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Context

Given program for y = F(x) : R” — R™

Want a program F*(x) that computes F(x) plus a collection of p
Jacobian-vector products

F'(x)xt, F/(x)%2, ..., F'(x)xP
or a collection of p Jacobian-transpose-vector products

F'(x)Ty', F/(x)T§% ..., F'(x)Ty?

Assume p >> max{n, m} (we want a lot of them)
As needed in Newton Krylov methods, etc.



Evaluation Procedures

’ylle k X1k Xp, Y2 = sin(xy * x1 * x2) ‘

V-1 T X1
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Computational Graphs and Evaluation Procedures
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Computational Graphs and Linearization

’ylle k X1k Xp, Y2 = sin(xy * x1 * x2) ‘

AV

C32 C42
*
o1
1 «
C1-1 C10

V-1 T X1
Vo = X2

V1 = V-1*Vg
Ci-1 = Vo
Cio = V1

Vo = V-1*Vyp
Cr-1 = V1
C1 = V-1

V3 = V2+1
C3p ~ 1

vy = sin(vy)
cao = cos(vy)

yi= Vs
Yo = Vyu
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Forward Propagation of Vectors

Associate a derivative vector v; € RP with each variable v;,

propagate through G by

Vj = Cj,'\'li (BLAS level 1 axpy operation)

Generated propagation code:
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Forward Propagation of Vectors

Vi = C1-1 ¥ V-
Vi += Cc1g * Vo

Vo) = Cp-1 * Vg
Vo += Cp1 * Vi

V3 = C3p ¥ Vp = V

- V4 = C4o * V2

C1-1 C10




Forward Propagation of Vectors

Vi = C1-1 ¥ V-
Vi += Cc1g * Vo

Vo = Co-1 * V-

Co1 Ty += Coy * V1 5p mults
Co.1 V3 = C3p * Vo = V)
- V4 = Cqp ¥ V2
y1 = V3
€11 €10

Yo = V4




Reverse Vector Propagation

Propagates vectors y, ..., yP backwards
Works symmetrically

(same mult. cost, possibly different number of adds)

Yields Jacobian-transpose-vector products

F'(x)Ty, F )Ty, Fl(x) TP
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Preaccumulation

Cost is proportional to the number of nonunit edges = transform
the graph!

Baur's formula (from chain rule) yields the entries of F’(x)

ov;:
2o 1 e

Pefpilj_' (k,Z)EP

Preaccumulation applies transformations G — G’
Afterwards, Baur's formula still expresses the entries of J (we can
still propagate vectors through it)

Complete preaccumulation results in a bipartite graph, whose
edges correspond to the nonzero entries of F'(x)

(In general, complete preaccumulation with minimal ops (OJA) is
NP-hard)



Baur's Formula
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Front Edge Elimination




Front Edge Elimination

Generated preaccumulation code:

Cki *= Cji * Ck

Cki = Cji * Cyj
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Back Edge Elimination

Cki *= Cji * Ckj

Ckir = Cjir * Ci




Preaccumulation

V v (Code for F, linearization)

32 Ch2

1 |

C11 C10
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Preaccumulation

V v (Code for F, linearization)

32 Ch2

Cy-1 = C1-1 * C21

e Cp = Cio * C21
< C3-1 = Cp-1 * C3

C4-1 = Co-1 * Cp2



Preaccumulation

(Code for F, linearization)

Ca-1 = C1-1 * C21
Cxo = C10 * Co1

C3-1 = Cp-1 * C32
C4-1 = Co-1 * Cp2




Preaccumulation
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Preaccumulation

(Code for F, linearization)

Cy-1 = C1-1 * C21
Cxo = C10 * C21
C3-1 = Cp-1 * C3
C4-1 = Co-1 * Cg2
C30 = C20 * C32
C40 Coo * Cg2




Preaccumulation

(Code for F, linearization)

C2-1 = Ci11
Cxo = C1p *
C3-1 = Cz-1
C4-1 = C2-1
C3p = Cpp *
C40 = Cop *

* Co1
C21
* C32
* Ca2
C32
C42

4 mults

V3 = C3-1 *

V3 += C3g *

Vi = Cy4-1 *
V4 += Cy4o *

o
o
i
o

4p mults
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Partial Preaccumulation

VA V4

C32 C42 (Code for F, linearization)

Co-1 = C1-1 * C21

_ 2 mults
C = Ci0 * C21
Vy = Cp-1 * Vo
vy += Cpo * Vo
3p mults

V3 = C32 * Vp = Vp

Vg = Cgo * V3



Costs

Fixed costs: Evaluation of F and linearization

Propagation: 5p multiplications
Complete Preaccumulation + Propagation: 4 4+ 4p multiplications
Partial Preaccumulation + Propagation: 2 4 3p multiplications

= Assume p is large, so ignore preaccumulation cost and focus on
propagation cost.
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Jacobian Scarcity

Example Jacobian happens to be dense, but some structure is lost
when F’(x) is accumulated to a matrix.
For example, the Jacobian is low rank (# of vertex-disjoint paths).

