Argonne°

NATIONAL LABORATORY

MT-MPI:
Multi-threaded MPI for Many-core Environments

Min Si

msi@mcs.anl.gov

Research Aide at Argonne National Laboratory
advisor: Dr. Antonio Pena, Dr. Pavan Balaji
Ph.D. student at The University of Tokyo

advisor: Prof. Yutaka Ishikawa

#77 %% U.S. DEPARTMENT OF
9/ ENERGY

Many-core Architecture

= Massively parallel environment

" |ntel® Xeon Phi co-processor

ot T Coplocessot

%
— 60 cores inside a single chip, 240 hardware threads '&’
’..

— SELF-HOSTING in next generation, NATIVE mode
in current version

= Blue Gene/Q

— 16 cores per node, 64 hardware threads

Hybrid OpenMP + MPI Programming

= Multi-threads of a process shares local resources
= Parallelize local computation more efficiently

= MPI between nodes

MPI Process 0 MPI Process 1

OpenMP Threads OpenMP Threads

253 253

Network

MPI Process 2 MPI Process 3

OpenMP Threads OpenMP Threads

253 252

Four levels of MPI Thread Safety

= MPI_THREAD_SINGLE
— MPI only, no threads

= MPI_THREAD_FUNNELED

— Qutside OpenMP parallel region, or OpenMP master region

#pragma omp parallel for
for(i=0;i<N;i++) {

uufi] = (u[i] + u[i- 1] + u[i + 1])/5.0;
}

MPI_Function ();

Four levels of MPI Thread Safety

= MPI_THREAD_SERIALIZED

— Qutside OpenMP parallel region, or OpenMP single region, or critical

region

#pragma omp parallel #pragma omp parallel

{ {
/* user computation */ /* user computation */
#pragma omp single #pragma omp critical
MPI_Function (); MPI_Function ();

} }

= MPI_THREAD_MULTIPLE

— Multiple threads, any thread is allowed to make MPI calls at any time.

\
Problem: Idle Resources during MPI Calls

= Threads are only active in the computation phase

= Threads are IDLE during MPI calls Master
#pragma omp parallel for
for(i=0;i<N;i++){
uui]=(u RS L= [)/5-0; Vv_V Vv \ 2 2
}
MPI CALL
MPI_Function ();
(a) Funneled mode 4
#pragma omp parallel
{
/* user computation */
\ 4 \ 4 V \ 4 \ 4 A\ 4
H#pragma omp single MP CALL
MPI_Function (); s
| AR
(b) Serialized mode vV Vv

Solution:
Sharing Idle Threads with Application inside MPI

#pragma omp parallel Master

{

/* user computation */ 1 l
\

#pragma omp single
MPI_Function () {
#pragma omp parallel

{ MPIJCAL
/* MPI internal task */

} W

(b) Serialized mode

Challenges

= Some parallel algorithms are not efficient with insufficient

threads , need tradeoff, but the number of available threads is
UNKNOWN |

= Nested parallelism
— Simply creates new Pthreads

— Offloads thread scheduling to OS, caused threads OVERRUNNING issue

#pragma omp parallel #pragma omp parallel

{ { Creates N Pthreads
/* user computation */ #pragma omp single
{
#pragma omp single ¥ v V #pragma omp parallel
MPL Function(){ MP] CALL _v_WV {..} Creates N Pthreads
)
v
J }

(a) Unknown number of IDLE threads (b) Threads overrunning

Outline

= Motivation
= Problem Statement and Solution
= Design and Implementation

— OpenMP runtime

— MPI Internal Parallelism

= Evaluation

= Conclusion

OpenMP Runtime Extension 1

= Expose the number of idle threads

#pragma omp parallel
#pragma omp single

{

#pragma omp parallel num_threads(omp_get_num_idle_threads())

(.}

— NipLE threads < OMP_NUM_THREADS

= NipLE threads =
Nthreads in pool + Nwaiting threads T 1 Master thread

OpenMP Runtime Extension 2

= Waiting progress in barrier while (time < KMP_BLOCKTIME){
— SPIN LOOP until timeout ! ‘/f(f;rr‘ﬁ)oggea/k
— May cause OVERSUBSCRIBING }

pthread_cond_wait (...);

= Solution: Force waiting threads to enter in a passive wait
mode inside MPI

— set_fast _vyield (sched_yield)

pragma omp parallel
— set_fast_sleep (pthread_cond_wait) # pragma omp single

{
set_fast_yield (1);

