
NOTES ON A SEARCH

FOR OPTIMAL LATTICE RULES
�

James Lyness��

Mathematics and Computer Science Division
Argonne National Laboratory� Argonne� IL ������ U�S�A�

Ronald Cools
Department of Computer Science� Katholieke Universiteit Leuven

Celestijnenlaan ���A� B	���
 Heverlee� Belgium

In this paper some of the results of a recent computer search �CoLy��� for
optimal three� and four�dimensional lattice rules of speci�ed trigonometric
degree are discussed� The theory is presented in a general frame emphasising
the special nature of lattice rules among the rules of speci�ed trigonometric
degree�

� Background Material

In this paper we discuss some of the results of a recent computer
search �CoLy��� for optimal s	dimensional lattice rules of speci
ed
trigonometric degree�

An s	dimensional cubature formula �or rule� Qf for ��� 
�s is a
weighted sum of function values

Qf ��
N�Q�X
j��

wjf�xj�� �
�
�
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which approximates in some way the integral

If ��
Z
�����s

f�x�dx� �
���

A cubature formula of enhanced trigonometric degree � is one that in	
tegrates exactly all trigonometric polynomials �with respect to period
���
�� of degree � � 
� An optimal rule Q of enhanced degree � is one
whose abscissa count N�Q� is as small as or smaller than the abscissa
count N�Q�� of any other rule Q� of the same enhanced degree �� A
lattice rule Q��� is an equal	weight cubature formula �wj � 
�N�Q��
whose abscissas xj lie in � � ��� 
�s� where � is an integration lattice�
For a lattice rule Q��� to be of enhanced degree �� the dual lattice ��

can have no elements h for which jhj � �
� ��
�� In the following sub	
sections� the concepts mentioned above are properly connected� with
the necessary theorems being referenced or proved� In what follows�
we denote by ei a unit vector whose components coincide with the i	th
row of the s � s identity matrix I� �Note that� in common English
usage� the word rule may be used for cubature formula��

��� Integration Lattices

An integration lattice L�t�D� Z� s� is speci
ed by positive integers t�
d�� d�� � � � � dt and the elements of a t� s integer matrix Z� Here� D is
the diagonal t� t matrix D � diagfd�� d�� � � � � dtg� and we denote the
i	th row of Z by zi�

De�nition � The integration lattice L�t�D� Z� s� comprises all points
that may be expressed in the form

p �
tX

i��

jizi�di �
sX

i��

kiei �
���

for some selection of integers ji and ki�

This lattice is said to be generated by the t � s generators zi�di i �

� �� � � � � t and ei i � 
� �� � � � � s�

It is readily veri
ed that this set of points satis
es the standard
de
nition of a lattice� that is� p��p� � � � p� � p� � �� and� since



p detD � ZZs for all p� there are no points of accumulation� Moreover�
the subset of these points� obtained by assigning j� � j� � � � � � jk �
�� constitutes the unit lattice ��� also known as ZZs� Thus� � � ���
which is the condition that a given lattice � is an integration lattice�

It is well known that one can express any s	dimensional lattice � in
terms of only s distinct generators� Thus� there exists an s� s matrix
A whose rows a�� a�� � � � � as may be used to generate � and �
��� may
be replaced by

p �
sX

i��

�iai � �A� �
���

where �i are integers� that is� � � ���

The reader will note that a generator matrix is not unique� When
A is a generator matrix of �� this same lattice is generated by UA�
where U is any unimodular integer matrix �j detU j � 
��

