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Abstract

An acyclic (resp. star) coloring of a graph is a proper vertex coloring such that the
subgraph induced by every pair of colors is a disjoint collection of trees (resp. stars).
In this paper, we consider the acyclic and star chromatic numbers of graphs that are
decomposable with respect to the join operation, which builds a new graph from a
collection of two or more disjoint graphs by adding all possible edges between them.
In particular, we present a recursive formula for the acyclic chromatic number of joins
of graphs and show that a similar formula holds for the star chromatic number.

The cographs have the unique property that they are recursively decomposable
with respect to the join and disjoint union operations. We show that our results imply
a linear time algorithm for finding optimal acyclic and star colorings of cographs.

1 Introduction

A proper vertex coloring (or coloring) of a graph G = (V,E) is an assignment of colors
to the vertices such that adjacent vertices receive distinct colors. The chromatic number
of G, denoted χ(G), is the minimum number of colors required in any coloring of G. An
acyclic coloring of a graph is a coloring such that the subgraph induced by the union of
any two colors is a disjoint collection of trees. A star coloring of a graph is a coloring such
that the subgraph induced by the union of any two colors is a disjoint collection of stars.
The acyclic and star chromatic numbers of G are defined analogously to the chromatic
number and are denoted by χa(G) and χs(G), respectively. Since a disjoint collection of
stars constitutes a forest, every star coloring of a graph G is also an acyclic coloring and
χa(G) ≤ χs(G). We will find it useful to consider the alternative definitions that result
from the following observation.

Observation 1. The following hold for any graph G :

(i) A coloring of G is an acyclic coloring if and only if every cycle in G uses at least
three colors.

(ii) A coloring of G is a star coloring if and only if every path on four vertices in G uses
at least three colors.

The notions of acyclic and star coloring were introduced in 1973 (the latter by a
different name) by Grünbaum [9], who studied them in the context of planar graphs.
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Additionally, a number of results exist for acyclic colorings of graphs formed by certain
graph operations. Results have been obtained for grids (which are the Cartesian prod-
ucts of paths) [5], as well as Cartesian products of trees [13], cycles [11], and complete
graphs [12]. In Section 3, we describe the acyclic and star chromatic number of graphs
formed by the join operation [10].

In Section 4, we turn our attention to algorithmic properties of acyclic and star color-
ings.

The study of these problems from an algorithmic point of view is motivated in part
by their applications in the field of combinatorial scientific computing, where they model
the optimal evaluation of sparse Hessian matrices. The general idea of the use of color-
ing in computing derivative matrices is the identification of entities which are essentially
independent and thus may be computed concurrently; see [6] for a survey.

In fact, both acyclic and star colorings were discovered independently by the scientific
computing community. The problem of finding an acyclic coloring that uses a minimum
number of colors was shown to be NP-hard in [2], where it is called the “cyclic” coloring
problem. It has also been shown that finding an optimal star coloring is NP-hard [3].
Both results hold even for bipartite graphs. Inapproximability results for both problems
are given in [8].

Recently (also in the context of computing Hessian matrices), it was shown in [7] that
every coloring of a chordal graph is also an acyclic coloring. Since recognizing and opti-
mally coloring chordal graphs can be done in linear time, this result immediately implies
a linear time algorithm for acyclic coloring problem on chordal graphs. A generalization
of this result and other related results can be found in [14]. In particular, it is shown that
cographs can be characterized in the following way.

Theorem 1.1 ([1, 14]). Let G be a graph. Then the following are equivalent:

(i) G is a cograph;
(ii) G has no induced P4;

(iii) every acyclic coloring of G is also star coloring.

Thus, the cographs are interesting for reasons other than the nice decomposition prop-
erties that they exhibit. This well-studied class has many other characterizations; see [1,
Theorem 11.3.3] for a partial list. We demonstrate that the results given in Section 3
can be used to develop a linear time algorithm for finding an optimal acyclic coloring of a
cograph. Additionally, we show that the coloring obtained is also an optimal star coloring,
as suggested by Theorem 1.1.

