
Optimal Derivative Accumulation on Series-Parallel Dags

Andrew Lyons

11/15/07



Outline

• Intro to Jacobians by AD

• The Optimal Jacobian Accumulation Problem

• Two-Terminal Series-Parallel Dags and Decomposition Trees

• Our Current View of OJA

• Single-Terminal Series-Parallel Dags and Vertex Elimination

• General Series-Parallel Dags

• Modular Decomposition: a Generalization

Sixth Euro AD Workshop, 11/15/2007 2



Jacobians by Automatic Differentiation (AD)

code for F (x0) : R
n → R

m, x 7→ y

↓ AD

augmented code for F (x0), F ′(x0)

Jacobian J ≡ F ′(x) =
(

∂yj

∂xi

)j=1,...,m

i=1,...,n
∈ R

m×n

Sixth Euro AD Workshop, 11/15/2007 3



Jacobians by Automatic Differentiation (AD)

[ y1 = x1 ∗ x2 ∗ sin(x1 ∗ x2), y2 = cos(sin(x1 ∗ x2)) ]T

(v-1 = x1, v0 = x2)

v1 = v−1 ∗ v0 c1-1 = v0 c10 = v-1

v2 = sin(v1) c21 = cos(v2)

v3 = v1 ∗ v2 c31 = v2 c32 = v1

v4 = cos(v2) c42 = − sin(v2)

(y1 = v3, y2 = v4)

Generally

vj = ϕj(vi)i≺j

cji =
∂ϕj

∂vi
∈ R

Sixth Euro AD Workshop, 11/15/2007 4



Jacobians by Automatic Differentiation (AD)

[ y1 = x1 ∗ x2 ∗ sin(x1 ∗ x2), y2 = cos(sin(x1 ∗ x2)) ]T

(v-1 = x1, v0 = x2)

v1 = v−1 ∗ v0 c1-1 = v0 c10 = v-1

v2 = sin(v1) c21 = cos(v2)

v3 = v1 ∗ v2 c31 = v2 c32 = v1

v4 = cos(v2) c42 = − sin(v2)

(y1 = v3, y2 = v4)

Generally

vj = ϕj(vi)i≺j

cji =
∂ϕj

∂vi
∈ R

Sixth Euro AD Workshop, 11/15/2007 5



Linearized Computational Graph

vi ≺ vj ⇔ vi is an argument of ϕj

v1 = ϕ1(v−1, v0)

v2 = ϕ2(v1)

v3 = ϕ3(v1, v2)

v4 = ϕ4(v2)

-1 0

1

2

3 4

c1-1 c10

c31
c21

c32 c42

Sixth Euro AD Workshop, 11/15/2007 6



Baur’s Formula (Baur, Strassen 1983)

Jyℓ,xk
=

∂yℓ

∂xk

=
∑

[xk→yℓ]∈G

∏

cji∈[xk→yℓ]

cji

-1 0

1

2

3 4

c1-1 c10

c31
c21

c32 c42

J =

(

c1-1c31+c1-1c21c32 c10c31+c10c21c32

c1-1c21c42 c10c21c42

)

Sixth Euro AD Workshop, 11/15/2007 7



The Optimal Jacobian Accumulation Problem

Given an LCG G for the evaluation procedure for some vector function F and a positive integer Ω, is

there a sequence of scalar assignments uk = sk ◦ tk, ◦ ∈ {+, ∗}, k = 1, . . . , ω, where each sk and

tk is either ci,j for some (j, i) ∈ E or uk′ for some k′ < k such that ω ≤ Ω and for every Jacobian

entry there is some identical uk, k ≤ ω?

or

Evaluate F ′ with as few operations (∗ or +) as possible.

Sixth Euro AD Workshop, 11/15/2007 8



The Optimal Jacobian Accumulation Problem

Evaluate F ′ with as few operations (∗ or +) as possible.

We restrict ourselves to ”pure chain rule methods”:

• OJA is NP-complete (Naumann 2005). We assume all edge

labels algebraically independent (the ”structural” problem)

• Don’t consider rerouting (Griewank, Vogel 2004)

Sixth Euro AD Workshop, 11/15/2007 9



Accumulation Dags

computational graphs for Jacobians

• Every non-minimal vertex is an operation (+ or ∗) and has

exactly two predecessors (the operands).

