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a b s t r a c t

We present a spectral-element discontinuous Galerkin lattice Boltzmann method for solv-
ing nearly incompressible flows. Decoupling the collision step from the streaming step
offers numerical stability at high Reynolds numbers. In the streaming step, we employ
high-order spectral-element discontinuous Galerkin discretizations using a tensor product
basis of one-dimensional Lagrange interpolation polynomials based on Gauss–Lobatto–
Legendre grids. Our scheme is cost-effective with a fully diagonal mass matrix, advancing
time integration with the fourth-order Runge–Kutta method. We present a consistent
treatment for imposing boundary conditions with a numerical flux in the discontinuous
Galerkin approach. We show convergence studies for Couette flows and demonstrate
two benchmark cases with lid-driven cavity flows for Re = 400–5000 and flows around
an impulsively started cylinder for Re = 550–9500. Computational results are compared
with those of other theoretical and computational work that used a multigrid method, a
vortex method, and a spectral element model.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

The lattice Boltzmann method (LBM) has been successfully applied to many computational fluid dynamics problems over
the past two decades [1,2]. The lattice Boltzmann equation (LBE) is a special discrete form of the Boltzmann equation from
kinetic theory. LBE simulates the weakly compressible Navier–Stokes equations, but the incompressible Navier–Stokes equa-
tions can be derived from LBE through the Chapman–Enskog expansion if the Mach number (Ma) and the density fluctuation
are on the order of O(e) and O(e2), respectively, where e is the Knudsen number [3]. The use of a small velocity expansion in
the derivation of the Navier–Stokes equations from LBE makes LBM valid in the low Ma regime.

In the conventional LBM, the streaming of the particle distribution function is given as the exact solution of linear advec-
tion equation so that it offers exact numerical solutions. Severe limitations arise, however, from the use of uniform Cartesian
grids and its inherent instability at high Reynolds number (Re). These two aspects are closely related to each other in that LBE
is a discretized form of the discrete Boltzmann equation (DBE) along characteristics, and thus the time and space discreti-
zations are strongly coupled. Since He and Luo [4] and Abe [5] demonstrated that the discretization of physical space does
not necessarily need to couple with the discretization of momentum space, several efforts have been made to address the
treatment of curved or irregular boundaries and the control of mesh resolution at desirable regions, and significant progress
has been achieved in recent years to overcome the limitations of LBM. With a rigorous foundation established, various
numerical methods have been applied directly to the discrete Boltzmann equation (DBE) using finite difference (FD)
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[6–13], finite volume (FV) [14–18], finite element (FE) [19–21], and spectral-element discontinuous Galerkin (SEDG) meth-
ods [22,23].

FD-LBM is a straightforward generalization of the conventional LBM at non-unit CFL (Courant–Friedrich–Lewy) number
[24]. The perfect shift in the conventional LBM is a special case of FD-LBM at unit CFL number. The simple Cartesian grid
structure for FD-LBM offers ease of implementation but complicates accurate treatment of curved boundaries, causing un-
wanted velocity slip and mass and momentum conservation errors [25,26]. The spatial approximation of FV-LBM uses local
approximation in space and imposes no conditions on the grid structure; thus, the approach is suitable for dealing with com-
plex geometries. From the divergence theorem, the flux term of DBE becomes surface integral, requiring local reconstruction
of the fluxes at the boundaries. However, when we need to increase the order of accuracy, a high-order reconstruction of the
solution values at the interface introduce difficulties with geometric flexibility [27]. On the contrary, FE-LBM allows higher-
order approximation simply by adding additional degrees of freedom to the element, while retaining geometric flexibility. In
FE-LBM, the solution is continuous on the nodes along the faces of the elements shared by the neighboring elements, which
essentially introduces the globally defined basis and test functions. The inversion of global mass matrix can be expensive,
however, when a fully explicit time-stepping method is employed.

In this paper, we present SEDG-LBM using quadrilateral elements based on Gauss–Lobatto–Legendre grids for which the
two-dimensional mass matrix becomes a complete diagonal matrix whose inversion is trivial. We use an explicit Runge–Kut-
ta method for time-stepping. In [22,23], SEDG-LBMs based on triangular meshes are applied to the complete DBE. In our
SEDG-LBM, we split our scheme into collision and streaming step. The SEDG approximation is applied to the streaming step
of LBE after the collision step is completed. This enables our approach to avoid the severe time-step restriction caused by
small values of the relaxation time and helps us investigate flows at higher Reynolds number.

We examine central and upwind numerical fluxes for the numerical flux in discontinuous Galerkin approach. For the par-
ticle distribution function that enters into the computational domain, a boundary condition needs to be provided. We use the
bounce-back scheme [28], in which the incoming particle distribution function into the domain takes the value of the out-
going particle distribution function in the opposite direction. In [23], the bounce-back rule was imposed strongly on the
incoming particle distribution function after each time-step. In the present work, the bounce-back scheme is implemented
in a weak sense through the numerical flux, which is consistent with the overall numerical procedure inside the computa-
tional domain.