2 Preliminaries

In this section, we introduce some definitions and notation, as well as some prove some
elementary results that will be useful in Sections 3 and 4. Throughout this paper, I will
denote a finite index set. The disjoint union of a collection {Gi = (Vi, Ei)}i∈I of pairwise
disjoint graphs is the graph G = (V,E), where V =

⋃
i∈I Vi and E =

⋃
i∈I Ei.

Proposition 2.1. The following hold for any graph G = G1
⋃
G2 :

(i) χ(G) = max{χ(G1), χ(G2)};
(ii) χa(G) = max{χa(G1), χa(G2)};

(iii) χs(G) = max{χs(G1), χs(G2)}.
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Proof. The proof follows from the simple observation that the graph with the lower chro-
matic number can be colored with some subset of the colors used by the other graph.

The join of a collection {Gi = (Vi, Ei)}i∈I of pairwise disjoint graphs is the graph
G = (V,E), where V =

⋃
i∈I Vi and E = {ab | ab ∈ Ei, i ∈ I} ∪ {ab | a ∈ Vi, b ∈ Vj , i, j ∈

I, i 6= j}.

Proposition 2.2. The following hold for any graph G = G1
⊕
G2 :

(i) χ(G) = χ(G1) + χ(G2);
(ii) χa(G) ≥ χa(G1) + χa(G2);

(iii) χs(G) ≥ χs(G1) + χs(G2).

Proof. We first observe that G1 and G2 are induced subgraphs of G, and thus they must
both be colored appropriately for any coloring of G. The proof then follows from the fact
that every vertex in V1 is adjacent to every vertex in V2, which means that no color can
occur on a vertex in V1 and a vertex in V2 simultaneously.

We will write G = V1
⊕
V2 when G = (V,E) is the graph that results from taking the

join of two graphs G1 = (V1, E1) and G2 = (V2, E2) such that V1 ∩ V2 = ∅. We denote by
|φ| the number of colors used by a coloring φ : V → {1, . . . , |φ|} of a graph G = (V,E). Let
φ be a coloring of a graph G such that G is either the disjoint union or join of a collection
{Gi}i∈I of graphs. We denote by φi the coloring of Gi obtained by restricting φ to Vi,
where |φi| is the number of colors used by φi. The following proposition holds even when
φ is an acyclic coloring or a star coloring.

Proposition 2.3. Let φ be a coloring of a graph G = G1
⊕
G2. Then φ1 and φ2 are

disjoint, and |φ| = |φ1| + |φ2|. Moreover, the same is true when φ is an acyclic or star
coloring of G.

Proof. This follows immediately from Proposition 2.2.

3 Main Results

For ease of exposition, we will focus on the case where G is the join of exactly two
graphs. We will then demonstrate that these results generalize to joins of arbitrarily large
collections of graphs.

We are now ready to present one of the main theorems, which relates χa(G) to χa(G1)
and χa(G2).

Theorem 3.1. Let G1 = (V1, E1) and G2 = (V2, E2) be graphs. Then

χa(G1

⊕
G2) = χa(G1) + χa(G2) + min {|V1| − χa(G1), |V2| − χa(G2)} .

Proof. (≤) : We prove this direction by presenting an algorithm that, given optimal acyclic
colorings of G1 and G2, produces an acyclic coloring φ of G that uses the desired number
of colors. Let φ1 and φ2 be arbitrary optimal acyclic colorings of G1 and G2, respectively,
where, as follows from Proposition 2.3, φ1 and φ2 are disjoint. Assume without loss of
generality that |V1| − χa(G1) ≤ |V2| − χa(G2). We construct φ as follows.

• Color those vertices in V2 ⊆ V the same as they are colored by φ2.

• Color those vertices in V1 ⊆ V with a new coloring φ′1 such that each v ∈ V1 receives
a unique color and φ′1 is disjoint from φ1 and φ2.
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Figure 1: Illustration of the proof of Theorem 3.1. If |φ1| < |V1| and |φ2| < |V2|, then
there exist vertices a1, b1 ∈ V1 and a2, b2 ∈ V2 that form a bichromatic C4.

To see that this process results in |φ| having the desired size, observe that the difference
between |φ1| and |φ′1| is exactly |V1|−χa(G1), which was assumed without loss of generality
to be no greater than |V2|−χa(G2). Thus we have demonstrated a method for constructing
the desired coloring φ, which completes this direction of the proof.