��� Dual Lattices

Corresponding to every s	dimensional lattice � is its dual �or polar
or reciprocal� lattice ��� This may be de
ned in terms of generator
matrices as follows� When the generator matrix of � is A� then �� is
the lattice whose generator matrix is B � �AT ���� This is a somewhat
trite de
nition� For a more informative introduction� see �Lyn���� It is
readily shown that� when � is an integration lattice� that is� � � ���
then �� is an integer lattice that is� �� 	 ��� Since all components of
a point in �� are integers� the same is true for ��� and so its generator
matrix B has only integer elements� Again� UB is also a generator
matrix of ��� and it is possible to choose U so that H � UB is in
upper triangular lattice form �utlf�� That is� Hcc � �� Hrc � ��� Hcc��
when r � c and Hrc � � when r � c� The utlf generator matrix H is
in 
�
 correspondence with the integer lattice ��� �This is helpful for
counting the number of di�erent lattices and for organizing a search
for optimal lattices� See �LyS������



��� Lattice Rules

The lattice rule Q��� is a cubature formula whose abscissas lie on the
intersection of an integration lattice � � L�t�D� Z� s� and ��� 
�s� It is
denoted by Q�t�D� Z� s� and may be de
ned by

Q�t�D� Z� s�f �



d�d� � � � dt

d�X
j���

d�X
j���

� � �
dtX

jt��

f�f
X

jizi�dig�� �
���

where� as is conventional� y � fxg is de
ned as the vector obtained
from the fractional parts of each component of x�

The same rule Q��� may have many di�erent representations of
this form� using di�erent values of t and other parameters� A rule is
of rank r if it can be expressed in this form with t � r� but cannot be
so expressed with t � r� See� for example� �SlLy���� An example of a
rank	� rule is given in Section �� The m	copy rule de
ned in Section
� when m � 
 is of rank s�

The number of function values N�Q� used by Q��� is the number
of points in �� ��� 
�s� this coincides with the density of lattice points
and can be shown to be

N � j detAj�� � j detBj � H��H�� � � �Hss� �
���

Unfortunately� this value is not immediately clear from �
���� In point
of fact� N � �detD��k� where k is a positive integer and� of course�
detD � d�d� � � � dt� When k � 
� the form �
��� is termed repetitive�

The reader will note that �s����j detBj is the s	volume of a simplex
having vertices at the s generators of �� and at the origin� This
simplex is known as a basic simplex of the lattice ��� In fact� any
simplex constructed from �s � 
� distinct elements of this lattice has
s	volume k�s����j detBj� where k is a nonnegative integer�

��� Fourier Series and Trigonometric Polynomials

We treat the s	dimensional hypercube ��� 
�s� For many functions� the
Fourier series

�f�x� �
X

h�ZZ
s

�fhe
��ih�x �
���



converges and coincides with f�x� in ��� 
�s� Here

�fh �
Z
�����s

f�x�e���ih�xdx �
���

is a Fourier coe�cient of f�x�� A trigonometric polynomial is simply
a function f�x�� having only a 
nite number of nonvanishing Fourier
coe�cients� To quantify this� we de
ne a subset ��x� �� of the s	
dimensional unit lattice

��s� �� � fh such that jhj �� jh�j� jh�j� � � �� jhsj � �g� �
���

De�nition � f�x� is an s�dimensional trigonometric polynomial of
degree d �or enhanced degree � � d�
� when its only nonzero Fourier
coe�cients �fh are those for which h � ��s� ���

��� Lattice Rules of Speci�ed Trigonometric Degree

The discretization error of any cubature formula may be expressed in
terms of the Fourier coe�cients of the integrand function� To this end�
we apply the operator Q to the Fourier series �
��� above to obtain

Qf �
X

h�ZZ
s

�fhdh�Q�� �
�
��

where we have de
ned

dh�Q� �� Q�e��ih�x� �
N�Q�X
j��

wje
��ih�xj � �
�

�

Equation �
�
�� above may be considered a generalization of the Pois	
son summation formula� which in one dimension connects a sum of
equally spaced function values with a sum of equally spaced Fourier
transforms� When Q is a lattice rule� many coe�cients dh�Q� in �
�

�
vanish�

Theorem � When Q � Q��� is a lattice rule�

dh�Q� �

��
� 
 for all h � ��

� otherwise�



There are several straightforward ways of proving this� See� for ex	
ample� �Lyn����

