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Issues in Optimization Solvers

minimize
x

f (x) subject to c(x) ≥ 0

1. Global Convergence

• merit function, e.g. f (x) + π‖c(x)−‖ for π > ‖y∗‖D

• filter ... more later

2. Active Set Identification

• given active set, simply use Newton’s method
• step computation: update estimate of active set
• alternative: interior point methods Yc(x) = µe & µ ↘ 0

3. Fast Local Convergence

• conjugate gradients et al.
• (constrained) preconditioners
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Why Do We Need Active Set Methods (ASMs)?

Interior point methods (IPMs) usually faster than ASMs:

1. Pivoting inefficient for huge problems

2. Single QP solve ' several Newton steps of IPM

3. Null-space projected Hessian factors are DENSE

Why should we be interested in ASMs?

• ASMs often more robust than interior point methods
• ASMs better for warm-starts (repeated solves)
• Easier to precondition ... iterative solves

Challenge: overcome 1. & 2. from above

Two ways to make large changes to active set

1. Projected gradient approach

2. Sequential linear programming approach
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ACTIVE SET
METHODS
FOR QPs

Sven Leyffer Active Set Methods 5 of 31



Philosophy Quadratic Programs Nonlinear Programs

Active Sets for Quadratic Programs (QPs)

minimize
x

1
2
xTHx + gTx

subject to ATx = b
l ≤ x ≤ u

• H is symmetric (indefinite?)

• AT is m × n, m < n, full rank

• General: l̄ ≤
(

x
ATx

)
≤ ū

Active set A(x) = {i | xi = li or xi = ui}
Inactive set I(x) = {1, . . . , n} − A(x)
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Active Sets for Quadratic Programs (QPs)

Active set A(x) = {i | xi = li or xi = ui}
Inactive set I(x) = {1, . . . , n} − A(x)

Given A, QP solution (x∗I , y
∗) solves[

HI,I −A:,I
AT

:,I

](
xI
y

)
=

(
−gI − HI,AxA

b − AT
:,AxA

)
Active-set methods search for A∗:
• Delete entries from Ak ; update a factorization; compute step

• Possibly add entries to Ak

• ∃ robust solvers; good for warm starts ... n large ???
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PROJECTED
GRADIENT

Sven Leyffer Active Set Methods 8 of 31



Philosophy Quadratic Programs Nonlinear Programs

Projected Gradient for Box Constrained QPs

Simpler box constrained QP ...{
minimize

x

1
2
xTHx + gTx =: q(x)

subject to l ≤ x ≤ u

Projected steepest descent P[x − α∇q(x)]
◦ piecewise linear path

... large changes to A-set

... but slow (steepest descent)

x−tg

P[x−tg]

xc Cauchy point ≡ first minimum of q(x(α)), for α ≥ 0

Theorem: Cauchy points converge to stationary point.
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Projected Gradient & CG for Box Constrained QPs

x0 given such that l ≤ x0 ≤ u; set k = 0
WHILE (not optimal) BEGIN

1. find Cauchy point xc
k & active set A(xc

k )

2. (approx.) solve box QP in subspace I := {1, . . . , n} − A(xc
k )

minimize
x

1
2
xTHx + gTx

subject to l ≤ x ≤ u
xi = [xc

k ]i ,∀ i ∈ A(xc
k )

⇔ apply CG to ...
HI,IxI = ...

for xk+1; set k = k + 1

END

Cauchy point ⇒ global convergence ... but faster due to CG
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How to Include ATx = b?

Projection onto box is easy, but tough for general QP

PQP [z ] =


minimize

x
(x − z)T (x − z)

subject to ATx = b
l ≤ x ≤ u

... as hard as original QP! ... Idea: project onto box only

⇒ subspace solve HI,IxI = ... becomes solve with KKT system[
HI,I −A:,I
AT

:,I

](
xI
y

)
= ...

