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Jacobians by Automatic Differentiation (AD)

code for F (x0) : R
n → R

m, x 7→ y

↓ AD

augmented code for F (x0), F ′(x0)

Jacobian J ≡ F ′(x) =
(

∂yj

∂xi

)j=1,...,m

i=1,...,n
∈ R

m×n
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Jacobians by Automatic Differentiation (AD)

[ y1 = x1 ∗ x2 ∗ sin(x1 ∗ x2), y2 = cos(sin(x1 ∗ x2)) ]T

(v-1 = x1, v0 = x2)

v1 = v−1 ∗ v0 c1-1 = v0 c10 = v-1

v2 = sin(v1) c21 = cos(v2)

v3 = v1 ∗ v2 c31 = v2 c32 = v1

v4 = cos(v2) c42 = − sin(v2)

(y1 = v3, y2 = v4)

Generally

vj = ϕj(vi)i≺j

cji =
∂ϕj

∂vi
∈ R
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Linearized Computational Graph

vi ≺ vj ⇔ vi is an argument of ϕj

v1 = ϕ1(v−1, v0)

v2 = ϕ2(v1)

v3 = ϕ3(v1, v2)

v4 = ϕ4(v2)
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Baur’s Formula (Baur, Strassen 1983)

Jyℓ,xk
=

∂yℓ

∂xk

=
∑

[xk→yℓ]∈G

∏

cji∈[xk→yℓ]

cji
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J =

(

c1-1c31+c1-1c21c32 c10c31+c10c21c32

c1-1c21c42 c10c21c42

)
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The Optimal Jacobian Accumulation Problem

Given an LCG G for the evaluation procedure for some vector function F and a positive integer Ω, is

there a sequence of scalar assignments uk = sk ◦ tk, ◦ ∈ {+, ∗}, k = 1, . . . , ω, where each sk and

tk is either ci,j for some (j, i) ∈ E or uk′ for some k′ < k such that ω ≤ Ω and for every Jacobian

entry there is some identical uk, k ≤ ω?

or

Evaluate F ′ with as few operations (∗ or +) as possible.
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The Optimal Jacobian Accumulation Problem

Evaluate F ′ with as few operations (∗ or +) as possible.

We restrict ourselves to ”pure chain rule methods”:

• OJA is NP-complete (Naumann 2005). We assume all edge

labels algebraically independent (the ”structural” problem)

• Don’t consider rerouting (Griewank, Vogel 2004)

Sixth Euro AD Workshop, 11/15/2007 9



Accumulation Dags

computational graphs for Jacobians

• Every non-minimal vertex is an operation (+ or ∗) and has

exactly two predecessors (the operands).

• Minimal vertices are the edge labels in E (the local partials)

• Maximal vertices are Jacobian entries

Each vertex is an operation ⇒ We want to find an

accumulation dag with a minimum number of vertices
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Two-Terminal Series-Parallel dags

Recursive definition:

• An isolated edge is TTSP

• If two graphs G1, G2 are TTSP, then so is...

– Series composition: Identifying source of G1 with sink of G2

– Parallel composition: Identifying sources, sinks of G1, G2

Note: in LCGs, cannot combine two isolated edges in parallel
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Decomposition Trees
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Decomposition Trees → Accumulation dags
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SP Decomposition Solves OJA

Claims:

• The SP decomposition tree computes J

• The SP decomposition tree solves OJA
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SP Decomposition Solves OJA

Any (full) binary tree contains |E| − 1 non-minimal nodes

(operations)

TTSP dags are recognizable in linear time, and the

decomposition tree (binary or canonical) can be built in linear

time (Valdes, Tarjan, Lawler 1982)
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Vertex Elimination (Griewank, Reese 1991)

-1-1 00
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2

33 44

c1-1c1-1 c10c10

c31
c21

c32 c42

→

(c31 + c21c32)
(c21c42)

dv1 = c31 + c32 ∗ c21

dv2 = c21 ∗ c42

(

c1-1c31 + c1-1c21c32 c10c31 + c10c21c32

c1-1c21c42 c10c21c42

)

↓
(

c1-1(c31 + c21c32) c10(c31 + c21c32)

c1-1(c21c42) c10(c21c42)

)
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Vertex Elimination (Griewank, Reese 1991)replacements
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Vertex Elimination (Griewank, Reese 1991)

Cost of eliminating a vertex: |Pv| ∗ |Sv| multiplications

Lower bound for vertex elimination: |Pv| ∗ |Sv| for each v
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Vertex Elimination
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Vertex Elimination
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Vertex Elimination

-1 0

2

3
4 5

6

e f g

h

adac bd

bc

ac = a ∗ c
ad = a ∗ d
bc = b ∗ c
bd = b ∗ d

ade = ad ∗ e
(ac + ade) = ac + ade

adf = ad ∗ f
adg = ad ∗ g
adh = ad ∗ h
bde = bd ∗ e

(bc + bde) = bc + bde
bdf = bd ∗ f
bdg = bd ∗ g
bdh = bd ∗ h

Sixth Euro AD Workshop, 11/15/2007 24



Vertex Elimination
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Vertex Elimination
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Vertex Elimination

v2, v1










a(c + de) b(c + de)

a(df) b(df)

a(dg) b(dg)

a(dh) b(dh)











• Makes poor use of common
subexpressions
(df), (dg), (dh)

• Exploits distributivity effectively
a(c + de), b(c + de)

v1, v2










ac + (ad)e bc + (bd)e

(ad)f (bd)f

(ad)g (bd)g

(ad)h (bd)h











• Makes good use of common
subexpressions
(ad), (bd)

• Doesn’t exploit distributivity
ac + ade, bc + bde
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Vertex Elimination in TTSP Dags
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Vertex Elimination in TTSP Dags

Every binary decomposition tree corresponds to a collection

of vertex elimination sequences

⇒ OJA = OVE for TTSP dags

Each vertex eliminated at |Pv| = |Sv| = 1
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Generalizing to Scalar Valued Functions
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SP Tree NOT Optimal for General Jacobians
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Generalizing the decomposition: Modules

G = (V,E) → P = (E,≤)

( a ≤ b ⇔ a and b lie on a common path )

Module M :

every e ∈ E \M is either comparable or incomparable to every m ∈ M
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Future Work

• Extracting SP subgraphs from General graphs

• Generalize to modular decomposition

(prove modules can be accumulated in isolation)

• Complexity of OJA by vertex, edge, face elimination (still!)

• Complexity of OJA in general (= face elimination??)
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