Elimination Techniques on Linearized Computational Graphs and Dual Graphs
with an Emphasis on Data Locality

Andrew Lyons
Department of Electrical Engineering and Computer Science
Vanderbilt University
2201 West End Avenue, Nashville, TN 37235, USA
andrew.m.lyons@vanderbilt.edu

Abstract [1, 2] focus solely on minimizing floating point operations,
the result is that they greedily choose elimination targets

Use of the chain rule in the preaccumulation of Jacobian from around the graph and the accumulation code they pro-
matrices yields a computationally complex search space ofduce will not take advantage of the benefits of caching. The
elimination sequences. Current techniques attempt to min-heuristics described here are designed to produce code that
imize arithmetic operations in the generated code, which is will reuse bits of data immediately, while they still reside
generally considered to be an NP-hard problem, though no fast memory.
proof currently exists.

The heuristics described in this paper focus on generat- 2. Determination of Elimination Sequences
ing code that makes use of cache and other fast memory to
speed execution. We describe heuristics that focus on data For a LCG(, a set of elimination targe®¢ = {66 is

locality for vertex and edge elimination on linearized com- 3 yalid elimination target iit7} is constructed. A heuristic,
putational graphs, as well as heuristics for face elimioati denotedhy, is a map from one such S@lﬁck—l) to a subset

on dual graphs. G(Cff). Elements in the target sa(cff) constitute the most
favorable equivalence class fay, based on its particular
criteria. Thus if all of the elements '@(Cf_l) areinthe same
equivalence class with respectitp, thenGg“) = eg"*”.

In the event of a heuristig,;. returning target se@%")

such thatG(Cf)| > 1, G)(Cff) must be passed to another heuris-
tic hx41, and so on until the target set consists of a single

brary. xaifBooster receives xml code that describes ditct element. The elimination of this single element transforms
: M . (h) h+1) i is defi i
acyclic graphs known as linearized computational graphsG : Into G(- Inthis way, yvhat IS deflqeq as a hierarchy
(LCGs). These graphs represent the code (FORTRAN or©f hegngtlcs_(hl, ha, ..., hq) will make a distinct sequence
C++) that describes some vector functibnwhose Jaco- of(f)ellmlnatlons, thereby turningf into the bipartite graph
bian matrixF’ we seek. G . . Lo

The component described in this paper creates a ¢bpy Thus, for any par'.tlcular grapt¥ the.un!que eI|m|_nat|on
of the linearized computational graph and performs a series.ar9et chosen by a hierarchypheuristics is determined by

of [eliminations on it that reduce it to a bipartite gra@h’ the following formula:

1. Introduction

The heuristic model presented here has been imple-
mented as part of a piece of software called xaifBooster,
which is written in C++ and uses the boost graph li-

which represents the Jacobian®f Each of these elimi- ol _ (hg_1(..h (@(h—l)))
nations generates a corresponding Jacobian Accumulation
Expression graph (JAE graph) which is eventually turned In order to ensure tha(-)(G?)| = 1, we require that the last

into a line of Jacobian accumulation code. The sequenceheuristic in the hierarchy always return a unique selection
of eliminations performed o, the LCG ofF’, determines (Placing such a heuristic anywhere but last in the hierarchy
(uniquely) a block of Jacobian accumulation code, which is would render all subsequent heuristics useless). Forward
computationally substantial. or reverse mode heuristics will always return a unique se-

Current popular heuristics for Jacobian accumulation lection, as they are implemented based on one particular

topological sort of the original grapfy. see [3] for more
information on forward and reverse heuristics.

3. Vertex Elimination Heuristics

Vertex elimination is executed on linearized computa-

tional graphsG = (V, E). Three sets of vertices partition
V': the set of independent vertic&s, the set of dependent
verticesVp, and the set of “eliminatable” (or intermediate)
verticesVg. For vertex elimination on a LC@&, the set of
eliminatable targets is defined by

O¢ = {00 € Vi }.

