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Motivation
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Laplace’s Equation

−∆u = 0 x ∈ Ω

u = f(x) x ∈ ∂Ω

• Approximate solution using finite-element method

– Discretize Ω into set of elements

– Construct matrix and right-hand side

– Solve resulting system of equations

• Quantities to report include

– Condition number of matrix

– Number of conjugate gradient iterations

– Accuracy of approximate solution
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Laplace’s Equation

• Objective: 1.652 × 10−1 (one digit of accuracy)

• Condition number: 1.164 × 107

• Conjugate gradient iterations: 423 (stalled)
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Improving the Approximate Solution

• h-refinement

– Add elements to discretization

• p-refinement

– Increase degree of approximation

• r-refinement

– Improve the quality of the mesh

– Optimize the vertex locations

– Requires a quality metric

• Combinations of these techniques
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Original and Improved Mesh
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Laplace’s Equation

• Objective: 1.522 × 10−1 (three digits of accuracy)

• Condition number: 2.997 × 102

• Conjugate gradient iterations: 85
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Inverse Mean-Ratio Metric
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Incidence Function

• Given matrix of element coordinates

• Define A : <3×4 → <3×3

A(x) :=
[

x2 − x1 x3 − x1 x4 − x1

]
– Computes edge matrix for the element

– Element volume related to det(A(x))

– Positive or negative depending on vertex ordering

• If x ∈ <3×4 and y ∈ <3×4 have the same shape, then

‖A(x)A(y)−1‖2
F = 3σ2

det(A(x)A(y)−1) = σ3

– Scale factor is σ
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Shape-Quality Metric

• Measures distance of element from ideal shape

• Given x ∈ <3×4 and y ∈ <3×4 with

det(A(x)) > 0

det(A(y)) > 0

• Define Qy : <3×4 → <

Qy(x) :=
‖A(x)A(y)−1‖2

F

3det(A(x)A(y)−1)2/3

– Value of one when x and y have same shape

– Greater than one otherwise

– Invariant to scale, translation, and rotation

• Modified version used for other element types
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Optimizing the Vertex Positions
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Optimization Problem

• Given y ∈ <3×4 with det(y) > 0

• Given initial vertex positions with det(A(x0
e)) > 0 ∀e ∈ E

• Minimize average inverse mean-ratio metric

min
x∈<3×|V|

θ(x) :=
P

e∈E

‖A(xe)A(y)−1‖2
F

3det(A(xe)A(y)−1)2/3

subject to det(A(xe)A(y)−1) ≥ 0 ∀e ∈ E

xv = x̄v ∀v ∈ VB

• Constraints preserve element orientation

• Area constraints not active at any local solution if

– Mesh is edge connected

– At least two vertices are fixed

• Metric set to infinity when det(A(xe)) ≤ 0
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Non-convex Optimization Problem

• Two free vertices

• Hessian of objective contains

– Three positive eigenvalues

– One negative eigenvalue with value −70
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A Solution Strategy

• Write problem in AMPL modeling languages

– Constrained formulation with det(A(xe)A(y)−1) ≥ τ

– Unconstrained formulation with

Q̃y(x) :=
‖A(x)A(y)−1‖2

F

3 max {det(A(x)A(y)−1), 0}2/3

• Apply general-purpose algorithms

– LOQO – interior-point method with line search

– KNITRO – interior-point method with trust region

– TRON – trust-region code for problems with bounds

• Advantage is that results can be quickly obtained
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Test Problem Statistics

Mesh Type Vertices Elements Variables

deer triangular 1,122 1,896 1,520

turtle triangular 2,222 4,025 3,578

rand1000 triangular 1,152 2,170 2,048

rand10000 triangular 10,400 20,394 20,000

foam tetrahedral 1,337 4,847 867

gear tetrahedral 866 3,116 780

hook tetrahedral 1,190 4,675 1,200

duct20 tetrahedral 1,067 4,104 1,146

duct15 tetrahedral 2,139 9,000 2,868

duct12 tetrahedral 4,199 19,222 6,906
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Sample Meshes
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Preliminary Computational Results