Applying this result to �
�
�� in the case that Q is a lattice rule
gives

Q���f �
X

h���

�fh� �
�
��

We are now in a position to derive a criterion for the enhanced degree
of a lattice rule� Recalling that �f� � If � we rewrite this equation in
the form

Ef �� Q���f � If �
X

h���

��jhj��

�fh �
X

h���

jhj��

�fh� �
�
��

When f�x� is a trigonometric polynomial of enhanced degree �� in
view of De
nition � above� every term in the 
nal summation is zero�
Because of this� the condition for Ef to be zero must be that the 
rst
summation is also zero� this implies that �� contains no elements h
for which � � jhj � ��

Theorem � Q��� is of enhanced degree � if and only if �� contains
no elements� other than the origin within ��s� ���

This result could equally well be established using �
�

� by con	
structing moment equations� A set of moment equations is

d��Q� � 
 dh�Q� � � 
 � � h � ��

whether or not Q is a lattice rule� Theorem � may be expressed in
other ways� For example�

� � min
h ���

h���

jhj� �
�
��

In classical lattice theory� the term admissible is used for this concept�
A lattice � is termed �	admissible if it contains no elements other
than the origin within �� Thus� � is the largest integer for which ��

is ��s� ��	admissible�



� The Search for Optimal Rules

Every cubature formulaQ has an abscissa set� We denote byN�Q� the
number of abscissas in this set� All these may be taken to be in ��� 
�s�
We de
ne Nmin�s� �� to be the minimal number N�Q� of abscissas
needed by any cubature formulaQ of enhanced trigonometric degree ��
Any formula Q of this enhanced degree � for which N�Q� � Nmin�s� ��
is termed an optimal rule� Our searches have all been limited to lattice
rules� and the more expensive searches to subsets of lattice rules� We
have been particularly careful to specify the subset of lattice rules with
respect to which each individual result is optimal�

The 
nal paragraph of the preceding section indicates that many
properties of interest of Q��� are geometric properties of ��� these
may be conveniently obtained from its generator matrix� B or H� For
example� the abscissa count N�Q� is simply s�V � V being the s	volume
of the basic simplex of ��� In terms of the generator matrix� this is
simply j detBj or detH � H��H�� � � �Hss� The enhanced degree of Q
is simply the shortest L� distance of any element of �� from the origin�
as speci
ed by �
�
�� above� Moreover� there is a 
�
 correspondence
between an integer lattice and its generator matrix in utlf�

This all suggests a somewhat indirect class of search procedure�
one based on searching sets of integer lattices� ��� Finally� when the
search is complete and the  best! lattices found� then and only then
need � and Q��� be constructed�

The search population comprises sets of integer lattices� Each lat	
tice is represented by a generator matrix� Several searches for rules
having optimal Zaremba indices are described in �LyS��
�� In these�
�� is represented by its utlf generator H� In the current search� a
di�erent generator� described below� is used�

Besides indicating a method for an exhaustive search� the theory of
the preceding section� in particular the 
nal theorem� suggests some
obvious characteristics we might expect to 
nd in the dual lattice of an
optimal rule� Indeed� our recent major search �CoLy��� was con
ned
to areas where promising lattices seemed likely to occur� The next



paragraph is adapted from �CoLy���� where a complete description of
this search may be found�

A dynamic approach to the problem of 
nding an optimal rule
might start with a lattice that is comfortably of enhanced degree � and
has a high abscissa count� We perturb this given ��s� ��	admissible
lattice ��� with a view to reducing the s	volume of its unit cell but
keeping it ��s� ��	admissible� that is� not allowing any lattice point
to enter the 
xed region ��s� ��� It is reasonable to believe that the
process of making this unit cell small� that is� making the lattice ��

denser and reducing its order� would� in general� move lattice points
towards the origin� This process would be seriously inhibited by the
boundary of ��s� ��� Ultimately �as the wiggle room disappears�� one
would expect progress to come to a complete stop �grind to a halt�
at a stage where many points of �� were �jammed� on this boundary�
Thus� it is plausible to believe that the lattice � of an optimal lattice
rule Q��� of enhanced degree � will have a dual lattice �� with many
elements on this boundary� The underlying feature of our search is
that it is limited to dual lattices having this property�

