Randomized Heuristics for Exploiting Jacobian
Scarcity

2

Andrew Lyons'? llya Safro?

LUniversity of Chicago

2Argonne National Laboratory

Dagstuhl Seminar on Combinatorial Scientific Computing
February 3, 2009

Outline

Introduction and Motivation
Linearization
Vector Propagation
Preaccumulation

Context

Given program for y = F(x) : R” — R™

Context

Given program for y = F(x) : R” — R™

Want a program F*(x) that computes F(x) plus a collection of p
Jacobian-vector products

F'(x)xt, F/(x)%2, ..., F'(x)xP

Context

Given program for y = F(x) : R” — R™

Want a program F*(x) that computes F(x) plus a collection of p
Jacobian-vector products

F'(x)xt, F/(x)%2, ..., F'(x)xP
or a collection of p Jacobian-transpose-vector products

F'(x)Ty', F/(x)T§% ..., F'(x)Ty?

Context

Given program for y = F(x) : R” — R™

Want a program F*(x) that computes F(x) plus a collection of p
Jacobian-vector products

F'(x)xt, F/(x)%2, ..., F'(x)xP
or a collection of p Jacobian-transpose-vector products

F'(x)Ty', F/(x)T§% ..., F'(x)Ty?

Assume p >> max{n, m} (we want a lot of them)
As needed in Newton Krylov methods, etc.

Evaluation Procedures

’ylle k X1k Xp, Y2 = sin(xy * x1 * x2) ‘

V-1 T X1
Vo = X2

V1 = V-1*Vg

Vo = V-1*Vyp

vy = votl

vy = sin(vy)

yi= Vs
Yo = Vyu

Computational Graphs and Evaluation Procedures

’ylle k X1k Xp, Y2 = sin(xy * x1 * x2) ‘

+1 sin() V-1 =X
Vo = X2

V1 = V-1*Vg

Vo = V-1*Vyp

vy = votl

vy = sin(vy)

yi= Vs
Yo = Vyu

Computational Graphs and Linearization

’ylle k X1k Xp, Y2 = sin(xy * x1 * x2) ‘

AV

C32 C42
*
o1
1 «
C1-1 C10

V-1 T X1
Vo = X2

V1 = V-1*Vg
Ci-1 = Vo
Cio = V1

Vo = V-1*Vyp
Cr-1 = V1
C1 = V-1

V3 = V2+1
C3p ~ 1

vy = sin(vy)
cao = cos(vy)

yi= Vs
Yo = Vyu

Forward Propagation of Vectors

Associate a derivative vector v; € RP with each variable v;,

propagate through G by

Vj = Cj,'\'li (BLAS level 1 axpy operation)

’ Vi/p]

Forward Propagation of Vectors

Associate a derivative vector v; € RP with each variable v;,

propagate through G by

Vj = Cj,'\'li (BLAS level 1 axpy operation)

Generated propagation code:

Forward Propagation of Vectors

\-7—1 =).(1

Forward Propagation of Vectors

Vi = C1-1 ¥ V-
Vi += Cc1g * Vo

Forward Propagation of Vectors

Vi = C1-1 ¥ V-
Vi += Cc1g * Vo

Vo) = Cp-1 * Vg
Vo += Cp1 * Vi

]

C1-1 C10

Forward Propagation of Vectors

Vi = C1-1 ¥ V-
Vi += Cc1g * Vo

Vo) = Cp-1 * Vg
Vo += Cp1 * Vi

V3 = C3p ¥ Vp = V

C1-1 C10

Forward Propagation of Vectors

Vi = C1-1 ¥ V-
Vi += Cc1g * Vo

Vo) = Cp-1 * Vg
Vo += Cp1 * Vi

V3 = C3p ¥ Vp = V

- V4 = C4o * V2

C1-1 C10

Forward Propagation of Vectors

Vi = C1-1 ¥ V-
Vi += Cc1g * Vo

Vo = Co-1 * V-

Co1 Ty += Coy * V1 5p mults
Co.1 V3 = C3p * Vo = V)
- V4 = Cqp ¥ V2
y1 = V3
€11 €10

Yo = V4

Reverse Vector Propagation

Propagates vectors y, ..., yP backwards
Works symmetrically

(same mult. cost, possibly different number of adds)

Yields Jacobian-transpose-vector products

F'(x)Ty, F)Ty, Fl(x) TP

Preaccumulation

Cost is proportional to the number of nonunit edges = transform
the graph!