The paper is organized as follows. In Section 2, we present the LBE for the nearly incompressible flows and the SEDG
approximation applied to the LBE. Spatial and temporal discretizations are detailed, and numerical fluxes for wall boundary
conditions are discussed. Section 3 is devoted to validation of our SEDG-LBM. The physics of lid-driven cavity flows and
impulsively started flows past a circular cylinder are studied. Conclusions are given in Section 4.

2. Formulation

In this section, we derive LBE by discretizing DBE along characteristics, which is solved in two steps: collision and stream-
ing. For the streaming step, we examine a discontinuous Galerkin approach based on spectral element discretization using
quadrilateral elements in two dimensions. We construct numerical fluxes and present a consistent treatment for imposing
boundary conditions with the central and Lax–Friedrichs fluxes. Spatial and temporal discretizations are discussed in detail.

2.1. Lattice Boltzmann equation

We consider the DBE with the Bhatnagar–Gross–Krook collision operator [29] written as:

@fa
@t
þ ea � rfa ¼ �

fa � f eq
a

k
on X for a ¼ 0;1; . . . ;Na; ð1Þ

where fa is the particle distribution function defined in the direction of the microscopic velocity ea, k is the relaxation time,
and Na is the number of microscopic velocities. Here we consider a two-dimensional 9-velocity model given as ea = (0,0) for
a = 0; ea = (cosha, sinha) for a = 1, 2, 3, 4 and ea ¼

ffiffiffi
2
p
ðcos ha; sin haÞ for a = 5, 6, 7, 8, where ha = (a � 1)p/4. The equilibrium

distribution function is given by

f eq
a ¼ taq 1þ ea � u

c2
s
þ ea � uð Þ2

2c4
s
� ðu � uÞ

2c2
s

" #
; ð2Þ

where q is the density, u is the macroscopic velocity, t0 = 4/9, ta=1,4 = 1/9, and ta=5,8 = 1/36 are the weights, and cs ¼ 1=
ffiffiffi
3
p

is
the speed of sound [30].

The LBE is obtained by discretizing Eq. (1) along characteristics over the time-step dt as:

faðx; tÞ � faðx� eadt; t � dtÞ ¼ �
Z t

t�dt

fa � f eq
a

k
dt0; ð3Þ

in which time integration over [t � dt, t] is coupled with space integration in [x � eadt,x]. Taking a second-order approxima-
tion by the trapezoidal rule for the integration in the right-hand side of Eq. (3), we have
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faðx; tÞ � faðx� eadt; t � dtÞ ¼ � fa � f eq
a

2s
jðx�eadt;t�dtÞ �

fa � f eq
a

2s
jðx;tÞ; ð4Þ

where the dimensionless relaxation time is s = k/dt with a relation to the kinematic viscosity by m ¼ sc2
s dt.

Here, we introduce a modified particle distribution function �f a and its corresponding equilibrium distribution function �f eq
a

in order to facilitate computation by transforming the implicitly coupled LBE into an explicit LBE [31]:

�f a ¼ fa þ
fa � f eq

a

2s
and �f eq

a ¼ f eq
a : ð5Þ

Then Eq. (4) can be recast in a simpler form in terms of the modified particle distribution function:

�f aðx; tÞ � �f aðx� eadt; t � dtÞ ¼ � 1
sþ 1=2

�f a � �f eq
a

� �
jðx�eadt;t�dtÞ: ð6Þ

While Eq. (6) appears to be explicit in time, it is fully implicit for the collision term.
We solve Eq. (6) in two steps:

� Collision

�f aðx; t � dtÞ ¼ �f aðx; t � dtÞ � 1
sþ 1=2

ð�f a � �f eq
a Þjðx;t�dtÞ; ð7Þ

which is followed by the substitution �f aðx; t � dtÞ ¼ �f aðx; t � dtÞ.
� Streaming

�f aðx; tÞ ¼ �f aðx� eadt; t � dtÞ: ð8Þ

The density and momentum can be computed by taking moments as follows:

q ¼
XNa

a¼0

�f a; and qu ¼
XNa

a¼0

ea
�f a: ð9Þ

Eq. (8) is the exact solution of pure advection equation, but it is only neutrally stable and restricted to uniform square mesh
at unit CFL number such that both (x) and (x � eadt) reside on the nodal points of the mesh. Alternatively, the streaming step
can be expressed as a solution of the pure advection equation in an Eulerian framework [20], which can be expressed as
follows.
� Solution of advection equation

@�f a

@t
þ ea � r�f a ¼ 0 ð10Þ

Note that the factor 1/2 in the collision term of Eq. (7) is due to the implicit treatment. As the Reynolds number increases,
the dimensionless relaxation time s ¼ m= c2

s dt
� �

approaches zero, but the collision step remains stable because of the factor 1/
2, although oscillatory solution may develop as the amplification factor turns negative [20]. If we solve Eq. (1) without split-
ting it into two steps and treat the collision term explicitly [22,23], the collision term does not include the factor 1/2 and
becomes singular at high Reynolds number, thus severely restricting the maximum allowable time-step size. Second-order
extrapolation [9,21] and predictor–corrector methods [19] have been proposed to discretize the nonlinear collision operator
to increase the maximum time-step, but they are generally less stable.