• Minimal vertices are the edge labels in E (the local partials)

• Maximal vertices are Jacobian entries

Each vertex is an operation ⇒ We want to find an

accumulation dag with a minimum number of vertices
Sixth Euro AD Workshop, 11/15/2007 10



Outline

• Intro to Jacobians by AD

• The Optimal Jacobian Accumulation Problem

• Two-Terminal Series-Parallel Dags and Decomposition Trees

• Our Current View of OJA

• Single-Terminal Series-Parallel Dags and Vertex Elimination

• General Series-Parallel Dags

• Modular Decomposition: a Generalization

Sixth Euro AD Workshop, 11/15/2007 11



Two-Terminal Series-Parallel dags

Recursive definition:

• An isolated edge is TTSP

• If two graphs G1, G2 are TTSP, then so is...

– Series composition: Identifying source of G1 with sink of G2

– Parallel composition: Identifying sources, sinks of G1, G2

Note: in LCGs, cannot combine two isolated edges in parallel

Sixth Euro AD Workshop, 11/15/2007 12



Decomposition Trees

0

1

2

3

4

5

6

a

b

c

d

e

f

g

h

i

S

S

S

S

S

P

P P

a

b cd e

f

g h

i

G T

Binary/canonical versions

Sixth Euro AD Workshop, 11/15/2007 13



Decomposition Trees → Accumulation dags

0

1

2

3

4

5

6

a

b

c

d

e

f

g

h

i

∗

∗

∗

∗

∗

+

+ +

a

b cd e

f

g h

i

G T

Sixth Euro AD Workshop, 11/15/2007 14



SP Decomposition Solves OJA

Claims:

• The SP decomposition tree computes J

• The SP decomposition tree solves OJA

Sixth Euro AD Workshop, 11/15/2007 15



SP Decomposition Solves OJA

Any (full) binary tree contains |E| − 1 non-minimal nodes

(operations)

TTSP dags are recognizable in linear time, and the

decomposition tree (binary or canonical) can be built in linear

time (Valdes, Tarjan, Lawler 1982)

Sixth Euro AD Workshop, 11/15/2007 16



Outline

• Intro to Jacobians by AD

• The Optimal Jacobian Accumulation Problem

• Two-Terminal Series-Parallel Dags and Decomposition Trees

• Our Current View of OJA

• Single-Terminal Series-Parallel Dags and Vertex Elimination

• General Series-Parallel Dags

• Modular Decomposition: a Generalization

Sixth Euro AD Workshop, 11/15/2007 17



Vertex Elimination (Griewank, Reese 1991)

-1-1 00

11

2

33 44

c1-1c1-1 c10c10

c31
c21

c32 c42

→

(c31 + c21c32)
(c21c42)

dv1 = c31 + c32 ∗ c21

dv2 = c21 ∗ c42

(

c1-1c31 + c1-1c21c32 c10c31 + c10c21c32

c1-1c21c42 c10c21c42

)

↓
(

c1-1(c31 + c21c32) c10(c31 + c21c32)

c1-1(c21c42) c10(c21c42)

)

Sixth Euro AD Workshop, 11/15/2007 18



Vertex Elimination (Griewank, Reese 1991)replacements

-1-1-1 000

11

2

333 444

c1-1c1-1 c10c10

c31
c21

c32 c42

→→

(c31+c21c32)
(c21c42)

c1-1(c31+c21c32)

c10(c31+c21c32)

c1-1c21c42

c10c21c42

-1-1-1 000

1

22

333 444

c1-1 c10

c31
c21

c32 c42

→→

Sixth Euro AD Workshop, 11/15/2007 19



Vertex Elimination (Griewank, Reese 1991)

