
Parallel I/O Performance for Application-Level
Checkpointing on the Blue Gene/P System

Jing Fu
Department of Computer

Science
Rensselaer Polytechnic

Institute
Troy, NY 12180

fuj@cs.rpi.edu

Misun Min
Mathematics and Computer

Science Division
Argonne National Laboratory

Argonne, IL 60439
mmin@mcs.anl.gov

Robert Latham
Mathematics and Computer

Science Division
Argonne National Laboratory

Argonne, IL 60439
robl@mcs.anl.gov

Christopher D. Carothers
Department of Computer

Science
Rensselaer Polytechnic

Institute
Troy, NY 12180

chrisc@cs.rpi.edu

ABSTRACT
As the number of processors increases to hundreds of thou-
sands in the recent parallel computer architectures, the fail-
ure probability rises correspondingly, making fault tolerance
a highly important yet challenging task. Application-level

checkpointing is one of the most popular techniques to proac-
tively deal with unexpected failures, because of its porta-
bility and flexibility. During the checkpoint phase, the lo-
cal states of the computation spread across thousands of
processors are saved to stable storage. Unfortunately, this
approach results in heavy I/O load and can cause an I/O
bottleneck in a massively parallel system. In this paper,
we examine application-level checkpointing for a massively
parallel electromagnetics solver system called NekCEM on
the IBM Blue Gene/P at Argonne National Laboratory. We
discuss an application-level, two-phase I/O approach, called
“reduced-blocking I/O” (rbIO), and a tuned MPI-IO collec-
tive approach (coIO), and we demonstrate their performance
advantage over the “1 POSIX file per processor” approach.
Our study shows that rbIO and coIO result in 100× im-
provement over previous checkpointing approaches on up to
65,536 processors of the Blue Gene/P using the GPFS. Our
study also demonstrates a 25× production performance im-
provement for NekCEM. We show how to optimize param-
eter settings for those parallel I/O approaches and to verify
results by I/O profilings. In particular, we examine the per-
formance advantage of rbIO and demonstrate the potential
benefits of this approach over the traditional MPI-IO rou-
tine, coIO.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Keywords
Parallel I/O, checkpointing, fault tolerance, Blue Gene/P

1. INTRODUCTION
As current leadership-class computing systems such as the

IBM Blue Gene series [?] move closer to exascale capabil-
ity, the likelihood of an unrecoverable node or network fail-
ure is high [?]. When a component fails, the application in
progress loses valuable work and must be restarted, thereby
wasting computing time, power, and staff effort.

Another trend in current petascale systems is that they
share a high degree of hardware, including memory and
caches within nodes, network infrastructure between nodes,
and a shared storage I/O system for the whole machine.
During the checkpointing phase, gigabytes or even terabytes
of checkpoint data from hundreds of thousands of proces-
sors can be written into the shared back-end storage system,
making I/O a bottleneck. In extreme cases, traditional I/O
approaches such as “1 POSIX file per processor” (1PFPP)
for checkpointing on a 128K-processor partition render poor
performance or even lock the file system and hang the ap-
plication until it is removed from the job queue [?]. Thus,
scalable and effective I/O approaches are needed so that
users can better utilize the computing cycles allocated on
massively parallel systems, yielding more productive science
per compute cycle.

The key contribution of this paper is a performance study
of different parallel I/O approaches applied to application-
level checkpointing for a production petascale electromag-
netics solver NekCEM (Nekton for Computational Electro-
Magnetics) [?]. In particular, we developed a two-phase I/O
approach called “reduced-blocking I/O” (rbIO), and a tuned
MPI-IO collective approach (coIO). We demonstrate their
performance advantage against previously used 1PFPP ap-
proach. Our objective is to provide an approach that re-
duces the checkpointing time, gives users more flexibility
with checkpoint-restart data files, and provides guidance for
further I/O performance tuning on different systems.

This paper is organized as follows. In Section 2, we pro-
vide a general overview of checkpointing and some work that
has been done in this area. In Section 3.1, we introduce the
petascale application code, NekCEM, used in our study. In
Section 4, we discuss several parallel I/O approaches. In
Section 5, we describe the Blue Gene/P system, compare
different approaches, and provide detailed experiment re-
sults. In Section 6, we compare our approaches with related
work in the literature. In Section 7, we give our conclusions
and discuss some future work.

2. OVERVIEW OF CHECKPOINTING
Application checkpoint/restart is an effective fault toler-

ance technique in distributed systems. Checkpoint/restart
allows a program to save local states periodically so that, in
the event of a system crash, the program can roll back to
the most recently saved state, avoiding total loss of work.
This technique is especially important for those computa-
tional science and engineering applications (e.g., parallel
partitioned solvers) that normally iterate for many steps and
require a long time to complete. Checkpointing can happen
either at the operating system level or at the application
level.