2.2. Spectral element discontinuous Galerkin method

We begin this section with a weak formulation of the advection equation, Eq. (10), using a discontinuous Galerkin ap-
proach introducing flux vector. Spectral element discretizations, numerical fluxes with boundary condition implementation,
and time integration are discussed.

2.2.1. Weak formulation for the discontinuous Galerkin method
A multidomain approach for solving the advection equation is used. We consider a nonoverlapping element Xe such that

X ¼ [E
e¼1X

e. We introduce a flux vector defined as Fað�f Þ ¼ ea
�f a for the microscopic velocity vector ea = (eax,eay). Then Eq. (10)

defined on X can be written as:

@�f a

@t
þr � Fað�f Þ ¼ 0: ð11Þ

Eq. (11) can be recast in an equivalent variational form as:
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@�f a

@t
þr � Fað�f Þ;/

 !
Xe

¼ 0; ð12Þ

where / is a local test function. Integrating by parts of Eq. (12), we obtainZ
Xe

/
@�f a

@t
dX�

Z
Xe

Fað�f Þ � r/dX ¼ �
Z
@Xe

/n � Fað�f ÞdX; ð13Þ

where X represents the surface boundary of the element Xe (i.e., oXe) and n = (nx,ny) is the unit normal vector pointing out-
ward. Here we introduce a numerical flux F*, which is a function of the local solution �f and the neighboring solution �fþ at the
interfaces between neighboring elements. The numerical flux combines the two solutions that are allowed to be different at
the neighboring element interfaces. The analytic flux Fað�f Þ is replaced by the numerical flux F�að�f Þ:Z

Xe
/
@�f a

@t
dX�

Z
Xe

Fað�f Þ � r/dX ¼ �
Z
@Xe

/n � F�að�f ÞdX: ð14Þ

Integrating by parts of Eq. (14) again, we obtain the final form of the weak formulation as follows:

@�f a

@t
þr � Fað�f Þ;/

 !
Xe

¼ n � Fað�f Þ � F�að�f Þ
� �

;/
� �

@Xe : ð15Þ

2.2.2. Numerical fluxes for the discontinuous Galerkin method
We define two different numerical fluxes, namely, central and Lax–Friedrichs fluxes for F�að�f Þ ¼ F�að�f ;�fþÞ.

(i) Central Flux
For the central flux given by

F�að�f ;�fþÞ ¼
1
2
½Fað�f Þ þ Fað�fþÞ�; ð16Þ

we have the following form in the integrand of Eq. (15):

n � Fa � F�a
� �

¼ 1
2
ðn � eaÞ �f a � �fþa

� �
¼ 1

2
ðnxeax þ nyeayÞ �f a � �fþa

� �
: ð17Þ

At the interfaces, the normal vectors hold nx ¼ �nþx and ny ¼ �nþy . However, the components of the velocity vector are always
fixed in the neighboring element for each ea. Thus Eq. (17) can be separated into two components: one for local component
and the other for neighboring component with ‘‘+”:

n � Fa � F�a
� �

¼ 1
2
ðnxeax þ nyeayÞ�f a þ nþx eax þ nþy eay

� �
�fþa

h i
: ð18Þ

(ii) Lax–Friedrichs Flux
For the Lax–Friedrichs flux [27,32,33], we have

F�að�f ;�fþÞ ¼
1
2

Fað�f Þ þ Fað�fþÞ þ jKj �f a � �fþa
� �

n
� �

; ð19Þ

where K ¼maxðn � @F
@�f
Þ ¼ n � ea. We have the following form in the integrand of Eq. (15):

n � Fa � F�a
� �

¼ 1
2
ðn � ea � jn � eajÞ �f a � �fþa

� �
; ð20Þ

which can be simplified as:

n � Fa � F�a
� �

¼ ðn � eaÞ �f a � �fþa
� �

for n � ea < 0;
0 for n � ea P 0:

(
ð21Þ

In a similar manner to that in (18), for the case of n �ea < 0, we can write

n � Fa � F�a
� �

¼ ðnxeax þ nyeayÞ�f a þ nþx eax þ nþy eay

� �
�fþa : ð22Þ

2.2.3. Boundary conditions
Wall boundary conditions are weakly imposed through the numerical fluxes. For outgoing particle distribution functions

with ea�n > 0, the flux difference is set to be �f a � �fþa ¼ 0. For incoming particle distribution functions with ea�n < 0, we apply
boundary conditions through �f a � �fþa ¼ �f a � �f a� � 2taq0ðea � ubÞ=c2

s , where �f a� is the particle distribution function moving in
the opposite direction of �f a;ub is the macroscopic velocity prescribed at the wall boundary, and q0 is the reference density
that is chosen to be unity. The detailed expression for the flux difference in Eqs. (17) and (21) in the two-dimensional 9-
velocity model can be written as follows:
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if e1 � n < 0 ð () e3 � n > 0Þ; �f 1 � �fþ1 ¼ ½�f 1 � �f 3� � 2t1q0ðe1 � ubÞ=c2
s ;

�f 3 � �fþ3 ¼ ½�f 3 � �f 1� ¼ 0;

if e2 � n < 0 ð () e4 � n > 0Þ; �f 2 � �fþ2 ¼ ½�f 2 � �f 4� � 2t2q0ðe2 � ubÞ=c2
s ;

�f 4 � �fþ4 ¼ ½�f 4 � �f 2� ¼ 0;

if e3 � n < 0 ð () e1 � n > 0Þ; �f 3 � �fþ3 ¼ ½�f 3 � �f 1� � 2t3q0ðe3 � ubÞ=c2
s ;

�f 1 � �fþ1 ¼ ½�f 1 � �f 3� ¼ 0;

if e4 � n < 0 ð () e2 � n > 0Þ; �f 4 � �fþ4 ¼ ½�f 4 � �f 2� � 2t4q0ðe4 � ubÞ=c2
s ;

�f 2 � �fþ2 ¼ ½�f 2 � �f 4� ¼ 0;

if e5 � n < 0 ð () e7 � n > 0Þ; �f 5 � �fþ5 ¼ ½�f 5 � �f 7� � 2t5q0ðe5 � ubÞ=c2
s ;

�f 7 � �fþ7 ¼ ½�f 7 � �f 5� ¼ 0;

if e6 � n < 0 ð () e8 � n > 0Þ; �f 6 � �fþ6 ¼ ½�f 6 � �f 8� � 2t6q0ðe6 � ubÞ=c2
s ;

�f 8 � �fþ8 ¼ ½�f 8 � �f 6� ¼ 0;

if e7 � n < 0 ð () e5 � n > 0Þ; �f 7 � �fþ7 ¼ ½�f 7 � �f 5� � 2t7q0ðe7 � ubÞ=c2
s ;

�f 5 � �fþ5 ¼ ½�f 5 � �f 7� ¼ 0;

if e8 � n < 0 ð () e3 � n > 0Þ; �f 8 � �fþ8 ¼ ½�f 8 � �f 6� � 2t8q0ðe8 � ubÞ=c2
s ;

�f 6 � �fþ6 ¼ ½�f 6 � �f 8� ¼ 0:

2.2.4. Spectral element discretizations
We use a tensor product basis of the one-dimensional Legendre–Lagrange interpolation polynomials given as:

liðnÞ ¼ NðN þ 1Þ�1ð1� n2ÞL0NðnÞ=ðn� niÞLNðniÞ for n 2 ½�1;1�; ð23Þ

where ni is the Gauss–Lobatto–Legendre (GLL) quadrature nodes. Now we consider our computational domain X in two-
dimensional space. Each (x,y) 2Xe is mapped on the reference domain, (n,g) 2 I = [�1,1]2, through a Gordon-Hall mapping
[34]. The tensor-product structure of the reference element I allows us to define a two-dimensional basis as wij(n,g) =
li(n(x))lj(g(y)), or simply wij.

We seek a local approximate solution in Xe defined by the finite expansion of the tensor product basis wij(n,g) as:

�f N
a ðx; y; tÞ ¼

XN

i;j¼0

�f N
a

� �
ijwijðn;gÞ; ð24Þ

where �f N
a

� �
ij ¼

�f N
a ðxi; yj; tÞ, that is, the nodal values of the approximate solution �f N

a at time t on the tensor product of the one-
dimensional GLL quadrature nodes, (ni,gj) [34,35].

For derivatives, we have

@�f N
a

@t
¼
XN

i;j¼0

d �f N
a

� �
ij

dt
wijðn;gÞ; ð25Þ

@�f N
a

@x
¼
XN

i;j¼0

�f N
a

� �
ij

@wij

@x
ðn;gÞ ¼

XN

i;j¼0

�f N
a

� �
ij

@wij

@n
@n
@x
þ
@wij

@g
@g
@x

	 

; ð26Þ

@�f N
a

@y
¼
XN

i;j¼0

�f N
a

� �
ij

@wij

@y
ðn;gÞ ¼

XN

i;j¼0

�f N
a

� �
ij

@wij

@n
@n
@y
þ
@wij

@g
@g
@y

	 

; ð27Þ

where we can compute the geometric terms pointwise by

@n
@x
¼ 1

J
@y
@g

;
@g
@x
¼ �1

J
@y
@n
;