Which gradient / merit function in Cauchy step?
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AUGMENTED
LAGRANGIAN
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The Augmented Lagrangian

Arrow & Solow (’58), Hestenes (’69), Powell (’69)

minimize
x

L(x , yk , ρk) = f (x) − yT
k c(x) + 1

2
ρk‖c(x)‖2

As yk → y∗: • xk → x∗ for ρk > ρ̄
• No ill-conditioning, improves convergence rate

• An old idea for nonlinear constraints ... smooth merit function
• Poor experience with LPs (e.g., MINOS vs. LANCELOT)
• But special structure of LPs (and QPs) not fully exploited

f (x) = 1
2
xTHx + gTx & c(x) = ATx − b
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Bound Constrained Lagrangian (BCL)

Minimizing the augmented Lagrangian subject to bounds:

WHILE (not optimal) BEGIN

1. Find ωk ↘ 0 optimal xk of

minimize
l≤x≤u

f (x)− yT
k c(x) + 1

2
ρk‖c(x)‖2

2. IF ‖c(xk)‖ ≤ ηk ↘ 0 THEN
Update yk

(
typically yk+1 = yk − ρkc(xk)

)
ELSE increase ρk

END

Arbitrary sequences: ηk&ωk control feasibility & optimality
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Augmented Lagrangian for Linear Constraints

Nonlinear c(x) c(x) = ATx − b

(yk , ρk) ∈ D ρk > ρ̄

∀(ρ, y) ∈ D, minimize L(x , y , ρ) has unique solution x(y , ρ):
• bound constrained augmented Lagrangian converges
• Hessian ∇2

xxL(x , y , ρ) is positive definite on optimal face

ρ̄ ≈ 2
‖H∗‖

‖A∗AT∗‖
... depends on active set ... from dual Hessian
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QP by Projected Augmented Lagrangian QPPAL

WHILE (not optimal) BEGIN

1. Find ωk ↘ 0 optimal solution xc
k of

minimize
l≤x≤u

1
2
xTHx + gTx − yT (ATx − b) + 1

2
ρk‖ATx − b‖2

2. Find A(xc
k ) & estimate penalty ρ̄ = 2 ‖HI‖/‖AIAT

I ‖
3. IF ρ̄ > ρk THEN update ρk+1 = ρ̄ & CYCLE

ELSE update multiplier: y c
k = yk − ρk(A

Txc
k − b)

4. Solve equality QP in subspace → (∆xI , ∆y)[
HI,I −A:,I
AT

:,I

](
∆xI
∆y

)
= −

(
[∇xL(xc

k , y c
k , 0)]I

ATxc
k − b

)
5. Line-search on L(xc

k + α∆x , y c
k + α∆y , ρ); update x , y , k , ρ

END
1.-3. identify active set ... 4. gives fast convergence
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Filter
Methods
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A Filter for Augmented Lagrangian Methods

Two competing aims in augmented Lagrangian:

1. reduce hk := ‖ATxk − b‖ ≤ ηk ↘ 0

2. reduce θk := ‖∇L(xk , yk , ρk)− zk‖ ≤ ωk ↘ 0

... why should one sequence {ωk} , {ηk} fit all problems ???
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A Filter for Augmented Lagrangian Methods

Introduce a filter F to promote convergence

• list of pairs (‖ATxl − b‖, ‖∇Ll − zl‖)
• no pair dominates any other pair

• new xk acceptable to filter F , iff

1. hk ≤ 0.99 · hl ∀l ∈ F
2. θk ≤ 0.99 · θl ∀l ∈ F

• remove redundant entries

• reject new xk , if hk ≥ hl & θk ≥ θl

forbidden

Ax − b

L(x,y,r)−z

... and old friend from Chicago ...

Sven Leyffer Active Set Methods 19 of 31
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Augmented Lagrangian Cauchy Pointe (Al Capone)

Requirement on Cauchy Point xc
k for filter:

1. xc
k , y c

k acceptable to filter

2. ‖∇L(xk , yk , ρk)− zk‖ ≤ ωk

. . . optimality of Lagrangian

New: ωk := 0.1 max {‖∇Ll − zl‖}
... depends on filter

1. ensures that back-tracking line-search will succeed
... if not acceptable then reduce ωk+1 = ωk/2

2. & ωk+1 = ωk/2 ensure new entry can be added to filter

Why do you keep the penalty parameter?
... combines search directions for ‖ATx − b‖, and
‖∇L(xl , yl , ρl)− zl‖
⇒ gradient projection possible
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Active Set Evolution: blockqp4 100