#pragma omp parallel

(.}

OpenMP Runtime Extension 2

= set_fast_sleep VS set_fast_yield

300.00

250.00

N
o
o
o
o

150.00

overhead (us)
o
S
o
o

ul
o
o
o

0.00

-50.00

— Test bed: Intel Xeon Phi cards (stepping B0, 61 cores)

set_fast_sleep

Ne—

ié A\
/
[N

/

0

50 100 150 200 250 300

KMP_BLOCKTIME

overhead (us)

300.00

250.00

N
o
o
o
o

150.00

=
o
o
o
o

50.00
0.00

-50.00

set_fast_yield

—o—Nthreads=1

—#-Nthreads=4
—A—=Nthreads=16

Nthreads=64

-#=Nthreads=244

1

0 50 100 150 200 250 300

KMP_BLOCKTIME

Outline

Motivation
Problem Statement and Solution
Design and Implementation

— OpenMP runtime

— MPI Internal Parallelism

e Datatype Related Functions
e Intra-node Large Message Communication

e Netmod Optimizations

Evaluation

Conclusion

\
Derived Data Type Packing Processing

= MPI_Pack / MPI_Unpack

= Communication using Derived Data Type

— Transfer non-contiguous data

— Pack / unpack data internally

blocklength
-
O|1]|2(3] 4
sle6|l7]18]9 #pragma omp parallel for

for (i=0; i<count; i++){

— (10|11 112 (13|14
count dest[i] = src[i * stride];

151161171819
20 (21 (22 (23|24

}

stride

Prefetching issue when compiler vectorized
non-contiguous data

for (i=0; i<count; i++){ #pragma omp parallel for
*dest++ = *src; for (i=0; i<count; i++){
src += stride; dest[i] = src][i * stride];
} }
(a) Sequential implementation (not vectorized) (b) Parallel implementation (vectorized)
3 00E+05 Total Execution Cycle 2000 L2 Cache Miss
— — 6000 i
6.00E+05 / 5000 _—
4.00E+05 4000
/ =9—vec 3000 -
I

2.00E+05 =-no-vec 2000 =l=no-vec
P/ 1000
0.00E+00 - T T T T 1 0

° >00 slt?-?é)e (bﬁgg) 2000 2500 0 500 1000 1500 2000 2500

Stride (byte)

Outline

Motivation
Problem Statement and Solution
Design and Implementation

— OpenMP runtime

— MPI Internal Parallelism

e Datatype Related Functions
e Intra-node Large Message Communication

e Netmod Optimizations

Evaluation

Conclusion

Sequential pipelining LMT

= Shared user space buffer

= Pipelining copy on both sender side and receiver side

Sender

Get a EMTPY cell from shared buffer,
and copies data into this cell, and marks
the cell FULL; Then, fill next cell.

Receiver

Get a FULL cell from shared buffer, then
copies the data out, and marks the cell
EMTPY ; Then, clear next cell.

Sender Receiver
Shared Buffer
S
Cell[0]
| User _ el IN
Buffer
o s S | _User
Cell[3] \ Buffer

Parallel pipelining LMT

= Get as many available cells as we can

= Parallelizing large data movement

Sender Receiver

Shared Buffer Sender Shared Buffer Receiver
—
el s | cell[0]
____________ 3
—>
ser | J SN seor | Celll]
Buffer 2 _._B_.S]c_?[._.
Celll2] 1N _user e s celli2] \Z2
[T > Cell[3] \ Buffer ::; E
—> Cell[3]
L = User
_ [SBuffer
1>
1>
1>

(a) Sequential Pipelining (b) Parallel pipelining

Seqguential Pipelining VS Parallelism

= Small Data transferring (< 128K)

— Threads synchronization overhead > parallel improvement

= Large Data transferring

— Data transferred using Sequential Fine-Grained Pipelining

Sender Buffer | | | |
Shared Buffer A v \ v

Receiver Buffer

— Data transferred using Parallelism with only a few of threads (worse)

Y

| | ||
VA2

— Data transferred using Parallelism with many threads (better)

é_
é_
é_
é_
é_
é_

Parallel pipelining LMT algorism

Sender Receiver
Shared Buffer
Data Size > No s Cell[0]
PARALLEL THRESHOLD? e
i T Cell[1]
Yes Buffer |, celll2] [\ 2
fotal size of Available Cells No = Cell[3] i
PARALLEL THRESHOLD 2 (_User
__|, Buffer
e
Yes i
Number of available threads No
PARALLEL THRESHOLD -
Yes 1
Parallelly copy

min(Data Size, Total Size of Available Cells)
data into cells

Copy min(Data Size, Cell Size)
data into a Cell

Yes

a

Remaining Data Size > 0 ?