@n
@y
¼ �1

J
@x
@g

;
@g
@y
¼ 1

J
@x
@n
; ð28Þ

with the Jacobian J ¼ @x
@n

@y
@g� @x

@g
@y
@n

� �
from the following relation:

@n
@x

@n
@y

@g
@x

@g
@y

 !
@x
@n

@x
@g

@y
@n

@y
@g

 !
�

1 0
0 1

	 

: ð29Þ

We recall the weak formulation Eq. (15) and substitute Eqs. (24)–(27) into it, with a test function chosen from the tensor
product basis, namely, / :¼ wî̂j. Then we have the following components in the discretized weak form:
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d �f N
a

� �
ij

dt
ðwij;wî̂jÞXe þ eaxð�f N

a Þij
@wij

@x
;wî̂j

	 

Xe
þ eay

�f N
a

� �
ij

@wij

@y
;wî̂j

	 

Xe
¼ n � F �f N

a

� �
ij � F� �f N

a

� �
ij

h i
;wî̂j

� �
@Xe
: ð30Þ

Applying the Gauss quadrature rule to Eq. (30), we obtain the mass and stiffness matrices in two dimensions. For the mass
matrix, we have

M ¼ ðwij;wî̂jÞXe ¼
XN

k¼0

XN

m¼0

Jkmwkwml̂iðnkÞliðnkÞl̂jðgmÞljðgmÞ ¼ Jð bM � bMÞ; ð31Þ

where wk is the quadrature weights, Jkm is the value at each node in a local element for the Jacobian J, andbM ¼ ½ bMîi� ¼
PN

k¼0wkl̂iðnkÞliðnkÞ is the one-dimensional mass matrix defined on the reference domain [�1,1]. Because of the
orthogonal property of the Lagrange interpolation polynomials, the one-dimensional mass matrix is a diagonal matrix,
resulting in a complete diagonal matrix also in two dimensions. The gradient matrices are represented in a tensor product
form of the one-dimensional differentiation matrix bD ¼ ½bDij� ¼ ljðniÞ as:

Dx ¼
@wij

@x
;wî̂j

	 

¼
XN

k¼0

XN

m¼0

Gnx
kmJkmwkwml̂iðnkÞl

0
iðnkÞl̂jðgmÞljðgmÞ þ

XN

k¼0

XN

m¼0

Ggx
kmJkmwkwml̂iðnkÞliðnkÞl̂jðgmÞl

0
jðgmÞ

¼ GnxJ½ bM � bM bD� þ GgxJ½ bM bD � bM�; ð32Þ

Dy ¼
@wij

@y
;wî̂j

	 

¼
XN

k¼0

XN

m¼0

Gny
kmJkmwkwml̂iðnkÞl0iðnkÞl̂jðgmÞljðgmÞ þ

XN

k¼0

XN

m¼0

Ggy
kmJkmwkwml̂iðnkÞliðnkÞl̂jðgmÞl

0
jðgmÞ

¼ GnyJ½ bM � bM bD� þ GgyJ½ bM bD � bM�; ð33Þ
where Gnx ¼ diag Gnx

km

� �
; Gny ¼ diag Gny

km

� �
; Ggx ¼ diag Ggx

km

� �
, and Ggy ¼ diag Ggy

km

� �
represent the geometric factors @n

@x ;
@n
@y ;

@g
@x,

and @g
@x, respectively, and their values at each node (nk,gm).

The surface integration in Eq. (31) is in fact the one-dimensional integration on each face of the local element:

R �f N
a

� �
¼
X4

s¼1

XN

k¼0

Rs
k ðn � eaÞ �f N

a

� �
ij �

�f N
a

� �þ
ij

h in o
wkJs

k; ð34Þ

where Rs
kf�g extracts the information of {�} at the nodes situated on each face of the local element for the face number s and Js

k

is the surface Jacobian at the nodes on each face. To define the unit normal vector n corresponding to the face in the reference
domain I with respect to n and g, i.e., nn and ng, respectively, we consider the infinitesimal displacement (x,y) in the tangen-
tial direction along the boundary oXe, which can be written as:

�n ¼
@x
@n
;
@y
@n

	 

dn; and �g ¼

@x
@g

;
@y
@g

	 

dg: ð35Þ

From the fact that @n
@x

@x
@gþ

@n
@y

@y
@g ¼

@g
@x

@x
@nþ

@g
@y

@y
@n ¼ 0 in Eq. (29) and the relation in Eq. (28), we can obtain the normal vectors as:

n̂n ¼
@n
@x
;
@n
@y

	 

¼ 1

J
@y
@g

;� @x
@g

	 

; n̂g ¼

@g
@x
;
@g
@y

	 

¼ 1

J
� @y
@n
;
@x
@n

	 