Cost of eliminating a vertex: |Pv| ∗ |Sv| multiplications

Lower bound for vertex elimination: |Pv| ∗ |Sv| for each v

Sixth Euro AD Workshop, 11/15/2007 20



Vertex Elimination

-1 0

1

2

3
4 5

6

a b

c
d

e f g

h

ac

ac = a ∗ c
ad = a ∗ d
bc = b ∗ c
bd = b ∗ d

ade = ad ∗ e
(ac + ade) = ac + ade

adf = ad ∗ f
adg = ad ∗ g
adh = ad ∗ h
bde = bd ∗ e

(bc + bde) = bc + bde
bdf = bd ∗ f
bdg = bd ∗ g
bdh = bd ∗ h

Sixth Euro AD Workshop, 11/15/2007 21



Vertex Elimination

-1 0

1

2

3
4 5

6

a b

c
d

e f g

h

ac

ac = a ∗ c
ad = a ∗ d
bc = b ∗ c
bd = b ∗ d

ade = ad ∗ e
(ac + ade) = ac + ade

adf = ad ∗ f
adg = ad ∗ g
adh = ad ∗ h
bde = bd ∗ e

(bc + bde) = bc + bde
bdf = bd ∗ f
bdg = bd ∗ g
bdh = bd ∗ h

Sixth Euro AD Workshop, 11/15/2007 22



Vertex Elimination

-1 0

2

3
4 5

6

e f g

h

adac bd

bc

ac = a ∗ c
ad = a ∗ d
bc = b ∗ c
bd = b ∗ d

ade = ad ∗ e
(ac + ade) = ac + ade

adf = ad ∗ f
adg = ad ∗ g
adh = ad ∗ h
bde = bd ∗ e

(bc + bde) = bc + bde
bdf = bd ∗ f
bdg = bd ∗ g
bdh = bd ∗ h

Sixth Euro AD Workshop, 11/15/2007 23



Vertex Elimination

-1 0

2

3
4 5

6

e f g

h

adac bd

bc

ac = a ∗ c
ad = a ∗ d
bc = b ∗ c
bd = b ∗ d

ade = ad ∗ e
(ac + ade) = ac + ade

adf = ad ∗ f
adg = ad ∗ g
adh = ad ∗ h
bde = bd ∗ e

(bc + bde) = bc + bde
bdf = bd ∗ f
bdg = bd ∗ g
bdh = bd ∗ h

Sixth Euro AD Workshop, 11/15/2007 24



Vertex Elimination

-1 0

3
4 5

6

ac

ac+ade

bc+bde

adf
bdf

adg bdg

adh

bdh

ac = a ∗ c
ad = a ∗ d
bc = b ∗ c
bd = b ∗ d

ade = ad ∗ e
(ac + ade) = ac + ade

adf = ad ∗ f
adg = ad ∗ g
adh = ad ∗ h
bde = bd ∗ e

(bc + bde) = bc + bde
bdf = bd ∗ f
bdg = bd ∗ g
bdh = bd ∗ h

Sixth Euro AD Workshop, 11/15/2007 25



Vertex Elimination

-1 0

1

2

3
4 5

6

a b

c
d

e f g
h

−→ -1 0

1

3
4 5

6

a b

c+de

df dg

dh

Sixth Euro AD Workshop, 11/15/2007 26



Vertex Elimination

v2, v1










a(c + de) b(c + de)

a(df) b(df)

a(dg) b(dg)

a(dh) b(dh)











• Makes poor use of common
subexpressions
(df), (dg), (dh)

• Exploits distributivity effectively
a(c + de), b(c + de)

v1, v2










ac + (ad)e bc + (bd)e

(ad)f (bd)f

(ad)g (bd)g

(ad)h (bd)h











• Makes good use of common
subexpressions
(ad), (bd)

• Doesn’t exploit distributivity
ac + ade, bc + bde

Sixth Euro AD Workshop, 11/15/2007 27



Vertex Elimination in TTSP Dags

0

1

2

3

4

5

6

a

b

c

d

e

f

g

h

i

1

2

3

4

5

P

P P

a

b cd e

f

g h

i

G T

Sixth Euro AD Workshop, 11/15/2007 28



Vertex Elimination in TTSP Dags

Every binary decomposition tree corresponds to a collection

of vertex elimination sequences

⇒ OJA = OVE for TTSP dags

Each vertex eliminated at |Pv| = |Sv| = 1

Sixth Euro AD Workshop, 11/15/2007 29



Generalizing to Scalar Valued Functions

Sixth Euro AD Workshop, 11/15/2007 30



Outline

• Intro to Jacobians by AD

• The Optimal Jacobian Accumulation Problem

• Two-Terminal Series-Parallel Dags and Decomposition Trees

• Our Current View of OJA

• Single-Terminal Series-Parallel Dags and Vertex Elimination

• General Series-Parallel Dags

• Modular Decomposition: a Generalization

Sixth Euro AD Workshop, 11/15/2007 31



SP Tree NOT Optimal for General Jacobians

a b c

d

e

f g

Sixth Euro AD Workshop, 11/15/2007 32



Outline

• Intro to Jacobians by AD

• The Optimal Jacobian Accumulation Problem

• Two-Terminal Series-Parallel Dags and Decomposition Trees

• Our Current View of OJA

• Single-Terminal Series-Parallel Dags and Vertex Elimination

• General Series-Parallel Dags

• Modular Decomposition: a Generalization

Sixth Euro AD Workshop, 11/15/2007 33



Generalizing the decomposition: Modules

G = (V,E) → P = (E,≤)

( a ≤ b ⇔ a and b lie on a common path )

Module M :

every e ∈ E \M is either comparable or incomparable to every m ∈ M

Sixth Euro AD Workshop, 11/15/2007 34



Future Work

• Extracting SP subgraphs from General graphs

• Generalize to modular decomposition

(prove modules can be accumulated in isolation)

• Complexity of OJA by vertex, edge, face elimination (still!)

• Complexity of OJA in general (= face elimination??)

Sixth Euro AD Workshop, 11/15/2007 35


