Argonne°

NATIONAL LABORATORY

Casper

An Asynchronous Progress Model for MPI RMA on Many-core Architectures

Min Si
Guest graduate student at Argonne National Laboratory, IL, USA

Mentor : Antonio J. Pefia Supervisor : Pavan Balaji

PhD student at University of Tokyo, Tokyo, Japan

Advisor : Yutaka Ishiakwa

Download slides: http://www.il.is.s.u-tokyo.ac.jp/~msi/pdf/jlesc201411-casper.pdf
& THE UNIVERSITY OF TOKYO

$T%, U.S. DEPARTMENT OF
.4/ ENERGY

A

Irregular Computations

. Regular computations - Irregular computations
— Organized around dense vectors or — Organized around graphs, sparse
matrices vectors, more “data driven” in
— Regular data movement pattern, nature
use MPI SEND/RECV or collectives — Data movement pattern is
— More local computation, less data irregular and data-dependent
movement — Growth rate of data movement
— Example: stencil computation, is much faster than computation
matrix multiplication, FFT* — Example: social network analysis,
bioinformatics
_ B _ x - R J— amermiy
D12 b"‘i XjE’ " -°fo o il .'o.::::o_ /‘)//// \ ‘ ' \l\\'\\ |
L o] =G e Increasing trend of applications are moving to .
| >0 XN 3 irregular computation models
A A VA ! .
‘ >0 % Need more dynamic communication model
T == X7XN3 > we rY X A T - J
* FFT : Fast Fourier Transform
Min Si msi@anl.gov , — , , 2
S * The primary contents of this slide are contributed by Xin Zhao.

Argonne National Laboratory, The University of Tokyo

Message Passing Models

= Two-sided communication = One-sided communication
(Remote Memory Access)

Process O Process 1 Process O Process 1

|
Pu a) —

G

Sen a) —

"Computation
"=
a) —— 13

(data)

ata)

ataje—— S

Feature:
Origin (PO) specifies all communication parameters

Target (P1) does not explicitly receive or process
message
Is communication always asynchronous ?

Min Si msi@anl.gov
Argonne National Laboratory, The University of Tokyo

b

Problems in Asynchronous Progress

= One-sided operations are not truly one-sided
— In most platforms (e.g., InfiniBand, Cray)

e Some operations are hardware supported (e.g., contiguous PUT/
GET)

e Other operations have to be done in software (e.g., 3D
accumulates of double precision data)

Process O Process 1

Software implementation of one-sided
operations means that the target process

Computation has to make an MPI call to make progress.
_
MPiicall Not TRULY asynchronous !

a Min Si msi@anl.gov * RDMA : Remote Direct Memory Access 4
Argonne National Laboratory, The University of Tokyo

Traditional Approach of ASYNC Progress (1)

= Thread-based approach

— Every MPI process has a communication dedicated background
thread

— Background thread polls MPI progress in order to handle incoming
messages for this process

— Example: MPICH default asynchronous thread, SWAP-bioinformatics
Cons:

X Waste half of computing cores or oversubscribe cores

X Overhead of Multithreading safety of MPI

Process 0 Process1 Helper
thread
ompu*atlon
/_’ :
_— - 1
- :
|
: -
|
Min Si msi@anl.gov 5

b

Argonne National Laboratory, The University of Tokyo

Traditional Approach of ASYNC Progress (2)

= [nterrupt-based approach

— Assume all hardware resources are busy with user computation on
target processes

— Utilize hardware interrupts to awaken a kernel thread and process the
incoming RMA messages

— i.e., Cray MPI, IBM MPI on Blue Gene/P

Cons:
X Overhead of frequent interrupts

[uny

Execution Time on Rank 0(ms)
O L N WA UuUlo N OO OO
Ny
\\

:

100000

90000

80000 I I

;gggg o 1 Computation
Q.