; ð36Þ

so that the unit normal vectors can be defined as nn ¼ n̂n

jn̂n j
and ng ¼ n̂g

jn̂g j. The infinitesimal lengths along the face on oXe cor-
responding to n and g are

dl ¼ j�nj ¼
@x
@n
;
@y
@n

	 
���� ����dn and dl ¼ j�gj ¼
@x
@g

;
@y
@g

	 
���� ����dg; ð37Þ

respectively, and thus their associated surface Jacobians Js are @x
@n ;

@y
@n

� ���� ��� and @x
@g ;

@y
@g

� ���� ���, respectively.
The semidiscrete scheme for Eq. (15) in a local domain Xe can be written in matrix form as:

dfa

dt
þM�1Dfa ¼M�1Rfa; ð38Þ

where fa ¼ �f N
a

� �
ij is a solution vector, D = eaxDx + eayDy, and R is the surface integration acting on the boundary nodes on each

face of the local element.

2.2.5. Eigenvalues of the SEDG operator
The semidiscrete SEDG scheme in Eq. (38) can be expressed in a simple form as:

dfa

dt
¼ Lfa; ð39Þ

where L = M�1(�D + R) is the spatial operator. To obtain a fully discrete scheme, we need to choose a method for integrating the
system of the ordinary differential equations Eq. (39) in time. Let us denote the eigenvalues of the spatial operator as r, satis-
fying Lfa = rfa. For a fully discrete scheme to be stable, the real part of the eigenvalues must be Re(r) 6 0. Fig. 1 shows the eigen-
value spectrums of the spatial advection operator of the SEDG approximation for the central and Lax–Friedrichs fluxes with
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periodic and wall boundary conditions. A uniform spectral element mesh is used with the number of elements E = 3 	 3 and the
approximation order N = 5.

For the case with periodic boundary conditions, all the eigenvalues of the advection operator with the central flux fall on the
imaginary axis, while the eigenvalues of the advection operator for the Lax–Friedrichs flux are distributed in the negative half-
plane. In Fig. 1(a) and (b), the maximum values of Re(r) indicate machine precision for both central and Lax–Friedrichs fluxes.
This result indicates that one can choose the time-stepping scheme whose stability region includes the imaginary axis or neg-
ative half-plane for periodic problems.

For the case with wall boundary conditions, we observe some positive eigenvalues for the advection operator with the
central flux. Fig. 1(c) shows that the maximum value of Re(r) is positive. Numerical solutions associated with the positive
eigenvalues can grow dramatically in time, resulting in instability. Thus, central flux is not suitable for problems with wall
boundary conditions. The spatial operator with the Lax–Friedrichs flux for wall boundary conditions has all the eigenvalues
in the negative half-plane with a maximum value of Re(r) at machine precision, shown in Fig. 1(d). Thus one can choose a
time-stepping scheme whose stability region includes the negative half-plane for the Lax–Friedrichs flux.

2.2.6. Timestepping method
For time integration, we choose the fourth-order, 5-stage, low-storage Runge–Kutta (RK) method [36] defined below,

whose stability region is slightly larger and with less memory than those of the classical RK methods:

u0 ¼ fn
a

i ¼ 1; . . . ; sðs ¼ 5Þ : uj ¼
Xi�1

j¼0

aijuj þ bijdtLðuj; ðnþ cjÞdtÞ

fnþ1
a ¼ us; ð40Þ

where aij, bij, and cj are given constants.

Fig. 1. Eigenvalue spectrums of the spatial advection operator based on the SEDG approximation with E = 9, N = 5 for (a) central flux with periodic boundary
(b) Lax–Friedrichs flux with periodic boundary (c) central flux with wall boundary (d) Lax–Friedrichs flux with wall boundary conditions.
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3. Computational results

In this section, we demonstrate convergence studies and test our SEDG-LBM over benchmark problems including unstea-
dy Couette flows, lid-driven cavity flows, and flows past an impulsively started cylinder. As shown in the previous section,
the central flux is not suitable for problems with wall boundary condition, and therefore only the Lax–Friedrichs flux is used
in the benchmark calculations.

3.1. Convergence for unsteady Couette flow

We consider unsteady Couette flow on [0,L]2. The top plate moves at a constant velocity ub = (U,0), and the bottom one is
kept stationary. A periodic boundary condition is applied in the x-direction. The Reynolds number of the Couette flow is de-
fined as Re = UL/m. One can obtain the analytic solution from the incompressible Navier–Stokes equations for the Couette
flows that is defined as:

uðy; tÞ ¼ U
y
L
þ
X1
m¼1

2Uð�1Þm

kmL
e�mk2

mt sinðkmyÞ; ð41Þ

for km ¼ mp
L , m = 1,2,3, . . .

The cases with L = 1 and Ma = 0.05 are examined. We use the total number of elements E = 6 	 6 of equal size. Fig. 2 shows
the spatial convergence of SEDG-LBM depending on N = 2, 4, 6, 8, 10, 12, and 14 at time t = 40 with Re = 2000. The errors
show exponential convergence as N increases until it is saturated by temporal error.