Constrained Unconstrained

Mesh LOQO KNITRO LOQO KNITRO TRON

deer † 1.25 1.31 0.59 0.76

turtle 33.59 4.33 2.43 1.76 2.11

rand1000 12.79 ‡ 2.95 ∗ ∗

rand10000 80.95 ‡ 49.21 ∗ ∗

foam5 6.53 4.70 4.51 2.87 2.79

gear 3.75 4.28 2.59 ‡ 2.60

hook 8.86 7.25 8.71 3.30 3.82

duct20 11.63 6.12 16.15 3.50 4.02

duct15 41.65 16.59 40.42 9.27 10.74

duct12 112.00 61.20 127.93 ∗ 29.20
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Algorithm and Computational Results
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Inexact Newton Method with a Line Search

1. Given x0 and set k = 0

2. Stop if ‖∇θ(xk)‖ < ε

3. Calculate direction by approximately solving

∇2θ(xk)dk = −∇θ(xk)

• Apply conjugate gradient method

• Block diagonal preconditioner

4. Find β such that θ(xk + βdk) < θ(xk)

5. Let xk+1 = xk + βdk, set k = k + 1, and repeat
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Preconditioner Properties

• Hessian matrix may be indefinite

• Need positive definite block diagonal submatrix

• Some useful properties of inverse mean-ratio metric

– det(A(x1, x2, x3, x4)A(y)−1) is linear in x1

– det(A(x1, x2, x3, x4)A(y)−1)
2
3 is concave in x1

– ‖A(x1, x2, x3, x4)A(y)−1‖2
F is strongly convex in x1

• Qy(x1, x2, x3, x4) is a pseudoconvex function of x1

• Prove Qy(x1, x2, x3, x4) is a strictly convex function of x1

– Implies Qy(x1, x2, x3, x4) is strictly convex function of xi

Q[y1,y2,y3,y4](x1, x2, x3, x4) = Q[y2,y1,y4,y3](x2, x1, x4, x2)

– Moreover
P

e∈E ∇2
xi,xi

Qy(xe) is positive definite

– Block diagonal preconditioner is positive definite
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Convexity of Fractional Functions

Proposition 1 Let f : <n → < and g : <n → <, and let Ω ⊆ <n be a convex

set. Assume the following properties are satisfied:

1. g is a positive, concave function on Ω.

2. f is a nonnegative, uniformly convex function with constant κ on Ω.

3. For all (x, y) ∈ Θ :=
n
(x, y) ∈ Ω × Ω | f(y)

g(y) ≥ f(x)
g(x) and g(y) ≥ g(x)

o
,

�
f(y)
g(y) − f(x)

g(x)

�
(g(y) − g(x)) ≤ κ‖y − x‖2

2.

Then, f
g is a nonnegative, convex function on Ω.
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Algorithm Implementation

• Analytic gradient and Hessian evaluations

• Upper triangular part of Hessian stored

• Newton direction found by conjugate gradients

– Block diagonal preconditioner (positive definite)

– Blocked matrix-vector product

– Terminates based on

∗ Relative tolerance
∗ Direction of negative curvature

• Monotone Armijo linesearch

• Reverse breadth-first search ordering
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Ordering Effects
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Computational Results

Best Time

Mesh LOQO KNITRO TRON Newton Code

deer 1.21 0.55 0.60 0.04

turtle 2.20 1.61 1.73 0.12

rand1000 2.44 † † 0.16

rand10000 42.78 † † 4.43

foam5 4.45 2.87 2.72 0.12

gear 2.48 4.00 2.31 0.07

hook 7.27 3.23 3.73 0.11

duct20 10.42 3.20 3.37 0.07

duct15 28.01 8.39 9.78 0.21

duct12 79.80 51.94 24.20 0.48
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Analysis

• AMPL and general-purpose solvers

– Fail on some examples

– Take 9.5–50 times longer to compute solutions

– Consume 100 times the memory

– Easy to model and solve test problems

• Special-purpose code

– Solves all example problems

– Achieves 20–25% of peak performance in kernels

– Time consuming to code and validate

• Challenge is to narrow the gap
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Conclusions

• r-refinement is useful

– Improved solution accuracy

– Reduced condition number

• Fast algorithms are required

– Modeling languages great for prototyping

– May be insufficient as final solution strategy

• Special-purpose code is very efficient

– Analytic derivatives necessary

– Positive definite preconditioner required

– Reordering significantly improves performance
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Availability

http://www.mcs.anl.gov/∼tmunson/codes/feasnewt12.zip

• Algorithms

– Gauss-Seidel method

– Newton line-search method

– Newton trust-region method

• Inverse mean-ratio and distance-from-target metrics

– Triangular and quadrilateral elements

– Tetrahedral and hexahedral elements

• All test problems included

• Mesh validity checker
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