Baur's formula (from chain rule) yields the entries of F’(x)

ov;:
2o 1 e

Pefpilj_' (k,Z)EP

Preaccumulation

Cost is proportional to the number of nonunit edges = transform
the graph!

Baur's formula (from chain rule) yields the entries of F’(x)

ov;:
2o 1 e

Pefpilj_' (k,Z)EP

Preaccumulation applies transformations G — G’
Afterwards, Baur's formula still expresses the entries of J (we can
still propagate vectors through it)

Preaccumulation

Cost is proportional to the number of nonunit edges = transform
the graph!

Baur's formula (from chain rule) yields the entries of F’(x)

ov;:
2o 1 e

Pefpilj_' (k,Z)EP

Preaccumulation applies transformations G — G’
Afterwards, Baur's formula still expresses the entries of J (we can
still propagate vectors through it)

Complete preaccumulation results in a bipartite graph, whose
edges correspond to the nonzero entries of F'(x)

(In general, complete preaccumulation with minimal ops (OJA) is
NP-hard)

Baur's Formula

1

€11

V4

Ca2

F'(x)

27
8x,-

|
|

-Y] e

pepl (k)P

C2-1C32 + C1-1C21C32
Cp-1C42 + C1-1C21C42

C2-1 + C1-1C21
C2-1C42 + C1-1C21Ca2

C10€21C32
C10C21C42

C10C21
C10€21C42

|
|

Front Edge Elimination

Front Edge Elimination

Generated preaccumulation code:

Cki *= Cji * Ck

Cki = Cji * Cyj

Back Edge Elimination

Back Edge Elimination

Cki *= Cji * Ckj

Ckir = Cjir * Ci

Preaccumulation

V v (Code for F, linearization)

32 Ch2

1 |

C11 C10

Preaccumulation

V v (Code for F, linearization)

32 Ch2

Cy-1 = C1-1 * C21

e Cp = Cio * C21

Preaccumulation

V v (Code for F, linearization)

32 Ch2

Cy-1 = C1-1 * C21

e Cp = Cio * C21

Preaccumulation

V v (Code for F, linearization)

32 Ch2

Cy-1 = C1-1 * C21

e Cp = Cio * C21
< C3-1 = Cp-1 * C3

C4-1 = Co-1 * Cp2

Preaccumulation

(Code for F, linearization)

Ca-1 = C1-1 * C21
Cxo = C10 * Co1

C3-1 = Cp-1 * C32
C4-1 = Co-1 * Cp2

Preaccumulation

;3; (Code for F, linearization)

A

Cy-1 = C1-1 * C21
Cxo = C10 * C21
C3-1 = Cp-1 * C3
C4-1 = Co-1 * Cg2
C30 = C20 * C32
C40 Coo * Cg2

Preaccumulation

(Code for F, linearization)

Cy-1 = C1-1 * C21
Cxo = C10 * C21
C3-1 = Cp-1 * C3
C4-1 = Co-1 * Cg2
C30 = C20 * C32
C40 Coo * Cg2

Preaccumulation

(Code for F, linearization)

C2-1 = Ci11
Cxo = C1p *
C3-1 = Cz-1
C4-1 = C2-1
C3p = Cpp *
C40 = Cop *

* Co1
C21
* C32
* Ca2
C32
C42

4 mults

V3 = C3-1 *

V3 += C3g *

Vi = Cy4-1 *
V4 += Cy4o *

o
o
i
o

4p mults

Costs

Fixed costs: Evaluation of F and linearization

Costs

Fixed costs: Evaluation of F and linearization

Propagation: 5p multiplications

Costs

Fixed costs: Evaluation of F and linearization

Propagation: 5p multiplications

Complete Preaccumulation + Propagation: 4 4+ 4p multiplications

Partial Preaccumulation

VA V4

C32 C42 (Code for F, linearization)