(≥) : Let φ be an optimal acyclic coloring of G, and assume for the sake of contradiction
that

χa(G) < χa(G1) + χa(G2) + min {|V1| − χa(G1), |V2| − χa(G2)} .
It follows that

χa(G) < χa(G1) + χa(G2) + |V1| − χa(G1)

and
χa(G) < χa(G1) + χa(G2) + |V2| − χa(G2),

which can be combined with Proposition 2.3, along with the fact that φ is an acyclic
coloring of G, to obtain

|φ1|+ |φ2| < χa(G2) + |V1| (1)

and
|φ1|+ |φ2| < χa(G1) + |V2|. (2)

We will now show that this implies that φ uses few enough colors that we must have
|φ1| < |V1| and |φ2| < |V2|, which will lead to a contradiction. Note that Proposition 2.3
also implies that χa(G1) ≤ |φ1| and χa(G2) ≤ |φ2|, and note also that all quantities in (1)
and (2) are nonnegative. Thus we may subtract |φ2| from the left-hand side and χa(G2)
from the right-hand side of (1), and we may likewise subtract |φ1| from the left-hand
side and χa(G1) from the right-hand side of (2). In doing so, we show that φ1 must use
fewer than |V1| colors and φ2 must use fewer than |V2| colors, as desired. Consequently,
there must exist vertices a1, b1 ∈ V1 and a2, b2 ∈ V2 such that φ1(a1) = φ1(b1) and
φ2(a2) = φ2(b2). It follows that the vertices in {a1, a2, b1, b2} form a bichromatic C4 in G
(depicted in Figure 1) which contradicts the fact that φ is an acyclic coloring of G, and
thus the proof is complete.

We now develop an analogous theorem for star coloring.

Theorem 3.2. Let G1 = (V1, E1) and G2 = (V2, E2) be graphs. Then

χs(G1

⊕
G2) = χs(G1) + χs(G2) + min {|V1| − χs(G1), |V2| − χs(G2)} .
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Proof. The proof follows from the observation that any bichromatic cycle appearing in the
proof of Theorem 3.1 implies a bichromatic P4.

Corollary 3.3. Let {Gi = (Vi, Ei)}i∈I be a finite collection of graphs. Then

(i) χa

(⊕
i∈I

Gi

)
=
∑
i∈I

χa(Gi) + min
j∈I

 ∑
i∈I,i 6=j

(|Vi| − χa(Gi))

 ;

(ii) χs

(⊕
i∈I

Gi

)
=
∑
i∈I

χs(Gi) + min
j∈I

 ∑
i∈I,i 6=j

(|Vi| − χs(Gi))

 .
Proof. Observing that the join operation is commutative and associative, we obtain the
result by using induction on |I|.

4 Cographs

In this section, we present a linear time algorithm for finding optimal acyclic and star
colorings of cographs. Our algorithm works on the cotree (defined below) in a way that is
typical for algorithms on cographs.

We select the following definition, which is one of many equivalent definitions of the
class of cographs, as it will be most useful for our purposes.

Definition 1 (cograph). A graph G = (V,E) is a cograph if and only if one of the following
is true:

(i) |V | = 1;
(ii) there exists a collection {Gi}i∈I of cographs such that G =

⋃
i∈I
Gi;

(iii) there exists a collection {Gi}i∈I of cographs such that G =
⊕
i∈I

Gi.

Cographs can be recognized in linear time [4], where most recognition algorithms also
produce a special decomposition structure when the input graph G is a cograph. We now
introduce this structure, which is often used in algorithms designed to work on cographs.
We associate with a cograph G a tree TG called a cotree, whose leaves correspond to the
vertices of G and whose internal nodes are labeled either 0 or 1, corresponding to the
disjoint union and join operations, respectively, in the following way. Let t ∈ T be an
internal node with children {ti}i∈I . If t is a 0-node, then t corresponds to the disjoint
union of {ti}i∈I , Otherwise, t corresponds to the join of {ti}i∈I . Every node in TG has as
descendants some subset A ⊆ V of the vertices of G. Therefore, it is natural to identify
each node in the tree with the graph induced in G by this set of vertices, which we denote
by tA. In this way, the cotree describes a decomposition of G such that the root of TG

corresponds to G itself. It follows from the definition of the cotree that two vertices in G
are adjacent if and only if their lowest common ancestor in TG is a 1-node.