Definition 1 Vu; € V the predecessor seff v;, denoted
P, is{vjlv; € V,(4,7) € E}.

Definition 2 Vv; € V thesuccessor seif v;, denotedS,,,
is {v;lv; € V, (4, j) € E}.

Elimination of a verteX is executed by creating, s) € E,
Y, € Py, vs € Sp. If (p,s) already exists, we conduct

what is known as a fused multiply-add (FMA), and incre-

ment the existing edge with the value of the newly created
one. # and its incident edges are then removed from the
graph. Thereby, a complete sequence of vertex eliminations

reduces> to a bipartite graph with” = V; UV and edges
(i,d) € FE (wherev; € V; andvy € Vp) whose labels rep-

resent the Jacobian entries. For more information on vertex

elimination, see [1].

In addition to the set of eliminatable targets vertex
elimination heuristics are made awaref®f andS,-, the
sets of predecessors and successaofs pthe most recently
eliminated target.

3.1. Highest Sibling

Highest vertex sibling degre®r HS,, selects targets
that have the highestibling degree denotedsd,,,,.., with
respect to the previous eliminatioft;. V6 € O¢, the sib-
ling degree of), denotedsdy- (), is

sdg—(0) = [Sp N Sp—| * [Py N Py-|

The maximum sibling degree is defined as follows:

Sdmax (@G) = vleneég(G{SdG* (9)}

HS, selects G(k) = {00 € G(k_l), sdg-(0) =
$dmaz(07)}. Inthe case wherd,, .. = 0, @(k) G(k 2

The elimination of a targef™ dlrectly foIIowmg the
elimination of a targe? with sdy(6%) > 0 creates code
that stipulatessdy(f™) additions to edges created during
the previous eliminatiofi—, which should still reside in fast
memory.

3.2. Successor/Predecessor

Successor/Predecessor,%P,, makes selections based
on the following criteria:

If 1P- 0%V > 018 ne% o,

If [Pp-| > |Sp-1,

SP, select®®® = (9]0 c 0%~V 6 € Gy},
If [Sp-| > [Fp- |

SP, select®® = (9]0 c 0%~V 0 € P,-}.
If [Sg-| = [Po- |

SP, select®) = (6|0 e 47V 9 e P,- US,-}.
If |Pp- NO| >0/\|S(, Nno| _0
SP, selects® = (9|9 e %7 0 € Py},
If |Py- N O] _0/\|59 Nno| >0
SP, select®) = {610 € 047V 6 € Sp-1.

When an element frorfy- (Py-) is selected|Py-| (|So-1)
of its edges should still be in fast memory because they were
created (or incremented) during the previous elimination.

3.3. Example

In the interest of simplifying this example, we will as-
sume that only vertices without outedges are considered de-
pendent vertices. In practice, this may not always be the
case, for reasons beyond the scope of this paper.

As an example, considé€¥ as depicted in Fig. 1 (a) and
the following sequence of vertex elimination heuristits:
= Sibling, ho = Successor/Predecessoy,= Markowitz, hy
= Reverse.

For the first application of this sequence to our grégh
hy and hy will return the same se®¢ that they receive,
because there is no previous eliminattonassociated with
the first elimination.

hs will thus receive the se®/. = {vs,v4,v5,v6} and
will return the set9)y = {v3} becauses; has the lowest
Markowitz degree (1 inedge * 1 outedge = 1).

Because a single elimination target has now been chosen,
we can make our first elimination by creating new edges
(or correspondingly incrementing existing edges) from ev-
ery predecessor af; to every successor of. The resulting
graphG’ is shown in Fig. 1 (a).

Next, we construcBq: = {v4,vs5,v6}, Setéd~ to vs,
and pass them both th;, which is HS,. Observe that
de3(1)4) = |S7J4 N Sv3| * |P7J4 N Pv3| = |1| * |1| =1,
whereassd,, (vs) = sdy,(vs) = |0] % |0] = 0. In this way,

H S, chooses a single elimination targgt and the result
of eliminating vertexy, is G”, shown in Fig. 1 (c).