= Jacobian scarcity (Griewank)

Scarcity is a kind of deficiency, approximated by the number of
nonunit edges in G

Graph transformations that don’t increase the number of nonunit

edges are said to be scarcity preserving.

= Exploiting Scarcity: finding minimal representation of G(F’(x))

Greedy Algorithm - Lyons & Utke (AD2008)



Scarcity in Practice




Metagraph M(G)

edge
elimination

edge
elimination

edge
elimination| , e4g§ )
' elimination

/undo
/ edge -
/ elimination undo
edge

..... *  elimination »

Transitions in M(G) < change in number of nonunit edges |E |
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Randomized Traversal of the Metagraph

Simple random walk: yields up to 10% improvement over
greedy algorithm

... but it takes a LONG TIME (weeks?)

Nice proof of concept, but can we do better? (I hope so!)



vs. Metropolis

Assign each transition (including backwards) in the metagraph a
probability based on the change in energy JE

_SE
Pr=e 7

where 7 is a temperature and k is a constant.

» Simulated Annealing: gradual heating/cooling scheme up to
20% improvement

» Metropolis: fixed 7 — up to 35%-+ improvement



Simulated Annealing vs. Metropolis

“Surprisingly enough, many problems cannot be solved more
efficiently by SA than by the Metropolis.”

—Wegener, “SA beats Metropolis in Combinatorial Optimization”,
Electronic Colloquium on Computational Complexity, 2004.
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Simulated Annealing vs. Metropolis

“Surprisingly enough, many problems cannot be solved more
efficiently by SA than by the Metropolis.”

—Wegener, “SA beats Metropolis in Combinatorial Optimization”,
Electronic Colloquium on Computational Complexity, 2004.

Our conclusion: Our best results were obtained with a fixed
temperature scheme (Metropolis). Variations in temperature don't
appear to help much (plus adds additional parameter).

» Bound the running time scheme by IOO\VO,,-g| transitions
» Small number (5 or so) of restarts

» Runs in minutes on a laptop (not performed at runtime)



Results

Original | Greedy Alg. | Random Alg.
| 259p | 119+ 231p | 146 + 222p
Il | 108p | 34+93p | 129+ 83p

| 241p | 372+ 185p | 780 + 140p

(Metric is multiplications performed when propagating p vectors.)
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Edge Normalization Forward

&%



Edge Normalization Forward

* *
Cxj /= Ci Cek *= Cki
Ckjr /= Cki Cok *= Cki
cui =1










Example

» Postroute (-2,2)
» Front Eliminate (1,2)




Example

» Postroute (-2,2)
» Front Eliminate (1,2)
» Preroute (2,3)




Example

Postroute (-2,2)
Front Eliminate (1, 2)
Preroute (2, 3)

Back Eliminate (2,1)

vV v v Vv




Example

Postroute (-2,2)
Front Eliminate (1, 2)
Preroute (2, 3)

Back Eliminate (2,1)
Normalize (-2,1)




Example

vV v v v v Y

Postroute (-2,2)
Front Eliminate (1, 2)
Preroute (2, 3)

Back Eliminate (2,1)
Normalize (-2,1)
Normalize (2, 4)



Example

Postroute (-2,2)
Front Eliminate (1, 2)
Preroute (2, 3)

Back Eliminate (2,1)
Normalize (-2,1)
Normalize (2, 4)

vV v v v v Y

= 8 nonunit edges




Are divisions Useful?

Possibly, but we don't know how to use them

Greedy Algorithm - reroutings lead to small improvement at great
cost (still not as good as randomized algorithm)

Randomized algorithm - reroutings don't appear to help
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Scarcity «» Optimal Jacobian Accumulation




Scarcity «» Optimal Jacobian Accumulation

N M AN

— Combined cost metric: preaccumulation followed by forward vertex elim.
— Results for OJA apply (modulo the fact that p tends to infinity)
— Implication: divisions are useful for OJA (or not? face elim.?)



Exploiting Scarcity with Face Elimination
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Exploiting Scarcity with Face Elimination
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