No

Outline

Motivation
Problem Statement and Solution
Design and Implementation

— OpenMP runtime

— MPI Internal Parallelism

e Datatype Related Functions
e Intra-node Large Message Communication

e Netmod Optimizations

Evaluation

Conclusion

InfiniBand Communication

Structures
— |IB context
— Protection Domain

— Queue Pair (critical)

e 1 QP per connection

— Completion Queue (critical)

e Shared by 1 or more QPs

RDMA communication
— Post RDMA operation to QP

— Poll completion from CQ
Internally supports Multi-threading

OpenMP contention issue

[ADI3

[CH3

{ SHM ‘ nemesis
TCP IB]

P2

Parallel InfiniBand communication

= Two level parallel policies
= Parallelize the operations to different IB CTXs

= Parallelize the operations to different CQs / QPs

\
IB CTX § -

= =
BCTX = | IBCTX = IB CTX

cQ QP cQ QP cQ QP % % g % % %

= HCA

(a) Parallelism on different IB CTXs (b) Parallelism on different CQs / QPs

N]
Parallelize InfiniBand Small Data Transfer

= 3 parallelism experiments based on ib_write_bw:

1. 1 process per node, 32 IB CTX per process, 1 QP + 1 CQ per IB CTX

2. 1 process per node, 1 1B CTX per process, 32 QPs + 32 CQs per IB CTX
@ 1 process per node, 1 IB CTX per process, 32 QPs + 1 shared CQ per IB CTX

8

)
o
4

= 3.3
G>J . ' =-32 IB contexts
o 2 1 —4—32 QPs and CQs
(o}
= % =>¢=32 QPs and 1 CQ
; 1 X 10 T T T T J
om 1 2 4 8 16 32

0.5

Number of Threads / Processes

Test bed: Intel Xeon Phi cards (stepping B1, 60 cores), InfiniBand QDR
Data size: 2 Bytes

MPI IB netmod

\ ADI3)
= Basic components CH3
— Local RDMA buffer pool - ‘ A
P SHM nemesis
— Remote RDMA buffer pool - /
TCP | 1B]
e a e
PO | Shared CQ \ P1 | shared cQ |
Connection to P1 \ Connection to PO \
L ar | L ap |

T T

I ——
Local RDMA buffer pool Remote RDMA buffer pool

Eager Message Transferring in IB netmod

= When send many small messages

Limited IB resources
e QP, CQ, remote RDMA buffer

— Most of the messages are enqueued into
SendQ

— All sendQ messages are sent out in wait
progress

= Major steps in wait progress

— Clean up issued requests

Receiving
e Poll RDMA-buffer

Parallelizable

® Copy received messages out

— Sending Parallelizable

e Copy sending messages from user buffer

e |ssue RDMA op

P

Send some messages

immediately

Enqueue messages
into SendQ

wait progress start

Send messages in
SendQ

Clean up request

Send messages in
SendQ
Clean up request
wait progress end

P1

7

O
A

5///\0///\

wait progress start

Receive message

SYNC

Receive message

SYNC

wait progress end

Parallel Eager protocol in IB netmod

= Parallel policy

— Parallelize large set of messages sending to different connections
e Different QPs : Sending processing
— Copy sending messages from user buffer
— Issue RDMA op
e Different RDMA buffers : Receiving processing
— Poll RDMA-buffer

— Copy received messages out

Target Applications: One-sided Communication

|
Feature Origin Target Target
— Large amount of small non-blocking RMA Process Process 1 Process 2
operations sending to many targets MPI_Win_fence

Th 0
— Wait ALL the completion at the second

synchronization call (MPI_Win_fence)

Th1

= MPICH implementation

ThO
Th1

— Issue all the operations in the second

synchronization call

MPI Win_fence

N]
Parallel One-sided communication

= Challenges in parallelism
— Global SendQ

» Group messages by targets PO P — ———

— Queue structures send-arrays T
» Stored in [Ring Array + Head / Tail ptr] W

IN

ouT
— Netmod internal messages (SYNC etc.)