50000 g Ac

40000 £

30000

20000

10000

0

System Interrupts Process O Process 1
e=0m»Original MPI

=

o

Helper

1 4 16 64 256 1024

+= thread
|n‘terrypt —> !
o \— - 1
- '
Number of Operations
DMMAP-based ASYNC overhead on Cray XC30

Min Si msi@anl.gov 6

Argonne National Laboratory, The University of Tokyo

b

Casper Process-based ASYNC Progress

= Multi- and many-core architectures v v E

— Rapidly growing number of cores i i i i}

— Not all of the cores are always keeping busy

= Process-based asynchronous progress
— Dedicating arbitrary number of cores to “ghost processes”

— Ghost process intercepts all RMA operations to the user processes
Pros:

v" No overhead caused by multithreading safety or frequent interrupts
v" Flexible core deployment Process 0 Process 1 Ghost

v' Portable PMPI" redirection ! ! PI’OEESS

Process 0 Process 1 A Computation
+=
I putaﬂon €---1RT
i
1<_ - -Mﬁu j\> I

Original communication Communication with Casper

Min Si msi@anl.gov * PMPI : name-shifted profiling interface of MPI 7

Argonne National Laboratory, The University of Tokyo

Basic Design of Casper

= Three primary functionalities

1. Transparently replace MPI_COMM_WORLD by
COMM_USER_WORLD

MPI_COMM_WORLD

B —
2. Shared memory mapping between local user "o 1 2 |

and ghost processes by using MPI-3 COMM_USER_WORLD
MPI_Win_allocate_shared*

3. Redirect RMA operations to ghost processes

Internal Memory mapping PO P1 Ghost Process
Ghost for P1
P1 P2
Process Lock(P1) | i '
P1 offset $ i I | Recv
Lock(GO) EN). TN
P2 offset — _ o
ACC(P1, disp, user_:m) : Computatio
= I

ACC(GO, P1_offset + disp, += ot
internal_win)i
1

|
|
|
|
I
1 n A /
|
1
I I .
* MPI_WIN_ALLOCATE_SHARED : Allocates window that is shared among all processes in '
the window’s group, usually specified with MPI_COMM_TYPE_SHARED communicator.
Min Si msi@anl.gov 8

Argonne National Laboratory, The University of Tokyo

b

Argonne°

NATIONAL LABORATORY

Ensuring Correctness and Performance

Correctness challenges

1. Lock Permission Management

2. Self Lock Consistency

3. Managing Multiple Ghost Processes
4. Multiple Simultaneous Epochs
Performance challenge

1. Memory Locality

RMA synchronization modes

= Active-target mode = Passive-target mode
— Both origin and target issue — Only origin issues synchronization
synchronization
— Fence (like a global barrier) — Lock_all (shared)
Fence(win)¥ ¥ *Fence(win) Lock_all(win) %]]
| | |
‘PUT: pUTE<E PUT :3: I |
Fence(win) & & & Fence(win) Unlock_all(win) —‘ : ":
— PSCW (subgroup of Fence) — Lock (shared or exclusive)
| POSt(PO &P2, win) lock(Pl) #—0V 1 1,
Start(P1, win) ,/.I\‘Start(Pl, win) Ut : Lock(P1)
I\I

PUT .
|

PUT 1
. \ : . Unlock(P1) |.\|
Comp(P1, win) ’\./,Comp(Pl, win) | I/I PUT
. A ; ' ' Unlock(P1)
Wait(PO & P2, win) ! X

Min Si msi@anl.gov 10

Argonne National Laboratory, The University of Tokyo

b

[Correctness Challenge 1]
Lock Permission Management for Shared Ghost Processes (1)

1. Two origins access two targets sharing the same ghost process

[POOR PERF.] Two concurrent lock epochs have to be serialized

P2

Lock (PO, win)

Unlock(PO, win)

P3

Lock (P1, win)

Unlock(P1, win)

»

P2

Lock (GO, win)

Unlock(GO, win)

P3

Serialized

Lock (GO, win)

Unlock(GO, win)