The canonical cotree TG is unique and has the property that every path from a leaf
to the root alternates between 0-nodes and 1-nodes. G can also be represented by one or
more cotrees which do not necessarily possess this property, but whose internal nodes all
have exactly two children. Such binary cotrees can be easier to work with algorithmically,
as is the case in the proof of the following theorem.
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Theorem 4.1. An optimal acyclic coloring of a cograph can be found in linear time.
Furthermore, the obtained coloring is also a star coloring.

Proof. We assume that a cograph G has been given along with a cotree TG, which can
be assumed without loss of generality to be binary. We initialize χa(t) = 1 for every leaf
t ∈ TG and initialize the coloring that will be constructed by assigning each vertex the
same color. The algorithm proceeds by traversing the cotree starting with the leaves, such
that no node is visited before both of its children have been visited. When we visit a node
t ∈ TG with children t1 and t2, we do the following.

• If t is a 0-node, we use the process described in the proof of Proposition 2.1 to obtain
a coloring that uses χa(t) = max{χa(t1), χa(t2)} colors.
• If t is a 1-node, we use the process described in the proof of Theorem 3.1 to obtain a

coloring that uses χa(t) = χa(t1) +χa(t2) + min{|Vt1 | −χa(t1), |Vt2 | −χa(t2)} colors.

Clearly, any coloring produced by the algorithm will be acyclic, as we have already shown
that the coloring method applied at each 1-node and 0-node in TG produces an acyclic
coloring. Furthermore, it follows from Theorem 3.1 and Proposition 2.1 that the coloring
produced at each tA ∈ T is an optimal coloring for the subgraph induced by A ⊆ V in G,
which includes the root of TG. As the root corresponds to G, and our algorithm clearly
runs in linear time, we have demonstrated the desired algorithm for acyclic coloring. That
the coloring obtained is also an optimal star coloring follows from Theorem 1.1.

Example. We demonstrate the behavior of the algorithm on the example shown in
Figure 2. In particular, while we could use any cotree for G, we will use the binary cotree
shown in Figure 2(c). We begin with

χa(t{a}) = χa(t{b}) = · · · = χa(t{h}) = 1.

Now moving up the tree, we get χa(t{a,b}) = χa(t{c,d}) = max{1, 1} = 1 and χa(t{e,f}) =
χa(t{g,h}) = χa(t{e,f,g,h}) = 2. Next, we compute χa(t{a,b,c,d}) = 1+1+max{1−1, 1−1} =
2.

Finally, the most interesting case is the root of TG, which corresponds to G itself.
In particular, we have G = G1

⊕
G2, where G1 = t{a,b,c,d} and G2 = t{e,f,g,h}. Thus

χa(G1) = 3, χa(G2) = 2, and |V1| = |V2| = 4. Therefore, χa(G) = χa(t{a,b,c,d,e,f,g,h}) =
3 + 2 + min{4− 3, 4− 2} = 3 + 2 + 1 = 6.

5 Concluding Remarks

We have shown that the acyclic and star chromatic numbers of graphs formed by the join
operation can be expressed recursively in terms of the graphs that they compose. We have
also demonstrated some algorithmic properties of these problems with respect to the join
operation. Our results, along with the recursive properties of the cographs, yield a linear
time algorithm for this class.

We hope that the results presented here will lead to efficient algorithms for the effi-
cient computation of Hessian matrices that exhibit special structure. We also hope that
these results can be generalized. A first approach would be to attempt to apply other
decompositions whose algorithmic properties are well known, as well as the classes that
have special structure with respect to them. Possibilities include modular, split, tree, and
2-join decompositions.
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Figure 2: (a) A cograph G; (b) its canonical cotree TG; (c) a binary cotree T. The graph is
shown along with an optimal acyclic coloring, which is (necessarily) also an optimal star
coloring.
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