As before,0g» = {vs,v6} andf~ = vy. HS, is
unable to choose betweeg andvg becausesd,, (vs) =
sdy, (v6) = 0. O, = {uvs,vs} is then sent tdry, which is

Ug v7

o §

V1 V2 U1 V2 (%}

s v7 (%

U1 V2 U1 V2

(@) (b)

(©)

(d) (e)

Figure 1. Vertex elimination example

Successor/Predecesshg. determines thatP,, N 0, | =

1 > 0and|S,, NOg,| = 0, so it selectO?,, = {vs}.
Fig. 1 (d) shows our LCG after the removalgf.
|©c| = 1, because the only remaining intermediate

vertex isvg, SO we can go ahead and eliminateto obtain
the bipartite grapl&?(¥), shown in Fig. 1 (e)

4. Edge Elimination Heuristics

An edge(v;,v;) or short(i,j) can be eitheffront or
backeliminated, denoted byi, j) or (i,5), respectively.

ment/multiplication on the edge labels implies a Jacobian
accumulation expression (JAE) which is stored in a list.

4.1. Highest Sibling

Highest edge sibling degreer H S., will choose elim-
ination targets that have the maximwsibling degreede-
noted bysd, ... V0 € O¢, the sibling degree of with
respect to the previous eliminatidn, denotedsdy- (9), is
defined by

sdg—(0) = |Sp N Sp—| * | Py N Py |

Front elimination is executed by connecting all vertices in The maximum sibling degree is defined as follows:

the predecessor sét; ;), = {v;}, with all vertices in
the successor sef(i), = Su;- These new edges are

{(i, k)v, € Sy, }. Only edges whose target is not an output i i
can be front eliminated. Back elimination is executed by HS. selects®%) = {0]0 € ©% Y. sdy(0)

connecting all vertices in the predecessoriggl,), = P,
with all vertices in the successor s€¢; 1), = {vx}. The
new edges arg(i, k)|v; € P, }. Only edges whose source
is not an input variable can be back eliminated.

Slmaz(07) = vgleEgG{Sd(f* (0)}

$dmaz(07)}. Inthe case whesd,,, .. = 0, G(Cff) = G(Cff_l).
The elimination of a target™ directly following the elim-
ination of a target with sdy(6™) > 0 creates code that
stipulates the immediate absorption of an edge created dur-

In both case the new edges are labeled with the valuesing the previous eliminatiofi—, which should still reside in

cki 1= ¢j; * ¢y and the edgéi, j) is removed. If an edge
elimination (4, j) y or (j, k), would create an edgg, k),
where(i, k) already exists, the label ¢f, k) is incremented
Cki ‘= Cii + Cji * cj. This is referred to aabsorptionas
opposed to the creation of new edges which reprdakint.

fast memory.

Note that if the last elimination was a front (back) elimi-
nation, any edge being considered for back (front) elimina-
tion must have a sibling degree of 1. ThiitS, can choose
front (back) eliminations following a back (front) elimina

If at any point during the elimination process an inter- tion only when the maximum sibling degree is 1.
mediate vertex has no more in- or out-edges, the vertex and
all incident edges are removed from the graph. Thereby, a4.2. Example
complete sequence of edge eliminations reddtés a bi-

partite graph consisting only of vertices¥ U} and edges
whose labels represent the Jacobian entries.