2. An origin accesses two targets sharing the same ghost process
[INCORRECT] Nested locks to the same target

Lock (PO, win)
Lock (P1, win)

Unlock(PO, win)
Unlock(P1, win)

»

Min Si msi@anl.gov
Argonne National Laboratory, The University of Tokyo

Lock (GO, win)
Lock (GO, win)

MPI standard:

an origin cannot nest locks to the same target

11

.
[Correctness Challenge 1]
Lock Permission Management for Shared Ghost Processes (2)

= Solution

— N Windows
* N = max number of processes on every node

e COMM. to iy, user process on each node goes to iy, window

WINI[O] WIN[1]
0 1 2 0 1 2
3 G1
g;. -ii— gé

= User hint optimization
— Window info “epochs_used” (fence|pscw |lock]|lockall by default)
e |f “epochs_used” contains “lock”, create N windows

e Otherwise, only create a single window

Min Si msi@anl.gov 12

Argonne National Laboratory, The University of Tokyo

b

[Correctness Challenge 2] Self Lock Consistency (1)

PO
, MPI standard:

Lock (PO, win) Local lock must be acquired immediately

x=1

y=2

‘ Lock (GO, win) MPI standard:
Unlock(PO, win) xRemote lock may be delayed..
Unlock(GO, win)

13

a Min Si msi@anl.gov
Argonne National Laboratory, The University of Tokyo

[Correctness Challenge 2] Self Lock Consistency (2)

= Solution (2 steps)
1. Force-lock with HIDDEN BYTES™

Lock (GO, win)
Get (GO, win)
Flush (GO, win) | // Lock is acquired

2. Lock self

Lock (PO, win) // memory barri_er for managing
// memory consistency

= User hint optimization
— Window info no_local_loadstore

e Do not need both 2 steps

— Epoch assert MPI_MODE_NOCHECK
* Only need the 2_, step

* MPI standard defines unnecessary restriction on concurrent GET and accumulate.

a Min Si msi@anl.gov See MPI Standard Version 3.0, page page 456, line 39. 14

Argonne National Laboratory, The University of Tokyo

[Correctness Challenge 3]
Managing Multiple Ghost Processes (1)

1. Lock permission among multiple ghost processes
[INCORRECT] Two EXCLUSIVE locks to the same target may be concurrently acquired

P2

Lock (EXCLUSIVE, PO, win)
PUT(PO)
Unlock(PO, win)

Serialized

S |

Lock (EXCLUSIVE, PO, win)
PUT(PO)
Unlock(PO, win)

P3 ',

Lock (EXCLUSIVE, GO, win)
Lock (EXCLUSIVE, G1, win)

G = randomly_pick_ghost();
PUT(G)

Lock (EXCLUSIVE, GO, win)
Lock (EXCLUSIVE, G1, win)

G = randomly_pick_ghost();
PUT(G)

Min Si msi@anl.gov

o Argonne National Laboratory, The University of Tokyo

x Empty lock can be ignored,
P2 and P3 may concurrently

acquire lock on G0 and G1

15

|
GET_ACC (x, y, P1)"

b

|

|

|

I

1

. |
(correct result is 3) |
|

|

|

|

|

|

|

[Correctness Challenge 3]
Managing Multiple Ghost Processes (2)

2. Ordering and Atomicity constraints for Accumulate operations

[INCORRECT] Ordering and Atomicity cannot be maintained by MPI among multiple
ghost processes

ACC (x, P1)

MPI standard:
Same origin && same target location
accumulates must be ordered

y=5

ACC (x, P1)
ACC (x, P1)

\,\ MPI standard:

- Concurrent accumulates to the same
target location must be atomic per
basic datatype element.

