4079 11886 192 1

Incomplete Search over K(4, δ, q+
1 )

23 15167 1 0 0 988 1 0 3520 1 5347 15167 192 1
24 16812 1 0 0 109 1 1 1717 3 1677 5604 192 2

Table 6. Four-dimensional rank-1 simple lattice rules

Hermite Normal Form of Dual Lattice
δ N H11 H12 H13 H14 H22 H23 H24 H33 H34 H44 μ
9 398 1 0 0 8 1 0 61 1 149 398 192

16 3376 1 0 0 169 1 0 1091 1 1387 3376 192
17 4633 1 0 0 547 1 0 1936 1 1965 4633 48
24 17208 1 0 0 919 1 0 4701 1 5557 17208 192



THREE- AND FOUR-DIMENSIONAL K-OPTIMAL LATTICE RULES 15

Figure 1. ρ as a function of δ for three-dimensional rules
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Figure 2. ρ as a function of δ for four-dimensional rules
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three dimensions their rules are optimal rank-1 simple rules for all δ≤18 but that
in four dimensions, they are optimal only for odd δ up to 5 and for even δ up to 12.

To our knowledge, the only other set of rules proposed in this context are the
Smolyak rules [CNR99]. These were designed for high dimensions and high degrees.
In three and four dimensions and for values of δ considered here, the K-optimal rules
presented here are well over ten times more cost effective than the corresponding
Smolyak rules.

Figures 1 and 2 illustrate most of the abscissa counts listed in Tables 1 and 2.
We note the dichotomy between even and odd degree, which seems to occur in both
the theoretical limit NME and results such as NKO and Nr1s (not shown in figures
but reported in the tables) and Nprev.

As discussed in Section 1, we have no theory to exclude the possibility that, for
larger δ, the optimal rule of trigonometric degree δ is not a lattice rule. If this
were the case, in Figures 1 and 2 there would be missing entries above the lines
joining the circles, but below the theoretical limit represented by squares. Also
unsatisfactory is the fact that we cannot establish that the K-optimal lattice rule
is actually an optimal lattice rule. This is more frustrating because the anecdotal
evidence is overwhelming. We have several incomplete proofs, characterized by our
inability to bridge in each case what seems to be a minor lacuna. However, we have
an example of a rule that is K(4, δ)-optimal, but not K(4, δ; q2)-optimal. The 375
point lattice listed in Table 5 for δ = 9 is not in K(4, 9; q2). The K(4, 9; q2)-optimal
rules have an abscissa count of 390. And we have encountered many examples in
which the restriction to K(4, δ; q+

1 ) has resulted in missing some excellent rules.
One of the unsatisfactory features of our approach is its high computational

cost. We have derived a somewhat unrealistic upper bound on the complexity.
This depends in the first place on ν, the number of distinct generator matrices we

start with. As specified in Section 3, ν =
(

s + δ − 1
s − 1

)s

= O(δs2−s) for fixed s

and increasing δ.
Only a proportion that appears to decrease with increasing δ is treated further to

find N . After this, a minute proportion of these are retained to find their degree. A
simple basic form of our algorithm to determine the degree of a lattice rule requires
time proportional to δ

s−1
, where δ is the degree of the lattice. In fact, all but a

handful have degree strictly less than δ. To obtain a complexity bound, we replace
both proportions by 1 and replace δ by δ. This approach leads to a complexity
bounded above by δs2−1.

For the values of δ for which we carried out careful timing checks, the compu-
tational cost does increase very rapidly with increasing δ, although not nearly so
rapidly as the complexity bound derived above might suggest. To give the reader
an idea, we list some timings below for a particular processor.1

• For s = 3 all δ ≤ 30 are treated within 33 minutes.
• For s = 4 all δ ≤ 8 are treated within 34 minutes.
• For s = 4 and δ = 10 the search required 6.5 hours.
• For s = 4 and δ = 14 the search restricted to K(4, 14; q1) required 120

hours.
• For s = 4 and δ = 17 the search restricted to K(4, 17; q+

1 ) required 145
hours.

1Pentium II (Deschutes), 398.13 bogomips processor
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• For s = 4 and δ = 18 the search restricted to K(4, 18; q+
1 ) required 228

hours.
In fact, higher values of δ were treated in a different way by partitioning the search
into several tasks that were distributed to several different machines. Using actual
timings, we estimated hypothetical timings corresponding to the chip mentioned
above. These indicated that the time needed for a complete search for δ = 20
would be about 2700 days, but restricting the search to K(4, 20; q+

1 ) reduced this
time to about 40 days.

Another feature of our program is its exorbitant redundancy. In an extreme
case, a four-dimensional lattice may have 30 points on Ω(4, δ), these comprising
two point pairs on each of seven facet pairs, and one point pair on the remaining
facet pair. When q1 includes four of these facet pairs, our search over K(4, δ, q1)
may include the identical lattice sixteen times. Moreover, we might treat each of
the 192 lattices in the same equivalence class either eight or sixteen times. All this
work might provide a single entry in Table 5. This helps us to understand why the
much smaller population space K(4, δ, q+

1 ) often but not always includes at least
one of the set of K-optimal lattices associated with the larger (by a factor of up
to 24) set. We note that the complexity or the complexity bound would not be
affected by this redundancy. It shows itself in the circumstance that an optimal
rule was usually found in the first hour of a 100-hour run.

For some parts of the search, this redundancy is not important. As an analogy
one might compare the task of searching for one of k needles in one haystack with
that of searching for one of 100k needles in 100 mixed-up haystacks. So long as
k ≥ 1, the time taken to find one needle is to first order the same in either case. If
k = 0, it takes 100 times as long to complete the search in the second case as in
the first case.