In three dimensions� our population comprised all integer lattices
generated by b�� b�� and b�� where these lay on di�erent faces of the
octahedron ���� ��� None have enhanced degree exceeding �� In our
search� we check the abscissa count 
rst� If this is the smallest yet
encountered� we carry out the longer task of calculating the enhanced
degree� If this turns out to be �� we retain this lattice �� as a candidate
for an optimal lattice�

These remarks are intended only to give the underlying idea of the
search� A proper description even in three dimensions is far longer�
In higher dimensions there are many complications that we do not
discuss here�

The cost in computer time of this search is enormous� The complex	
ity is high but not more than �s

���� However� after code development
and calculations lasting over one year� we have found what are prob	
ably the optimal lattice rules for s � �� � � ��� and for s � �� � � ���
Unfortunately� we cannot a�rm that these are optimal in a general



sense� In �CoLy��� we have introduced de
nitions �K	optimal� which
specify the precise sense in which these rules are optimal�

� The rho�index ��Q�

In this section� we simply state some examples of the results we found�
The reader interested in a complete set of results should refer to
�CoLy���� There we give seventy	six lattice rules� all optimal in some
sense� each speci
ed in terms of its utlf matrixH� These are presented
in three pages of tabular material� which we do not reproduce here�
However� we do reproduce below two 
gures in which a rule may be
represented by a single point� In these two 
gures we have included a
majority of the rules discovered by our search� as well as some other
rules�

De�nition � Let an s�dimensional cubature rule Q have abscissa count
N and strict enhanced trigonometric degree �� Then its �	index ��Q�
is

��Q� �� �s��s�N�� ���
�

In earlier papers� the concept of an e�ciency indicator was used�
We believe that the e�ciency indicator has now outlived its usefulness�
we recommend using the �	index instead� Naturally� this suggestion
has no e�ect on the depth and nature of research about optimal rules�
It simply provides a way of illustrating results� The reader might
compare Figures 
 and � below with corresponding 
gures that use
the e�ciency indicator as ordinate� Figures 
 and � are reasonably
compact �in a nontechnical sense�� The following theoretical results
show why�

De�nition � The m�copy �or ms�copy� of an s�dimensional cubature
formula ����� is

Q�m�f �
m��X
k���

m��X
k���

� � �
m��X
ks��

NX
j��

wj

ms
f

�
�xj � �k�� k�� � � � � ks�

m

�
A � �����
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Figure �� � as a function of � for three	dimensional rules
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� Rules appearing in recent papers
� Rules appearing in �CoLy���
� The M"oller Bound NME



This is� of course� the rule obtained by partitioning ��� 
�s in a
natural way into ms identical squares and applying a properly scaled
version of Q to each� It is almost self	evident that the m	copy of a
lattice rule is also a lattice rule�

Theorem � When Q is a cubature formula of enhanced degree � hav�
ing abscissa count N � then Q�m� is a cubature formula of enhanced
degree s� and abscissa count �sN �

A proof restricted to lattice rules is almost self	evident� since the e�ect
of taking an m	copy is to replace � by �
�m�� and �� by m���
However� the general proof is also straightforward�

Corollary � The ��indices of a cubature formula Q and any of its
m�copies Q�m� are identical� That is�

��Q�m�� � ��Q�� �����

This follows immediately from ���
��

The second relevant result concernsNME�s� ��� the well	known lower
bound on the abscissa count of any s	dimensional rule of enhanced tri	
gonometric degree �� This bound is sometimes called M"oller#s lower
bound� although M"oller considered only the algebraic degree �M"ol����
All results known to us on lower bounds are contained in �Coo���� see
in particular subsections ��
 and ���� For odd values of � the bound
is classical� For even values of � it is mentioned in �Nos��� and de	
rived in �Mys���� extending M"oller#s result� Using this result� one can
easily show that �� $Q� � 
 for a hypothetical rule $Q of degree � and
abscissa count NME� Since no actual rule of this degree can have a
lower abscissa count� we 
nd