Min Si msi@anl.gov 16

Argonne National Laboratory, The University of Tokyo

[Correctness Challenge 3]
Managing Multiple Ghost Processes (3)
= Solution (2 phases)

1. Static-Binding Phase m
e Rank binding model

— Each user process binds to a single ghost process i

Segment binding model

P2 P3
B B

Static-rank-binding

— Segment total exposed memory on each node into

N chunks m
— Each chunk binds to a single ghost process
e Only redirect RMA operations to the bound ghost process PO 1 P3

e Fixed lock and ACC ordering & atomicity issues

e But only suitable for balanced communication patterns

. P1
.~ Optimization for dynamic communication patterns __
2. Static-Binding-Free Phase Lock(GO, G1) |
. . ‘..) - . PUT(GO)
e After operation + flush issued, “main lock” is acquired Flush(GO)

Static-segment-binding

ﬂ
=

1

1

|

* Dynamically select target ghost process Acquired main lock 1
e Accumulate operations can not be “binding free” Binding Free | |
|

Unlock(GO, G1) |
Min Si msi@anl.gov

Argonne National Laboratory, The University of Tokyo

—y
~

N |
[Correctness Challenge 4]

Multiple Simultaneous Epochs — Active Epochs (1)

Simultaneous fence epochs on disjoint sets of processes sharing the
same ghost processes

[INCORRECT] Deadlock !

Fence(win0)! '

| |
i * l
Epoch 1 :I ' ; ! :
Fence(win0). .’ | ¢ Fence(win1)
-? I ? . | Epoch 2
: <5 ‘ ; e Fence(winl)
v (€]0) G1
Fence(win0), *Blocked I I
I : Fence(winl)

Blocked x DEADLOCK !

Min Si msi@anl.gov 18
7.\ g

Argonne National Laboratory, The University of Tokyo

e |

[Correctness Challenge 4]
Multiple Simultaneous Epochs - Active Epochs (2)

= Solution

— Every user window has an internal “global window”

— Translate to passive-target mode
Performed on user processes

— Fence
Win_allocate Win_allocate
Lock_all (global win)
Fence(win0) Flush_all (global win) + Barrier(COMM _USER_WORLD) + Win_sync
PUT(P) PUT(G)
Fence(win) Flush_all (global win) + Barrier(COMM_USER_WORLD) + Win_sync
[Performance issue 1] [Performance issue 3]
User hint 4)
MP'_MODE_NOPRECEDE [Performance Issue 2]
avoids it User hint (NOSTORE & NOPUT &
NOPRECEDE) avoids it
Win_free Unlock_all (global win)
Win_free

— PSCW =) Flush + Send-Receive

Min Si msi@anl.gov 19

Argonne National Laboratory, The University of Tokyo

b

\]
[Correctness Challenge 4]
Multiple Simultaneous Epochs — Lock_all (1)

= Lock_all only

— Same translation as that for Fence

e lock_all in win_allocate, flush_all in unlock_all

[INCORRECT] Lock_all and EXCLUSIVE lock on the same window may be concurrently
acquired

P2

PUT(PO)
Unlock_all(win)

Lock_all (win) -

P3
Serialized Lock (EXCLUSIVE, PO, win)
PUT(PO)
‘ Unlock(PO, win)
P2 I P3
Lock_all (global win) | ' Lock (EXCLUSIVE, GO, win[0])
PUT(GO) .| PUT(GO) x Locks may be acquired
Unlock_all(global wm) concurrently
Min Si msi@anl.gov 20

b

Argonne National Laboratory, The University of Tokyo

\
[Correctness Challenge 3]
Multiple Simultaneous Epochs — Lock_all (2)
= Solution

— Translate lock_all to a series of locks to all ghost processes

P2 P2
Lock_all (win) Lock (SHARED, GO, win[0]) // lock PO ﬁ
‘ Lock (SHARED, GO, win[1]) //lock P1

Lock (SHARED, G1, win[0]) // lock P2
Lock (SHARED, G1, win[1]) // lock P3

Min Si msi@anl.gov 21

Argonne National Laboratory, The University of Tokyo

b

[Performance Challenge] Memory Locality

= Casper internally detects the location of the user processes
= Only bind the closest ghost processes
= j.e., PO-2 are bound to GO, P3-5 are bound to G1