3.2. Lid-driven cavity flows

Steady-state flows inside a square lid-driven cavity are simulated by using our SEDG-LBM described in the previous sec-
tion. The Reynolds number of the lid-driven cavity flow is UL/m, where U = csMa is the velocity of the lid and L the length of
the lid. We set the initial velocity u as (ux,uy) � (0,0) and the initial density q � 1. At t > 0, we let the top lid move at the
velocity ub = (ux,uy) = (U,0) with a Mach number Ma = 0.1. The velocity of the top lid is imposed through the numerical flux
as described in Section 2.2.3.

Fig. 3 shows the streamlines of the cavity flows at Re = 1000 and Re = 5000 with the Lax–Friedrichs flux on a nonuniform
spectral element mesh with E = 256. We used the polynomial order of N = 5 and a time-step dt such that CFL ¼ maxa jea jdt

Dxmin
¼ 0:4,

where Dxmin is the minimum grid spacing.
Fig. 4 demonstrates the nondimensional horizontal velocity ux/U along the mid-vertical line of the cavity y/H, where H is

the height of the cavity, for Re = 400, 1000, 3200, and 5000 from our SEDG-LBM simulations, keeping the mesh resolution
constant as in Fig. 3 with the total number of grids N ¼ ðN þ 1Þ2E ¼ 36	 256. A good agreement at high Re is particularly
notable with fewer grid points when compared to the Ghia et al.’s simulations [37] using an implicit multigrid method.

Fig. 2. Spatial convergence for the unsteady Couette flow with different dt for a fixed Re = 2000.
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Fig. 3. Streamlines of the cavity flow at (a) Re = 1000 and (b) Re = 5000 with the Lax–Friedrichs flux for E = 256 and N = 5, with the total gridsN ¼ ðN þ 1Þ2E.

Fig. 4. Nondimensional horizontal velocity (u/U) along mid-vertical line for Re = 400, 1000, 3200, and 5000. Lines represent our SEDG-LBM results, and
square dots represent the results by an implicit multigrid method by Ghia et al. [37].
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3.3. Flow past an impulsively started cylinder

In this section, time evolution of flows around an impulsively started circular cylinder is considered; and boundary-layer
development, separation, and drag forces are studied in detail. The computational results are compared mainly with those
from the vortex method and the spectral element method associated with the incompressible Navier–Stokes equations
[38,39]. High-resolution simulations are necessary at high Re to adequately resolve the singular character of the flow at early
times and to resolve the details of the separation process [40–42]. At t = 0+, it is assumed that a potential flow exists, and a

Fig. 6. Time evolution of the drag coefficients for Re = 550 and Ma = 0.1 with E = 2,208, N = 5, and N ¼ 62 	 2;208 for SEDG-LBM. Dash-dotted line presents
the results from the vortex method by Koumoutsakos and Leonard [38].

Fig. 5. Spectral element mesh around a circular cylinder with (a) E = 2,208 and (b) E = 3,758. (c) Close-up view around the cylinder for E = 3,758. Cylinder
diameter D = 1.0, and computational domain X = [�19,50] 	 [�25,25].
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slip velocity (vortex sheet of zero thickness) is observed on the surface of the body. Numerical schemes encounter difficulties
in resolving the initially developed thin boundary layers associated with impulsive starts and in computing accurately quan-

Fig. 7. Time evolution of the pressure and friction drag coefficients for Ma = 0.1, 0.2, and 0.3 with E = 2,208, N = 5, and N ¼ 62 	 2;208 for SEDG-LBM.

Fig. 8. Sequence of contour plots of the pressure wave ðp� p1Þ= 1
2 qU2

1

� �
for Re = 550 at T = 0.02, 0.04, 0.08, and 0.16 with E = 2,208, N = 5, and

N ¼ 62 	 2208 for SEDG-LBM. Upper and lower halves represent SEDG-LBM simulations at Ma = 0.1 and Ma = 0.3, respectively.
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Fig. 9. Time evolution of the drag coefficients for Re = 9500 and Ma = 0.05 computed on a mesh with E = 3,758, N = 5, and
N ¼ ðN þ 1Þ2E ¼ 62 	 3;758 ¼ 135;288 for SEDG-LBM. Dash-dotted line presents the results obtained from the vortex method [38], and the dashed line
the results from the spectral element simulations [39].

Fig. 10. Time evolution of streamlines at Re = 550 and Ma = 0.1; E = 2,208, N = 5 and N ¼ ðN þ 1Þ2E.
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tities such as the drag coefficient. At t > 0 we impose ub = (ux,uy) = (0,0) on the surface of the cylinder. The boundary condi-
tions are imposed weakly through the numerical flux as described in Section 2.2.3.

