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An acyclic coloring of a graph is a proper vertex coloring such that the
subgraph induced by the union of any two color classes is a disjoint collection
of trees. The more restricted notion of star coloring requires that the union
of any two color classes induces a disjoint collection of stars. The acyclic and
star chromatic numbers of a graph G are defined analogously to the chromatic
number χ(G) and are denoted by χa(G) and χs(G), respectively. In this paper,
we consider acyclic and star colorings of graphs that are decomposable with
respect to the join operation, which builds a new graph from a collection of two
or more disjoint graphs by adding all possible edges between them. In particular,
we present a recursive formula for the acyclic chromatic number of joins of
graphs and show that a similar formula holds for the star chromatic number. We
also demonstrate the algorithmic implications of our results for the cographs,
which have the unique property that they are recursively decomposable with
respect to the join and disjoint union operations.

1 Introduction

Both acyclic and star colorings have applications in the field of combinatorial
scientific computing, where they model two different schemes for the evaluation
of sparse Hessian matrices. The general idea behind the use of coloring in
computing derivative matrices is the identification of entities that are essentially
independent and thus may be computed concurrently; see [5] for a survey.

A number of results exist for acyclic and star colorings of graphs formed by
certain graph operations. Results have been obtained for Cartesian products
of paths [4], trees [9], cycles [7], and complete graphs [8]. In Section 2, we
describe the acyclic and star chromatic numbers of graphs formed by the join
operation. The join of a collection {Gi = (Vi, Ei)}i∈I of pairwise disjoint graphs,
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denoted ⊕, is the graph G = (V,E), where V =
⋃

i∈I Vi and E = {ab | ab ∈
Ei, i ∈ I}∪{ab | a ∈ Vi, b ∈ Vj , i, j ∈ I, i 6= j}. Here and throughout this paper,
I denotes a finite index set.

The problems of finding optimal acyclic and star colorings are both NP-hard
and remain so even for bipartite graphs [2, 1]. It was shown recently [6] that
every coloring of a chordal graph is also an acyclic coloring. Since recognizing
and optimally coloring chordal graphs can be done in linear time, this result
immediately implies a linear time algorithm for the acyclic coloring problem on
chordal graphs. A generalization of this result and other related results can be
found in [10], where it is shown that the graphs for which every acyclic coloring
is also a star coloring are exactly the cographs. In Section 3, we show that
our results imply a linear time algorithm for finding optimal acyclic and star
colorings of cographs.

2 Joins of graphs

In this section, we outline a proof of the following theorem.

Theorem 1. Let {Gi = (Vi, Ei)}i∈I be a finite collection of graphs. Then

(i) χa

(⊕
i∈I

Gi

)
=
∑
i∈I

χa(Gi) + min
j∈I

 ∑
i∈I,i6=j

(|Vi| − χa(Gi))

 ;

(ii) χs

(⊕
i∈I

Gi

)
=
∑
i∈I

χs(Gi) + min
j∈I

 ∑
i∈I,i6=j

(|Vi| − χs(Gi))

 .

For ease of exposition, we will focus on the case where G is the join of exactly
two graphs as in the following lemma. To see that these results generalize to joins
of arbitrarily large collections of graphs, first observe that the join operation is
commutative and associative; the result is then obtained by using induction on
|I|.

Lemma 2. Let G1 = (V1, E1) and G2 = (V2, E2) be graphs. Then

(i) χa(G1 ⊕G2) = χa(G1) + χa(G2) + min {|V1| − χa(G1), |V2| − χa(G2)} ;

(ii) χs(G1 ⊕G2) = χs(G1) + χs(G2) + min {|V1| − χs(G1), |V2| − χs(G2)} .

We now sketch the idea behind the proof of this lemma. Suppose we are
given graphs G1 and G2 and we wish to find an optimal acyclic or star coloring
of their join. Since every vertex in V1 is adjacent to every vertex in V2, no
color can occur in V1 and V2 simultaneously. Moreover, the desired coloring
must also be valid for the subgraphs induced by each Vi, i ∈ {1, 2}, where
the lower bound will be χa(Gi) or χs(Gi) depending on the type of coloring
that is sought. The key observation is that at least one Vi must be saturated,
meaning that each vertex receives a unique color. It can be shown that G will
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otherwise contain a bichromatic cycle – a violation of the conditions of acyclic
coloring. Furthermore, such a bichromatic cycle implies a bichromatic path on
four vertices, which cannot occur in a star coloring. Thus, given disjoint optimal
acyclic colorings of G1 and G2, an optimal acyclic coloring of their join can be
constructed by saturating the graph Gi that minimizes |Vi| − χa(Gi). It is easy
to see that the same procedure can be used in the context of star coloring.

3 Cographs

In this section, we outline a linear time algorithm for finding optimal acyclic and
star colorings of cographs. The algorithm works on the cotree — defined below
— in a way that is typical for algorithms on cographs. We begin with some
definitions. The disjoint union of a collection {Gi = (Vi, Ei)}i∈I of pairwise
disjoint graphs, denoted ∪, is the graph G = (V,E), where V =

⋃
i∈I Vi and

E =
⋃

i∈I Ei. A graph G = (V,E) is a cograph if and only if one of the following
is true:

(i) |V | = 1;

(ii) there exists a collection {Gi}i∈I of cographs such that G =
⋃
i∈I

Gi;

(iii) there exists a collection {Gi}i∈I of cographs such that G =
⊕
i∈I

Gi.

Cographs can be recognized in linear time [3], where most recognition algorithms
also produce a special decomposition structure when the input graph G is a
cograph. We associate with a cograph G a tree TG called a cotree, whose leaves
correspond to the vertices of G and whose internal nodes are labeled either 0
or 1. The 0-nodes correspond to the disjoint union of their children, and the
1-nodes correspond to the join of their children.

As in Section 2, we describe the binary case, which can be appropriately
generalized. The algorithm proceeds by traversing the cotree starting with the
leaves, such that no node is visited before both of its children have been visited.
We do the following when we visit a node t ∈ TG with children t1 and t2. If t is
a 0-node, we construct a coloring that uses χa(t) = max{χa(t1), χa(t2)} colors
in the obvious way. If t is a 1-node, we use the process described in Section 2
to construct a coloring that is optimal by Theorem 1. Since the algorithm
produces an optimal acyclic coloring for every node in the cotree, the last step
will produce an optimal acyclic coloring of G itself. Our final theorem follows
from the fact that every acyclic coloring of a cograph is also a star coloring and
vice versa.

Theorem 3. An optimal acyclic coloring of a cograph can be found in linear
time. Furthermore, the obtained coloring is also an optimal star coloring.
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