Appendix: Specification of Sets Defined in Theorem 3.4

The group G of coordinate transformations includes transpositions σij that in-
terchange coordinates xi and xj and reflections ρi that replace xi by −xi. The
group can be generated by the four elements σ12, σ13, σ14 and ρ3, which we have
temporarily termed Gi (i = 1, 2, 3, 4). Hence, we can establish the theorem by
exploiting the result that Giq ∈ Sj , (i = 1, 2, 3, 4). whenever q ∈ Sj .

The effect of each of these four transformations on each of the eight facet-pairs
is given in the following table.

Specification Parity σ12 σ13 σ14 ρ3

F0 +, +, +, + E F0 F0 F0 F0 F4

F1 −, +, +, + O F1 F2 F4 F7 F5

F2 +, −, +, + O F2 F1 F2 F2 F6

F3 −, −, +, + E F3 F3 F6 F5 F7

F4 +, +, −, + O F4 F4 F1 F4 F0

F5 −, +, −, + E F5 F6 F5 F3 F1

F6 +, −, −, + E F6 F5 F3 F6 F2

F7 −, −, −, + O F7 F7 F7 F1 F3

To illustrate the calculation, we confirm the entry for σ13F3. By definition, F3

includes only points of the form (−a,−b, c, d) where a, b, c, and d are individually
non-negative. The corresponding point of σ13F3 is obtained by interchange of
coordinates 1 and 3, and so is (c,−b,−a, d). Reference to the definition confirms
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that this point is indeed an element of F6. Thirty-two equally trivial calculations
will confirm the results presented in this table.

Using these operations, we can transform quartets of facet-pairs into other quar-
tets. We overload the notation above and consider the order of facet-pairs in a
quartet as irrelevant, for example, q(7, 1, 4, 2) = q(1, 2, 4, 7).

One way to obtain one of the sets listed below is by constructing a list as follows.
Initially this list contains only one element, in this case perhaps q2a = q(0, 2, 4, 6).

At the end of a later stage, it may contain N distinct elements, say, q1, q2, . . . , qN .
The next stage comprises calculating Giqk for i = 1, 2, 3, 4 and k = 1, 2, . . . , N ,
adding these to the list and removing duplicates. If the new list has more than N
elements, we proceed to a further stage of the same nature. If the new list has N
elements, the same number as in the previous list, we may stop. The current list
now comprises a complete list of the elements of S2a.

Again we illustrate one of these calculations by an example. We evaluate σ13q(0, 2, 4, 6).
We require from the table the facet-pairs σ13Fj for j = 0, 2, 4, 6. Reference to the
column headed σ13 of the table shows these to be F0, F2, F1, F3, respectively. These
facet-pairs comprise q(0, 2, 1, 3), which is the same as q(0, 1, 2, 3).

Each update of the list involves four such calculations for each of the current N
members of the list.

• Elements of S0

q(0, 3, 5, 6), q(1, 2, 4, 7)
• Elements of S1

q(0, 2, 4, 7) , q(0, 1, 4, 7) , q(0, 1, 2, 7) , q(0, 1, 2, 4) ,
q(0, 3, 4, 6) , q(0, 4, 5, 6) , q(0, 1, 3, 5) , q(0, 2, 3, 6) ,
q(0, 3, 4, 5) , q(0, 1, 3, 6) , q(0, 5, 6, 7) , q(0, 3, 5, 7) ,
q(0, 3, 6, 7) , q(0, 1, 5, 6) , q(0, 2, 5, 6) , q(0, 2, 3, 5) ,
q(3, 4, 5, 6) , q(1, 4, 5, 7) , q(2, 4, 6, 7) , q(1, 2, 3, 4) ,
q(1, 2, 4, 6) , q(1, 2, 4, 5) , q(1, 2, 3, 7) , q(2, 4, 5, 7) ,
q(1, 4, 6, 7) , q(1, 2, 5, 7) , q(1, 2, 6, 7) , q(2, 3, 4, 7) ,
q(1, 3, 4, 7) , q(2, 3, 5, 6) , q(1, 3, 5, 6) , q(3, 5, 6, 7)

• Elements of S2a

q(0, 2, 4, 6) , q(0, 1, 4, 5) , q(0, 1, 2, 3) , q(0, 3, 4, 7) ,
q(0, 1, 6, 7) , q(0, 2, 5, 7) , q(2, 3, 4, 5) , q(1, 3, 4, 6) ,
q(1, 2, 5, 6) , q(2, 3, 6, 7) , q(1, 3, 5, 7) , q(4, 5, 6, 7)

• Elements of S2b

q(0, 2, 4, 5) , q(0, 1, 4, 6) , q(0, 1, 2, 5) , q(0, 2, 3, 4) ,
q(0, 1, 3, 4) , q(0, 1, 2, 6) , q(0, 4, 6, 7) , q(0, 4, 5, 7) ,
q(0, 1, 3, 7) , q(0, 2, 3, 7) , q(0, 2, 6, 7) , q(0, 1, 5, 7) ,
q(2, 4, 5, 6) , q(1, 4, 5, 6) , q(1, 2, 3, 6) , q(1, 2, 3, 5) ,
q(2, 3, 4, 6) , q(1, 3, 4, 5) , q(2, 5, 6, 7) , q(1, 5, 6, 7) ,
q(2, 3, 5, 7) , q(1, 3, 6, 7) , q(3, 4, 6, 7) , q(3, 4, 5, 7)
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