Co-1 = C1-1 * C21

_ 2 mults
C = Ci0 * C21
Vy = Cp-1 * Vo
vy += Cpo * Vo
3p mults

V3 = C32 * Vp = Vp

Vg = Cgo * V3

Costs

Fixed costs: Evaluation of F and linearization

Propagation: 5p multiplications
Complete Preaccumulation + Propagation: 4 4+ 4p multiplications
Partial Preaccumulation + Propagation: 2 4 3p multiplications

= Assume p is large, so ignore preaccumulation cost and focus on
propagation cost.

Outline

Jacobian Scarcity
Structural Properties of Jacobians
Randomized Algorithms
Results
Rerouting and Normalization

Jacobian Scarcity

Example Jacobian happens to be dense, but some structure is lost
when F’(x) is accumulated to a matrix.
For example, the Jacobian is low rank (# of vertex-disjoint paths).

= Jacobian scarcity (Griewank)

Jacobian Scarcity

Example Jacobian happens to be dense, but some structure is lost
when F’(x) is accumulated to a matrix.
For example, the Jacobian is low rank (# of vertex-disjoint paths).

= Jacobian scarcity (Griewank)

Scarcity is a kind of deficiency, approximated by the number of
nonunit edges in G

Graph transformations that don’t increase the number of nonunit
edges are said to be scarcity preserving.

Jacobian Scarcity

Example Jacobian happens to be dense, but some structure is lost
when F’(x) is accumulated to a matrix.
For example, the Jacobian is low rank (# of vertex-disjoint paths).

= Jacobian scarcity (Griewank)

Scarcity is a kind of deficiency, approximated by the number of
nonunit edges in G

Graph transformations that don’t increase the number of nonunit

edges are said to be scarcity preserving.

= Exploiting Scarcity: finding minimal representation of G(F’(x))

Jacobian Scarcity

Example Jacobian happens to be dense, but some structure is lost
when F’(x) is accumulated to a matrix.
For example, the Jacobian is low rank (# of vertex-disjoint paths).

= Jacobian scarcity (Griewank)

Scarcity is a kind of deficiency, approximated by the number of
nonunit edges in G

Graph transformations that don’t increase the number of nonunit

edges are said to be scarcity preserving.

= Exploiting Scarcity: finding minimal representation of G(F’(x))

Greedy Algorithm - Lyons & Utke (AD2008)

Scarcity in Practice

Metagraph M(G)

edge
elimination

edge
elimination

edge
elimination| , e4g§)
' elimination

/undo
/ edge -
/ elimination undo
edge

..... * elimination »

Transitions in M(G) < change in number of nonunit edges |E |

Randomized Traversal of the Metagraph

Simple random walk: yields up to 10% improvement over
greedy algorithm

Randomized Traversal of the Metagraph

Simple random walk: yields up to 10% improvement over
greedy algorithm

... but it takes a LONG TIME (weeks?)

Randomized Traversal of the Metagraph

Simple random walk: yields up to 10% improvement over
greedy algorithm

... but it takes a LONG TIME (weeks?)

Nice proof of concept, but can we do better? (I hope so!)

vs. Metropolis

Assign each transition (including backwards) in the metagraph a
probability based on the change in energy JE

_SE
Pr=e 7

where 7 is a temperature and k is a constant.

» Simulated Annealing: gradual heating/cooling scheme up to
20% improvement

» Metropolis: fixed 7 — up to 35%-+ improvement

Simulated Annealing vs. Metropolis

“Surprisingly enough, many problems cannot be solved more
efficiently by SA than by the Metropolis.”

—Wegener, “SA beats Metropolis in Combinatorial Optimization”,
Electronic Colloquium on Computational Complexity, 2004.

