
J Sci Comput
DOI 10.1007/s10915-013-9718-8

An Efficient High-Order Time Integration Method
for Spectral-Element Discontinuous Galerkin Simulations
in Electromagnetics

Misun Min · Paul Fischer

Received: 10 February 2011 / Revised: 5 April 2013 / Accepted: 14 April 2013
© Springer Science+Business Media, LLC (outside the USA) 2013

Abstract We investigate efficient algorithms and a practical implementation of an explicit-
type high-order timestepping method based on Krylov subspace approximations, for pos-
sible application to large-scale engineering problems in electromagnetics. We consider a
semi-discrete form of the Maxwell’s equations resulting from a high-order spectral-element
discontinuous Galerkin discretization in space whose solution can be expressed analytically
by a large matrix exponential of dimension κ × κ . We project the matrix exponential into a
small Krylov subspace by the Arnoldi process based on the modified Gram–Schmidt algo-
rithm and perform a matrix exponential operation with a much smaller matrix of dimension
m × m (m � κ). For computing the matrix exponential, we obtain eigenvalues of the m × m
matrix using available library packages and compute an ordinary exponential function for
the eigenvalues. The scheme involves mainly matrix-vector multiplications, and its conver-
gence rate is generally O(�tm−1) in time so that it allows taking a larger timestep size as
m increases. We demonstrate CPU time reduction compared with results from the five-stage
fourth-order Runge–Kutta method for a certain accuracy. We also demonstrate error behav-
iors for long-time simulations. Case studies are also presented, showing loss of orthogonality
that can be recovered by adding a low-cost reorthogonalization technique.

Keywords Exponential time integration · Spectral-element discontinuous Galerkin
method · Krylov approximation · Arnoldi process · Matrix exponential

1 Introduction

For many applications arising in electromagnetics, such as designing modern accelerator
devices [25,26,29] and advanced nanomaterials [23,24,27,28] that are governed by the

M. Min (B) · P. Fischer
Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
e-mail: mmin@mcs.anl.gov

P. Fischer
e-mail: fischer@mcs.anl.gov

123

J Sci Comput

Maxwell’s equations, realistic simulations often require computing the solutions for long-time
propagation distance. For example, in particle accelerator physics applications, because of the
orders of magnitude difference in the lengths between the beam and accelerator devices, very
long time integrations are necessary to get the total effect of the electromagnetic radiations
while the beam is passing through the whole device. For exploring light interaction with
advanced nanophotonic materials featured by strongly enhanced surface scattering fields,
it is more reliable to get accurate time-averaged energy fields or transmission properties
of nanosystems by running simulations over several hundreds of wavelengths of traveling
distance.

With the motivation for solving such application problems more efficiently and accu-
rately, we consider a high-order time integration method, especially an exponential time
integration method based on Krylov subspace approximation, which can possibly enhance
the computational performance as well as improve the solution accuracy. Many studies in
the literature on exponential time integration methods have focused on convergence theory,
error estimates, efficient algorithms and implementation, and their applications for solving
systems of equations. We refer to the review papers [1,2] for details and the history of the
exponential time integration methods and also some other papers [4–9]. In [4], a theoretical
analysis of some Krylov subspace approximations to the matrix exponential operator was
presented with a priori and a posteriori error estimates based on rational approximations for
computing the resulting small matrix exponential. In [5,6], Krylov subspace methods were
applied to solve large linear systems on supercomputers with preconditionings and parabolic
equations with time-varying forcing terms. In [7], convergence analysis and an efficient
timestep-size control technique based on the Arnoldi algorithm was shown for integrating
large-dimensional linear initial-value problems with source terms. In [8,9], exponential time
integration methods were discussed for solving large systems of nonlinear differential equa-
tions, reaction-diffusion problems, and a time-dependent Schödinger equation. However, few
studies have been done on applying an exponential time integration method for high-order
spatial approximations, up to the approximation order N = 20 or more, for solving problems
in electromagnetics.

In this paper, we consider applying such an exponential time integration method combined
with a discontinuous Galerkin approach [11] using a spectral element discretization [34],
referred as the spectral element discontinuous Galerkin (SEDG) method [27–30] throughout
the paper, in space for solving the Maxwell’s equations [31].

We simplify our governing equation by using the Maxwell’s equations in free space with
no source term as a primary step. We focus on a practical implementation and algorithms
for an exponential time integration method based on Krylov subspace approximation. The
main idea is to project a large matrix exponential operation onto a small dimension of Krylov
subspace by the Arnoldi process [3] and compute the matrix exponential of the resulting
Hessenberg matrix in a small dimension. In our implementation, instead of carrying out
a matrix exponential based on Padé rational or Chebyshev approximations [4,7] for the
resulting Hessenberg matrix, we use eigensolvers from existing library packages [22] and
compute an ordinary exponential function for the eigenvalues of the Hessenberg matrix. Other
than diagonalizing or computing matrix exponential for a very small-dimensional Hessenberg
matrix, the algorithm requires only matrix-vector multiplications with the information of the
field values at the current time. For this reason, the method can be easily parallelized, and
we consider the method as an explicit-type timestepping method.

High-order spatial approximations are known to be more attractive than the conventional
lower-order finite-difference method [31] for long-time integration, because the errors are
proportional to the linear growth of the spatial error in time [21]. We discuss an SEDG

123

J Sci Comput

discretization in space that uses a tensor-product basis of the one-dimensional Lagrange
interpolation polynomials with the Gauss-Lobatto-Legendre grids [20]. We consider body-
fitted, curvilinear hexahedral element discretizations that allow efficient operator evaluation
with memory access costs scaling as O(n) and work scaling as O(nN), where n = E(N +1)d

is the total number of grid points in d dimensions, E is the number of elements, and N is the
polynomial approximation order.

