
Solving MINLPs using MINOTAUR

version – 0.00

The Minotaur Team1

1ANL, UW-Madison, IMB-France

The Team

What is Mixed Integer Non-Linear Programming?

min f (x, y)
s.t. gi(x, y) ≤ 0, i = 1, 2, . . . , m,

y ∈ Zp,

where f , gi : Rn+p → R, i = 1, 2 . . . , m are twice differentiable.

Sometimes also written as

min f (x, y)
s.t. gi(x, y) ≤ 0, i = 1, 2, . . . , m,

x ∈ X ⊆ Rn,

y ∈ Y ∩ Zp,

where f , gi : Rn+p → R, i = 1, 2 . . . , m are twice differentiable. X, Y are poly-
hedral sets.

Applications in biology, energy, internet and wireless, logistics, . . .

Special Cases
min f (x, y)

s.t. gi(x, y) ≤ 0, i = 1, 2, . . . , m,

x ∈ X ⊆ Rn,

y ∈ Y ∩ Zp,

where f , gi : Rn+p → R, i = 1, 2 . . . , m
Restrictions:

LP (Linear Program): m = 0, p = 0, f (x, y) linear. Solvable in time
Polynomial in size of input.

NLP (Non-Linear Program): p = 0. Atleast NP-hard.

MILP (Mixed Integer Linear Program): f (x, y), m = 0, n = 0 linear.
NP-hard.

Special Cases
min f (x, y)

s.t. gi(x, y) ≤ 0, i = 1, 2, . . . , m,

x ∈ X ⊆ Rn,

y ∈ Y ∩ Zp,

where f , gi : Rn+p → R, i = 1, 2 . . . , m
Restrictions:

LP (Linear Program): m = 0, p = 0, f (x, y) linear. Solvable in time
Polynomial in size of input.

NLP (Non-Linear Program): p = 0. Atleast NP-hard.

MILP (Mixed Integer Linear Program): f (x, y), m = 0, n = 0 linear.
NP-hard.

MINLPs suffer from difficulties encountered in each of the above problems.

Techniques and solvers for special cases can be used together to solve MINLPs.

MINOTAUR

Mixed
Integer
Nonlinear
Optimization
Toolkit:
Algorithms,
Underestimators and
Relaxations.

Basic Structure

Basic Structure

Basic Structure

Basic Structure

Libraries

The base library, libminotaur.so
A library for each interface:

libmntrampl.so
. . .

A library for each engine:
libmntrosilp.so
libmntripopt.so
. . .

Users can create their problem directly in C++.
Users can add their own interfaces and engines.

Current State of Code

Code compiles!
Solves LPs (by calling OsiLP)
“Solves” NLPs (by calling Ipopt1)
“Solves” MILPs (by Branch and Bound2)
“Solves” MINLPs (by Branch and Bound3)
Can not solve QPs yet.

1finds a KKT point
2branch-and-bound-101
3not-really

Current State of Code

Code compiles!
Solves LPs (by calling OsiLP)
“Solves” NLPs (by calling Ipopt1)
“Solves” MILPs (by Branch and Bound2)
“Solves” MINLPs (by Branch and Bound3)
Can not solve QPs yet.

1finds a KKT point
2branch-and-bound-101
3not-really

Solving QPs
Traverses the Expression Tree of ASL
Performs Operations (+,−, ∗, x2) over linear and quadratic expressions to
obtain standard form of quadratic expressions:∑

i,j∈Q

aijxixj +
∑
i∈L

aixi

Can rewrite the standard form as sum/difference of squares:

n∑
i=1

vi(e′ix + ci)2 + bx,

where ei are mutually orthogonal unit vectors.
Can identify convexity, concavity of the function.
Can identify if the constraint represents a Second Order Cone.
TODO: LP Relaxation of QPs.
TODO: Make branch-and-bound functional.

State of Branch-and-bound

Reliability Branching implemented for LPs.

Lexicographic Branching for NLPs.

NLPs solved using Ipopt. Hessian of Lagrangean and Jacobian are
obtained from ASL.

TODO: Node selection

TODO: Warm Starting

TODO: Cuts

Presolver
Header and some functions committed.

Compiles statistics on problem size and types of variables, constraints etc.

Converts a Quadratic objective to a constraint.

Standardizes constraints.

NLP Branch and Bound

Naïve implementation.

Lexicographic branching.

Best bound node selection.

“Warm starting” from the last feasible point of parent node.

Prune a node if it is Ipopt locally-infeasible or if iteration limit reached.

Branch if there are fractional variables.

Branch even if NLP solution value ≥ Best solution value.

Branch only on integer variables.

The two minute test
Ipopt-3.6.1, g++-4.2, -O2.

64-bit LINUX, 2.6GHz Intel Xeon, 8MB cache, 6GB RAM

270 instances from Minlplib [www.gamsworld.org/minlp/minlplib.htm]

Time limit of 120s.

NLP Branch and Bound

Naïve implementation.

Lexicographic branching.

Best bound node selection.

“Warm starting” from the last feasible point of parent node.

Prune a node if it is Ipopt locally-infeasible or if iteration limit reached.

Branch if there are fractional variables.

Branch even if NLP solution value ≥ Best solution value.

Branch only on integer variables.

The two minute test
Ipopt-3.6.1, g++-4.2, -O2.

64-bit LINUX, 2.6GHz Intel Xeon, 8MB cache, 6GB RAM

270 instances from Minlplib [www.gamsworld.org/minlp/minlplib.htm]

Time limit of 120s.

Small numbers

Instance Time(s)
alan 0.92
batchdes 0.21
batch 3.33
csched1 3.83
ex1221 0
ex1222 0
ex1223a 0.06
ex1223b 0.08
ex1223 0.1
ex1224 3.31
ex1225 0.25
ex1226 0

Instance Time(s)
ex1243 1.34
ex1244 1.91
ex1252a 0.83
ex1252 0.91
ex3 0.67
ex3pb 0.67
fac3 3.93
feedtray2 15.3
fuel 0.06
gastrans 1.63
gbd 0.03
gkocis 0.06

Instance Time(s)
hmittelman 40.75
m3 0.91
meanvarx 68.26
nvs01 8.26
nvs03 0.07
nvs04 0.43
nvs05 1.47
nvs07 5.22
nvs09 0.01
nvs10 0.1
nvs11 0.36
.

Claims to solve 71 out of 270.

Installing Minotaur

http://mcs.anl.gov/∼mahajan/minotaur/html

Installing Minotaur

Requirements
Essential:

Boost shared library

lapack

gfortran

Optional:

ASL (AMPL)

Osi (COIN-OR)

Ipopt (COIN-OR)

cpp-unit

doxygen

All requirements (except lapack and gfortran) available on the above link.