Node Node
Socket 0 Socket 1 Socket 0 Socket 1
P2R@P3 o POl G1 PlgP2 PAgPS
Memory Memory Memory Memory

Min Si msi@anl.gov 22

Argonne National Laboratory, The University of Tokyo

b

Evaluation 1. Asynchronous Progress Microbenchmark

" Experiment platform RMA implementation in Cray MPI v6.3.1
— NERSC Edison Cray XC30" HW-handled OP ASYNC. mode
— Cray MPIv6.3.1 Original mode NONE Thread
DMAPP mode Contig. PUT/GET Interrupt

= Test scenario

— 1 OP + FLUSH + 100us COMP. + 10 OPs (each OP is 1 double)

_. 60 _.18
g e===QOriginal MPI g e=p==Qriginal MPI| (SW PUT) F
£ e=Thread-based async £ e=Thread-based async /
E 40 e 12
g DMAPP (Interrupt-based async) g DMAPP (HW PUT)
5 30 £ 9
3 == Casper -] et Casper
() ()
X 20 X 6
() ()
& 10 - & 3 -
o o
2 0 - 2 0 - — T T T 1
2 4 8 16 32 64 128 256 2 4 8 16 32 64 128 256
Number of Application Processes (ppn=1) Number of Application Processes (ppn=1)
Accumulate (SW) PUT (handled by HW within DMAPP)
Casper provides asynchronous progress for Casper performs the same performance as
SW-handled ACC. that of HW PUT

* https://www.nersc.gov/users/computational-systems/edison/configuration/

Min Si msi@anl.gov 23
a g

Argonne National Laboratory, The University of Tokyo

Evaluation 2. NWChem Quantum Chemistry Application (1)

= Computational chemistry application suite
composed of many types of simulation capabilities.

= ARMCI-MPI (Portable implementation of Global
Arrays over MPI RMA)

= Focus on most common used CC (coupled-cluster)
simulations in a C,, molecules

foriin | blocks:

for jin J blocks:
F for k in K blocks:
GET block a from A

¢ —
GET block b from B
c+=a*b | Heavy
\ GET GET Accumulate end do computation
lock a block b block ¢ ACC block cto C

® e = end do
. end do
Perform DGEMM in local buffer Get-Compute-Update model
Min Si msi@anl.gov 24

b

Argonne National Laboratory, The University of Tokyo

-
Evaluation 2. NWChem Quantum Chemistry Application (2)

= |nput data file : tce_c20 triplet 50
= CCSD

= Evaluation platform (Cray XC30) : £ 40
@30

— 12-core Intel "lvy Bridge" (24 cores per node) E
5, 20 - B
Y10 -
0 —

1440 1920 2400 2800
Number of Cores

Core deployment Casper ASYNC. Progress helps CCSD performance

COMP. # ASYNC. 125

igi < CCSD(T)
Original MPI 24 0 'Eloo
Casper 20 4 g 75
Thread-ASYNC [=

= 50

(oversubscribed) o 24 ‘E’
Thread-ASYNC g 25

read- 5 - S N

(dedicated)

1440 1920 2400 2800
Number of Cores

More compute-intensive than CCSD, more improvement

Min Si msi@anl.gov 25

Argonne National Laboratory, The University of Tokyo

b

Summary

= MPI RMA communication is not truly one-sided

— Still need asynchronous progress

— Additional overhead in thread / interrupt-based approaches
= Multi- / Many-Core architectures

— Number of cores is growing rapidly, some cores are not always busy

= Casper: a process-based asynchronous progress model
— Dedicating arbitrary number of cores to ghost processes
— Mapping window regions from user processes to ghost processes
— Redirecting all RMA SYNC. & operations to ghost processes

— Linking to various MPI implementation through PMPI transparent
redirection

Download slides: http://www.il.is.s.u-tokyo.ac.jp/~msi/pdf/jlesc201411-casper.pdf

Min Si msi@anl.gov

Argonne National Laboratory, The University of Tokyo

Y

26

