AHE Meeting notes - 1/18/2007
Participants: Ian Foster, Ravi Madduri, Stu Martin, Ioan Raicu

Ian started the meeting by describing the high-level objective of AHE as follows: Think of a researcher who has a piece of code, this code can be a java program or a command-line program that would take some arguments, what can we provide this researcher that would help him/her to expose the said code as a service, preferably a web service. The discussion was broadly divided into two categories. 1. What are the capabilities of a service/suite of services that would provide this behavior? Is it modeled as one service or a set of services/tools? 2. What are the provisioning issues involved if such capability is provided ? In this meeting we primarily spent all of our time talking about the first category and decided to discuss the second when we have a clear understanding of what we mean by 1.

The issues we discussed are: how would one preserve and pass the type information of the input and output of these services. Ian mentioned that we could use SOAP attachments, Global Model Exchange from caBIG etc. We identified 4 different ways of representing and providing the said capability. Before we go into describing the approaches, we should first understand the terminology used here. We represent the application/executable as E and the arguments to the app/executable as (X, Y). E(X, Y) is the notation we will use to represent the act of running E using parameters X and Y. R is result of the execution.
1. The service is the application. This is represented, using our notation, as follows:

E(X, Y)

Check X, Check Y

R = E(X, Y)

Return R

E(X,Y) is just a plain webservice wrapper around executable E. The operation name to invoked is E with input params X and Y. Introduce can be used to create simple web services like this with a single operation that would run the application, once the operation is invoked and returns the results to the caller. One can use Introduce to write the service skeleton very easily but the user has to add code that invokes the actual application. The developer also needs to add code that would convert the XML data types that E(X, Y) uses to the format that executable E needs. The same conversion needs to happen for the result R generated from the execution of E. The upshot of doing this is that it needs to be done only once by one user and can be used by other interested users. The semantic nature of executing a application as a service is preserved in this scenario.
Issues: There is no way to include monitoring information, lifetime and other WS-RF goodness in this approach. Also the caller needs essentially to wait until the execution is completed which may not work well the executions that may span days or months.

2. In this scenario we describe a more WS-RF factory like service (AppService S) which is bootstrapped with a set of applications it can launch on the behalf of the user. So E(X, Y) in this case is described as :

S has following operations:
Result R Run(String appname, xsd:any input)
AppStatusType getStatus() throws AHEFaultType

AppOutputType getAppOutput() throws AHEFaultType

destroy() throws AHEFaultType

cancel() throws AHEFaultType

The algorithm can be described as follows:

 User invokes Run(appname, input I) - > if name=”E”

check input I if it can be converted to expected input of E
extract X, Y from I

call E(X, Y)

return R

This model is very close to doing this in a WS-RF way. A WS-RF resource is created for every user execution of the application. The results or the state of the resource is preserved for the user and can be retrieved on demand. A pre-defined set of operations that would enable the WS-RF goodness are available on the service by default which provide resource properties, notifications, lifetime etc support. This service can optionally have an admin porttype that would let admins add new application launching capabilities. WS-Security can be used to secure the access to service and this service will have access to advanced attribute based authz that GT4 provides along with delegation of the rights. One issue against this approach is that is that the semantic nature of application as a service seem to be lost in this approach.
3. The third approach is more familiar to us. It is essentially executing the command-line app using globus-job-submit. However, the type information of input and output is lost here as GRAM only deals in terms of files and not types.

4. This approach is an extension to 1 and starts to look more and more like 2. We try to address the limitations of 1 in terms of asynchronous execution, monitoring, lifetime management etc. We can describe this approach as follows:
E(X, Y, {pragma}) - returns an EPR that the user can use to find status, monitor, destroy etc which need to be implemented as independent operations in E. {pragma} is information related to provisioning and throttling of the application execution (Ian: can you add more information on {pragma} here.

Tasks : Stu will find out and report what PGRADE, Peter Coveney’s group did in this area.
Ian: Any other tasks that I may have forgotten..