��Q� � �� $Q� � 
� �����

In Figures 
 and �� every point entry represents a cubature formula�
In view of ����� above� there can be no entries above � � 
� The



square entries are the hypothetical rules $Q mentioned above� Because
of M"oller#s bound� there can be no entries above these�

However� in view of ������ every point on this 
gure gives rise to an
in
nite sequence of other points� speci
cally� a point at ��� �� implies
there is a sequence of points at �m�� �� for all positive integer m� In
general� these points are not shown�

It is apparent� then� that rules of particular interest have entries in
the part of this 
gure lying in a strip bounded above by � � 
 and
below by one of the previous entries� The reasoning here extends to
s	dimensions�

� Some Speci�c Results for s � �� � � ��

The four	dimensional rule with the highest �	index known to us is one
with � � 
�� In this section we 
rst give several examples of rules
having enhanced degree � � 
�� We then make some general points
in terms of these examples�

In 
��
� Noskov published �Nos�
� two rank	
 simple rules having
� � 
�� These were of the form

Qf �



N

NX
j��

f �fjz�Ng� � ���
�

One is a member of a family of rules speci
ed for all � � �k� k �

� �� � � �� the member with � � 
� has

N � ����� z � �
� 
�� 
��� ����� 	 � 
��� �����

�See Section � for the multiplicity 	�� Another� found by experiment�
has

N � ����� z � �
� 
�� 
��� ����� 	 � 
��� �����

Almost ten years later� in the course of the exhaustive search described
above� we came across the rank	
 simple rule with

N � ����� z � �
� 
��� 
��
� 
����� 	 � 
��� �����



This may or may not be an optimal rank	
 rule� however it is not an
optimal lattice rule of this degree� In �CoLy���� a rank	� rule is listed�
Since it has rank �� it cannot be written in rank	
 form ���
� above�
One D � Z representation is

Qf �



��
�

����X
j��

�X
k��

f

��
jz�

���

�
ke�
�

	

� �����

with

N � ��
�� z� � �
��
� �
�� ���� 
�� e� � �
� �� �� ��� 	 � ���

It has not been shown that this is a generally optimal rule� It is K	
optimal with respect to a reduced family� Thus� there could possibly
be� �i� a K	optimal rule� �ii� a lattice rule� �iii� a general rule� having
successively higher values of ��

� Symmetric Equivalence

In the context of lattice searches� the concept of symmetric equivalent
sets of lattices was 
rst extensively developed in �LyS��
�� The 
rst
paragraph of Section � of �CoLy��� also provides a good introduction
to these ideas�

Brie%y� a lattice � is symmetrically equivalent to another lattice ��

if one can obtain � from �� by elementary rotations or inversions of
the coordinate axis system� For example� in four dimensions �s � ���
any particular lattice is one of a set of 	 lattices� each of which is a
symmetric copy of any other� In general� 	 can be as high as �s��s� �

��� In fact� many lattices �� have built in additional symmetry� and
the multiplicity of the symmetric equivalent set to which �� belongs
may be any integer of the form 
���k� where k is a positive integer�

It is intuitively obvious that many characteristics of each lattice�
including its abscissa count and its trigonometric degree� are shared by
each lattice in a set of symmetric equivalents� Thus� considerable e�ort
in a search could be saved if only one member of each set were treated�
Speci
cally� whether the search is taking place on a personal computer



or on a state	of	the	art supercomputer� avoiding such duplication of
e�ort might reduce the computer time required in a four	dimensional
search from N hours to N minutes� However� our own experience in
several comparable searches is that it is extremely di�cult to exploit
the symmetry e�ectively�

Further information with detailed proofs about lattice rules in gen	
eral may be obtained from �SlJo���� Much of the background for our
search may be found in �CoSl����
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