AUGLAG

FILTER

red = lower bound active
green = upper bound active
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AUGLAG FILTER

red = lower bound active
green = upper bound active
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Summary: Active Set QP Method

1. Global Convergence

• augmented Lagrangian & filter
⇒ no arbitrary parameters

2. Active Set Identification

• projected gradient on augmented Lagrangian
• easy penalty parameter estimate

3. Fast Local Convergence

• conjugate gradients on equality QP
• (constrained) preconditioners ???
• Benzi-Golub ... ties in with augmented Lagrangian
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Philosophy Quadratic Programs Nonlinear Programs

ACTIVE SET
METHODS
FOR NLPs
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Philosophy Quadratic Programs Nonlinear Programs

Sequential Quadratic Programming (SQP)

NLP: minimize
x

f (x) subject to c(x) ≥ 0

SQP method of choice for NLP

Compute displacement/step d by solving QP subproblem

minimize
d

gTd + 1
2
dTWd

subject to c + ATd ≥ 0
‖d‖∞ ≤ ∆ Trust-Region

where g = ∇f (x), A = ∇c(x)T , W = ∇2L(x , y)
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Philosophy Quadratic Programs Nonlinear Programs

Sequential Quadratic Programming (SQP)

WHILE (not optimal) BEGIN

1. Compute displacement/step d by solving QP subproblem

2. IF step d acceptable THEN
x = x + d & increase trust-region radius ∆ = 2 ∗∆

ELSE
x = x & decrease trust-region radius ∆ = ∆/2

END

• How to make it work for n large ???
QP solve is bottleneck ... could use new QPFIL

• ∃ excellent LP solvers ... but QP harder
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Philosophy Quadratic Programs Nonlinear Programs

Sequential Linear Programming

Throw away quadratic term ⇒ linear program

Compute displacement/step dLP by solving LP subproblem

minimize
d

gTd+1
2
dTWd

subject to c + ATd ≥ 0
‖d‖∞ ≤ ∆ Trust-Region

where g = ∇f (x), A = ∇c(x)T , W = ∇2L(x , y)
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Philosophy Quadratic Programs Nonlinear Programs

Sequential Linear Programming

WHILE (not optimal) BEGIN

1. Compute displacement/step dLP by solving LP subproblem

2. Identify active constraints: A = {i : ci + aT
i dLP = 0} & solve

minimize
d

gTd + 1
2
dTWd

subject to ci + aT
i d = 0 i ∈ A

⇔
[

HI,I −AT
:,I

A:,I

](
dI
y

)
= ...

equality QP for step d

3. IF step d acceptable THEN
x = x + d & increase trust-region radius ∆ = 2 ∗∆

ELSE
x = x & decrease trust-region radius ∆ = ∆/2

END
⇒ slow local convergence ... steepest descent

How expensive are
LPs??
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Philosophy Quadratic Programs Nonlinear Programs

Active Set Identification by SLP

Polyhedral trust-region makes LP solves inefficient

minimize
d

gTd

subject to c + ATd ≥ 0
‖d‖∞ ≤ ∆ Trust-Region

• many changes to active trust-region bounds

• LP solvers too slow near solution
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Active Set Identification by SLP

Ellipsoidal trust-region makes LPs into NLPs

minimize
d

gTd

subject to c + ATd ≥ 0
‖d‖2 ≤ ∆ Trust-Region

• trust-region (always) active ⇒ no changes

• subproblem is now NLP ... as hard as original problem ???
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Active Set Identification by SLP

Ellipsoidal trust-region makes LPs into NLPs

minimize
d

gTd

subject to c + ATd ≥ 0
dTd ≤ ∆2 Trust-Region

• trust-region (always) active ⇒ no changes

• subproblem is now NLP ... as hard as original problem ???
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Philosophy Quadratic Programs Nonlinear Programs

Summary: Active Set NLP Method

1. Global Convergence

• Sequential bound constraint
• Trust-region & Filter

2. Active Set Identification

• dLP LP steps from subproblem

3. Fast Local Convergence

• conjugate gradients on equality QP
• (constrained) preconditioners ???
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