» Enqueue to another SendQ (SYNC-SendQ)

Parallel One-sided communication

= Optimization
— Every OP is issued through long
critical section
e [ssue all Ops together
— Create large number of Requests

e Only create one request

ADI3
r N
CH3
PUT PUT
\ l /
H A
Crigicak & |
SHM \nerhesis;
(2 : Izl . =
s
SendQ
\/
D PO PUT|
_ J

v

v

Fig. Issue RMA operations from CH3
to IB netmod

Parallel One-sided communication

" Final algorithm . .
Origin Process Origin Process

CH3 IB netmod
MPI Win_fence start

issue Ops;
All the RMA
PKTs Group PKTs by targets,
store in Arrays
return
SENDALL_REQ Send some SENDALL_PKTs Parallelized

immediately

while(! SENDALL_REQ done)

call wait progress;
1. Count finished PKTs;

if (last SENDALL _PKT done)
set SENDALL REQ done;
2. Receive messages
3. Send SENDALL_PKTs; Parallelized

MPI Win_fence end

Outline

= Motivation
= Problem Statement and Solution

= Design and Implementation

= Evaluation

= Conclusion

Experimental settings

= Knight (only for inter-card experiments)
— Single node
— Intel Xeon X5680 CPU, 20 GB of main memory
— Two Intel Xeon Phi Knights Corner cards (stepping BO, 61 cores)
featuring 8 GB of GDDR5 RAM (5.5 GT/s)

= KNCC
— A cluster composed of 8 compute nodes
— Dual Intel Xeon E5-2670 CPUs, 64 GB of RAM

— Single Knights Corner card (stepping B1, 60 cores) with 8 GB of on-
board RAM (5.0 GT/s)

Evaluation: Datatype-related Functions

= Parallel 2D matrix packing

Y, |5]6|7]|8]9
10 (111213 |14
15 (16|17 | 18|19
20 (2122|2324

— Fixed area size and varying X and Y dimensions

— Element type : double

—=256 Element

~#-1K countonY
-4-4K dimension
16K
=#=64K
-0-256K
= |deal

Number of Threads

" |nter-node 2D Halo exchange

PO P1

2 MPI processes on 2 nodes

64

Speedup

1 2 4 8 16 32 64 128 240

Number of Threads

Speedup

0.25
0.125

9 MPI processes on 9 nodes

1

2

4 8 16 32 128 240

Number of Threads

——-256
--1K
——4K
—=><16K
—==64K
-0-256K

Intra-node Large Message Communication

Bandwidth

[|
8
4
o 2
>
D
Q 11
o
Y 05 -

8 16 32 64 120

Number of Threads

OSU P2P benchmark

8
4
——64K ,

~=-256K S
ge 1

=A=1M gJJ
a 05

—=4M n
0.25

==16M

0.125
0.0625

Message Rate

8 16 32 64 120

Number of Threads

Latency

1 16 32 64 12

Number of Threads

——64K
256K
==1M
=>=4M
==16M

——64K
256K
=4=1M
=>=4M
==16M

Improvement
percentage (%)

One-sided Operations and Low-Level Optimizations

25
20
15

10

Micro benchmark

— One to All experiment using 9 processes

e Process 0 sends many MPI_PUT operations to all the other processes

— All to All experiment using 9 processes

e Every process sends many MPI_PUT operations to the other processes

One to All

Number of Threads

=6—1000
=-2000
~4—=4000
=><=8000
=#=16000

Improvement
percentage (%)

14
12
10

o N B OO 0

All to All

=4—1000
--2000
~4=4000

1

2 4
Number of Threads

8

8000
—#=16000

Graph500 benchmark

= Kernels

— Graph Construction

— Breadth-First Search (BFS)

e MPI_Accumulate operations

— Validation

Harmonic Mean TEPS

180000
175000
170000
165000
160000
155000
150000
145000
140000

N.

.

P

A

N——

--Harmonic Mean TEPS

=o—Mean Time

1 2

T

4 8

Number of Threads

v o o o
(00} N - ()}
(29s) swi] ues|\

v
o))

Conclusions

= Hybrid OpenMP + MPI programming model is important for
many-core environments

= User threads are idle during MPI calls in hybrid application,
WASTE of computational resources

= MT-MPI internally shares IDLE threads with the application

= Various aspects of the MPI processing could be parallelized by
multi-threads

v’ Packing for derived datatype communication
v’ Data movement for large shared memory communication

v Network 1/O for small message communication