Each multiplication or combined incre-

Consider the following sequence of edge elimination
heuristics as applied to the LCG depicted in Fig. 2 (a):
hy = Sibling, ho = Markowitz, h3 = Reverse

@) (b) () (d)

Figure 2. Edge elimination example

Again, all elements ir®¢ are in the same equivalence If Ju € Vs.t.(i, j) u, It's value is incremented by the value
class with respect to all data locality heuristics, thus of v.
(Lowest Markowitz) must be used to choose our first elim- o _) _ o
ination. The Markowitz degree for any front or back edge Definition 4 A face (v;, v;) is said to beintermediateif
elimination is defined a&S| or |P|, respectively; see [1] [Pu:l > 0 A[Sy;| > 0.
for an in-depth description of Markowitz-type heuristios f o o o _
edge elimination on a LCG. LM chooses bdth¢) ; and Def|n_|t|qn 5 Avertexv € V is said to bdinalif there is no
(2,t) s because they are in the same equivalence class, wittPath inG from any vertex € P, to any vertex € S, that

Markowitz degree 1. does not go through.
Reverse mode chooses to eliminget) s becauseus . . e
occurs aften in every topological sort ofy. The resulting Current implementations of face elimination in dual

graph is shown in Fig. 2 (b). Now that we have made an graphs require checking for cases in which vertices that
elimination and we have some data in fast memory, we canhave identical predecessor and successor sets, as they must

make use of data locality in order to expedite our accumu- P& merged into a single vertex.

lation. In our particular implementation, the sékt- is com-
Inspection of Fig. 2 (b) reveals that botB,4); and posed of faces that are both intermediate and incident with
(4,7), are siblings (of sibling degree 1) ¢8,¢);. How- at least one final vertex. Itis our belief that only elimimati

ever, we cannot eliminate edg® 4) ; because vertex 4 is a such final edges will prevent the condition of two different
dependent vertex. For reasons dealing with implementationVertices sharing the same predecessor and successor sets,
that won't be discussed here, any vertex with more than 1thus alleviating the need for merges. That an optimal elim-
out-edge must be considered dependent. Hence, every veflation sequence resides in the resulting metagraph hinges
tex in our graph except fars will be treated as an output. ON proof of what is known as the ‘no free refill conjecture’.
This process continues until we have mdddiminations,

and are left with the bipartite graph shown in Fig. 2 (b). 5.1. Absorption

5. Face Elimination Heuristics - Elimination Absorb mode, ordB;, choosesd(’ in the following

Techniques on the Dual Graph way:
L . ~ - = oW — {610 € O% Y 3, c Vs.t.0 v}

Face elimination [2] is executed éh= (V, E), the dual G G o ‘
graph (or line graph) of some LCG. Edgegi, j) € I, are] (k) (k)
referred to as “faces” to distinguish edgegirandG. As always, in the case th#®;’| = 0, we setO;" =
G)(Cff_l). In this way, we ensure that so long as there is such
a face inG, our elimination will result in what is referred to
as an “absorption”AB¢ generates cache-friendly code by
A face (i, 7) is eliminated by creating a new vertexand repeatedly choosing faces whose elimination does not cre-
creating inedges from all € P; and outedgesto all € §. ate a new vertex irz. The intended consequence is that

Definition 3 A face(i,j) € E is said to besimilar to a
vertexv € V (denoted) v) if P, = P, andS, = S;.

G will contain many paths as induced subgraphs, and elim-
inations straight along these paths are quite efficient with
respect to data locality.

References

[1] A. Albrecht, P. Gottschling, and U. Naumann. Markowitz-
type heuristics for computing Jacobian matrices efficientl
In ICCS 2003 volume 2658 of NCS pages 575-584, Berlin,
2003. Springer.

[2] U. Naumann. Optimal accumulation of Jacobian matrices
by elimination methods on the dual computational graph.
Math. Prog, 3(99):399-421, 2004. Published online at
www. springerlink.com

[3] U. Naumann, J. Utke, A. Lyons, and M. Fagan. Control flow
reversal for adjoint code generation. Pmoceedings of the
Fourth IEEE International Workshop on Source Code Analy-
sis and Manipulation (SCAM 2004)ages 5564, Los Alami-
tos, CA, USA, 2004. IEEE Computer Society.