System-level checkpointing typically provides checkpoint-
ing in an user-transparent manner, where the data is man-
aged by the operating system and checkpointing can happen
at any time. While this approach requires no additional ef-
fort from the application programmer and sees the applica-
tion as a black box, none of the internal semantics or charac-
teristics of the application are recognized. Thus, the whole
state of the computation—including CPU register informa-
tion and memory information—must be stored during each
checkpointing. This approach dramatically increases the to-
tal amount of data to be stored, especially on large-scale
systems. Examples of this approach include IODC [?] and
SCR [?], which are reviewed in Section 6.

Assume that we have 150 MB of data in memory for each
processor for checkpointing. A 65,536-processor partition
will generate roughly 10 TB data at each checkpoint step,
which is too heavy for a typical shared-I/O subsystem in
such large parallel systems. Moreover, because system-level
checkpointing records a snapshot for a specific system (e.g.,
register information, software stacks, memory layout), it is
not portable between different platforms.

On the other hand, although application-level checkpoint-

ing requires more manual effort from an application pro-
grammer, it takes the content and semantics of an applica-
tion into consideration; the application programmer decides
which critical data needs to be stored to disk. The applica-
tion programmer also has the freedom to choose a safe time
and appropriate frequency for checkpointing. Since these
checkpoint data files are user-defined, they are easily ported
to different platforms. Also, these files can be used for other
purposes, such as data visualization or other postprocessing
analysis, which are extremely useful for many computational
applications. Examples of this approach include ADIOS [?]
and data partitioning techniques [?, ?], which are reviewed
in Section 6.

In this paper, we focus on application-level checkpointing.
Specifically, our applications involve checkpointing certain
data in a coordinated manner, where all processors start and
end checkpointing synchronously. (Throughout the paper,
we use the term “processors” to mean “cores.”) In such a sit-

uation, no processor begins the next iteration until the last
processor completes its checkpointing, and thus any signifi-
cant I/O latency on a single processor can result in keeping
all other processors in the partition waiting. Our main mo-
tivation in developing efficient parallel I/O approaches is to
balance the I/O latency among all processors and reduce the
overhead or even completely hide the I/O latency by using
dedicated I/O communicators in the optimal case.

3. SOFTWARE AND I/O FILE FORMAT
We consider the production code NekCEM, which is a sin-

gle, comprehensive electromagnetic software package, cur-
rently capable of scalable simulations up to more than 131K
processors on leadership-class machines such as the IBM
Blue Gene/P. In this section, we describe the key features
of NekCEM including some of its capabilities.

3.1 NekCEM
Highly efficient and accurate modeling on advanced com-

puting platforms will enable the relevant science and engi-
neering communities to advance their understanding of com-
plex systems that are too large for experimental study and
will reduce both the cost and the risk involved in conven-
tional trial-and-error procedures.

NekCEM is an Argonne-developed, high-order, spectral-
element discontinuous Galerkin (SEDG) code [?] that is
designed for simulation-based investigations for understand-
ing the fundamental optical properties and predicting opti-
mal designs of electromagnetic devices in particle accelerator
physics and nanoscience applications [?, ?]. This code fea-
tures spectrally accurate solutions with less numerical dis-
persion for long time simulations with geometric flexibility
using body-fitted conforming meshes [?].

NekCEM solves the two- and three-dimensional Maxwell
curl equations in the time domain. Spectral-element dis-
cretizations are used based on hexahedral element meshes.
For the time-advancing, the code currently supports explicit
time-stepping schemes such as the five-stage, fourth-order
Runge-Kutta [?] and the exponential time integration meth-
ods [?]. Tensor product bases of the one-dimensional La-
grange interpolation polynomials using the Gauss-Lobatto-
Legendre grid points result in a diagonal mass matrix, which
requires no additional cost for mass matrix inversion [?],
making the code highly efficient. The stiffness matrix is a
tensor product form of the one-dimensional differentiation
matrix [?].

The discontinuous Galerkin scheme based on the domain
decomposition approach performs communication only at
the element faces (excluding the information of vertices and
edges) between neighboring elements through a numerical
flux [?]. The face values at the interfaces are saved in
a single array for the six components of the electric field
E=(Ex, Ey, Ez) and the magnetic field H=(Hx,Hy,Hz) so
that communication can occur only once at each time step
between neighboring elements. Thus, communication la-
tency can be reduced by a factor of six compared to the
case of saving the face values into six different arrays for
each component of the fields.

NekCEM is written in Fortran and C. The code uses the
core infrastructure of the incompressible Navier-Stokes solver
Nek5000, awarded the Gordon Bell prize in 1999 [?]. NekCEM
uses the distributed-memory message-passing interface (MPI)
programming model [?] and the single program, multidata