The Reynolds number of the flow is

Re ¼ U1D
m

; ð42Þ

where U1 is the uniform inlet velocity and D is the diameter of the cylinder. The dimensionless time T is based on the radius
of the cylinder:

T ¼ 2U1t
D

: ð43Þ

Computations are carried out for Re = 550 and 9500 with CFL = 0.4. Fig. 5 shows a spectral element mesh with E = 2,208. The
total drag force on the cylinder, Ft , is

Ft ¼ Fp þ Ff ; ð44Þ

where Fp is the force due to pressure and Ff the force due to friction. The total drag coefficient of the cylinder, CD, is

CD ¼
Ft � i

1
2 q1U2

1D
; ð45Þ

where i is the unit vector in the x-direction. The pressure and friction drag coefficients, CDp and CDf, are defined in a similar
manner.

Fig. 11. Time evolution of streamlines at Re = 9500 and Ma = 0.05; E = 3,758, N = 5, and N ¼ ðN þ 1Þ2E.
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In Fig. 6, time evolution of the pressure, friction, and total drags is compared to their time evolution with the vortex meth-
od by Koumoutsakos and Leonard [38]. At earlier times for T < 0.5, the vortex method gives a much more rapid decrease of
the pressure and total drags, exhibiting a t1/2 singularity [41]. The friction drag coefficient of our SEDG-LBM agrees well with
that obtained by the vortex method. The drag coefficients gradually recover from the sudden drop due to the impulsive start,
and SEDG-LBM results start to show good agreement with the vortex method for T P 1, when the effects of convection
become important. As noted first in [41], the results from our SEDG-LBM shows a slower decay mainly because of its
finite-compressibility effect.

In Fig. 7, we show the drag coefficients for Ma = 0.1, 0.2, and 0.3. Clearly, as Ma increases, the initial decay in the pressure
drag coefficient slows, and the recovery from a sudden drop due to the impulsive start is delayed. We note that the friction
drag coefficient is not very sensitive to the variation of Ma. This result implies that the compressibility in LBM affects mostly
the pressure field. The pressure wave originating from the impulsive start travels at a constant lattice speed of sound cs. Since
dimensionless time is measured with flow velocity U1, the distance traveled by the pressure wave is inversely proportional
to Ma at a given time.

Fig. 8 shows the sequence of contour plots of the dimensionless pressure wave defined as ðp� p1Þ= 1
2 qU2

1

� �
for Ma = 0.1

and Ma = 0.3 with constant reference pressure p1. Initially at T = 0, the pressure field is uniform. The pressure wave with
Ma = 0.1 propagates from the cylinder surface three times faster than the one with Ma = 0.3 and disappears much more
quickly from the cylinder. The nearly incompressible pressure field, in which the front stagnation point has the highest value
and the top and bottom surfaces of cylinder have lower values, is slowly established as the pressure wave propagates out-
ward radial direction. As the pressure at the front stagnation point is increased, the pressure drag increases until T < 0.5
(Fig. 7), which takes less time for smaller Ma. Once the pressure field is recovered, the pressure drag starts to decrease
and then gradually increases.

In Fig. 9, we present the results of drag coefficient in comparison with those of the vortex method [38] and the spectral
element method (SEM) [39]. Our grid resolution is 135,288 (E = 3,758,N = 5) for Re = 9500 and Ma = 0.05. The results show
good agreement with the results from the vortex method and SEM. The delay in establishing the incompressible pressure
field around the cylinder contributes to the discrepancy in the pressure drag coefficients at early time between the results
from SEDG-LBM, the vortex method, and SEM, as shown in Fig. 9.

Figs. 10 and 11 demonstrate the time sequence of streamlines with Ma = 0.1 for Re = 550 and Re = 9500 at different times
T. The number of spectral elements E = 2,208 and E = 3,758, respectively for Re = 550 and Re = 9500, and the polynomial order
of N = 5 are used.

4. Conclusions

We have presented a spectral-element discontinuous Galerkin lattice Boltzmann method for solving incompressible
flows, such as the flows for a lid-driven cavity and an impulsively started cylinder. We decoupled the lattice Boltzmann
equation into collision and streaming steps, giving flexibility in dealing with numerical stability at high Reynolds numbers.
In the streaming step, we used a spectral element discretization in a discontinuous Galerkin form with a fully diagonal mass
matrix for solving the advection equation. We have shown the implementation for imposing boundary conditions weakly
through numerical fluxes, especially Lax–Friedrichs flux.

We have examined lid-driven cavity flows for Re = 400–5000 and flows around an impulsively started cylinder for
Re = 550–9500. Computational results show good agreement with the results from previously studied methods, namely,
an implicit multigrid method, a vortex method, and a spectral element method. Our method shows some delay in establish-
ing incompressibility at the initial stage of the simulation due to its inherent weak compressibility at larger Ma. From the
computational experiments, we have demonstrated our SEDG-LBM delivers accuracy and efficiency for simulations of
unsteady complex flows. Extension to three dimensions and performance studies in comparison to other approaches remain
as a future work.
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