Simulated Annealing vs. Metropolis

“Surprisingly enough, many problems cannot be solved more
efficiently by SA than by the Metropolis.”

—Wegener, “SA beats Metropolis in Combinatorial Optimization”,
Electronic Colloquium on Computational Complexity, 2004.

Our conclusion: Our best results were obtained with a fixed
temperature scheme (Metropolis). Variations in temperature don't
appear to help much (plus adds additional parameter).

Simulated Annealing vs. Metropolis

“Surprisingly enough, many problems cannot be solved more
efficiently by SA than by the Metropolis.”

—Wegener, “SA beats Metropolis in Combinatorial Optimization”,
Electronic Colloquium on Computational Complexity, 2004.

Our conclusion: Our best results were obtained with a fixed
temperature scheme (Metropolis). Variations in temperature don't
appear to help much (plus adds additional parameter).

» Bound the running time scheme by IOO\VO,,-g| transitions
» Small number (5 or so) of restarts

» Runs in minutes on a laptop (not performed at runtime)

Results

Original | Greedy Alg. | Random Alg.
| 259p | 119+ 231p | 146 + 222p
Il | 108p | 34+93p | 129+ 83p

| 241p | 372+ 185p | 780 + 140p

(Metric is multiplications performed when propagating p vectors.)

Edge Prerouting

Edge Prerouting

Edge Normalization Forward

&%

Edge Normalization Forward

* *
Cxj /= Ci Cek *= Cki
Ckjr /= Cki Cok *= Cki
cui =1

Example

» Postroute (-2,2)
» Front Eliminate (1,2)

Example

» Postroute (-2,2)
» Front Eliminate (1,2)
» Preroute (2,3)

Example

Postroute (-2,2)
Front Eliminate (1, 2)
Preroute (2, 3)

Back Eliminate (2,1)

vV v v Vv

Example

Postroute (-2,2)
Front Eliminate (1, 2)
Preroute (2, 3)

Back Eliminate (2,1)
Normalize (-2,1)

Example

vV v v v v Y

Postroute (-2,2)
Front Eliminate (1, 2)
Preroute (2, 3)

Back Eliminate (2,1)
Normalize (-2,1)
Normalize (2, 4)

Example

Postroute (-2,2)
Front Eliminate (1, 2)
Preroute (2, 3)

Back Eliminate (2,1)
Normalize (-2,1)
Normalize (2, 4)

vV v v v v Y

= 8 nonunit edges

Are divisions Useful?

Possibly, but we don't know how to use them

Greedy Algorithm - reroutings lead to small improvement at great
cost (still not as good as randomized algorithm)

Randomized algorithm - reroutings don't appear to help

Outline

Future Work
Connections to Optimal Jacobian Accumulation
Leveraging Face Elimination

Scarcity «» Optimal Jacobian Accumulation

Scarcity «» Optimal Jacobian Accumulation

N M AN

— Combined cost metric: preaccumulation followed by forward vertex elim.
— Results for OJA apply (modulo the fact that p tends to infinity)
— Implication: divisions are useful for OJA (or not? face elim.?)

Exploiting Scarcity with Face Elimination

Exploiting Scarcity with Face Elimination
WX2\:<C31
C]-(1Q
\ 4

elim. face c
(c1-1, c21) 21

» Cl-1*C21
C1-1 C10 1 C1-1

o1 C3

p—>
*— <

\ 4
C311
Clol

Exploiting Scarcity with Face Elimination

% CN

Xz\(<31/y
P C1- 1*C21 X S
Kl_l 1m «

<

C -1

c ca1 elim. face c cs
21 (c1-1, 1) 21
» Cl-1*C21
1C1—1 clol C1-1 Clol

— <«

	Introduction and Motivation
	Linearization
	Vector Propagation
	Preaccumulation

	Jacobian Scarcity
	Structural Properties of Jacobians
	Randomized Algorithms
	Results
	Rerouting and Normalization

	Future Work
	Connections to Optimal Jacobian Accumulation
	Leveraging Face Elimination