For time evolution, there have been other studies on high-order time integration methods
using simplectic integration approaches for finite element solutions of the time-dependent
Maxwell’s equations [13] and Hamilton’s equations [15,16]. For example, [13] demon-
strates high-order simplectic integration methods in conjunction with a high-order vector
finite element method using the Nédeléc basis function [14]. For discontinuous Galerkin
type approaches for solving Maxwell’s equations, Runge–Kutta (RK) type of timestepping
methods have been commonly used [10–12]. Thus, in this paper, we focus on comparing our
computational results obtained by our exponential time integration method with those of RK
methods. Especially, because of its low storage and larger stability region, we consider the
five-stage fourth-order Runge–Kutta scheme [33], simply denoted as RK4 throughout the
paper, for comparison. We remain further studies of our SEDG method combined with other
time itegration methods for comparison as a future work. Future studies will also include
adding divergence-free property, handling source term and absorbing boundary conditions
within exponential time integration procedure and perform large scale simulations for real
application problems.

In this paper, we begin with describing practical implementation for the Krylov approx-
imation with the Arnoldi process. We demonstrate examples showing loss of orthogonality
in the Arnoldi vectors obtained by the modified Gram–Schmidt algorithm [3,17], resulting
in nonconvergence in their solutions as the spatial approximation order N increases. We
use a reorthogonalization technique [3,19] at low cost that recovers full orthogonality of the
Arnoldi vectors and achieves spectral convergence for the solutions up to machine accuracy.
We provide convergence studies for time-harmonic solutions in one dimension and waveguide
solutions in two and three dimensions, including parallel computations. We demonstrate a
high-order convergence rate in space and time, depending on the approximation orders N
and m. We examine error behaviors for long-time simulations and investigate maximum
allowable timestep sizes as m increases. For the exponential time integration method, maxi-
mum allowable timestep sizes can be larger as the Krylov subspace dimension m increases.
Although the computational cost increases linearly with increasing order m, the gain from
taking larger timestep sizes for larger m and reducing the total number of time steps is much
larger, so that one can still achieve cost reduction.

The paper is organized as follows. In Sect. 2, we discuss the Krylov approximation and
the Arnoldi algorithm, present our implementation, and apply it to a system of ordinary
differential equations. In Sect. 3, we specify a weak formulation of the Maxwell’s equations
using a discontinuous Galerkin approach and describe spatial discretizations. In Sect. 4
we demonstrate convergence studies for the exponential time integration method and error
behaviors for long-time integrations. We demonstrate the efficiency of the exponential time
integration method provided with timestep reduction and CPU time comparisons. We give
conclusions in Sect. 5.

2 Exponential Time Integration Method

We approximate the matrix exponential operation eAq̄ as

123

J Sci Comput

eAq̄ ≈ pm−1(A)q̄, (1)

where A ∈ Rκ×κ , q̄ ∈ Rκ , and pm−1 is a polynomial of degree m−1. All possible polynomial
approximations of degree at most m−1 can be represented by the Krylov subspace Km(A, q̄),
defined as

Km(A, q̄) = span{q̄, Aq̄, A2q̄, . . . , Am−1q̄}. (2)

The Arnoldi process [3,17] generates an orthonormal matrix Vm ∈ Rκ×m whose columns
consist of vectors {v1, . . . , vm} that are a basis of the Krylov subspace Km(A, q̄) such that

h j+1, jv j+1 = Av j −
j∑

i=1

hi jvi for j = 1, 2, . . . ,m while h j+1, j �= 0. (3)

The Eq. (3) can be expressed as Vm+1 H̄ = AVm where H̄ = [hi j] ∈ R(m+1)×m . Defining an
upper Hessenberg matrix Hm = [hi j] ∈ Rm×m with hi j = vT

i Av j , we have Hm = V T
m AVm .

This leads to an approximation for the matrix exponential in Eq. (1) by

eAq̄ ≈ VmeHm V T
m q̄. (4)

Note that usually κ � m and we approximate a large matrix exponential calculation eA for
an κ × κ matrix A by a lower-dimensional matrix exponential calculation eHm for an m × m
matrix Hm through a projection onto the Krylov subspace.

Now we describe a practical implementation for computing the right-hand side of Eq. (4)
that can be expressed in several forms as

VmeHm V T
m q̄ = ‖q̄‖VmeHm V T

m v1 = ‖q̄‖VmeHm e1 = ‖q̄‖Vm Xe�m X−1e1, (5)

where v1 = q̄/‖q̄‖, V T
m v1 = e1 = (1, 0, . . . , 0)T ∈ Rm , and Hm = X�m X−1 for a

diagonalizer X and a diagonal matrix �m (‖ · ‖ is the Euclidean norm). In particular, we
address two ways of computing V T

m q̄ = ‖q̄‖V T
m v1:

(i) V T
m q̄ = ‖q̄‖e1, (6)

(ii) V T
m q̄ = ‖q̄‖ẽ1 = ‖q̄‖(vT

1 v1, v
T
1 v2, . . . , v

T
1 vm)

T , (7)

where (i) is using the theoretical fact based on perfect orthonormality of Vm , namely,
V T

m Vm = Im for an identity matrix Im of m × m, and (ii) is using the numerical value
ẽ1 for V T

m v1. Although e1 is commonly used [3,9], we take the numerical value ẽ1 to get
a fully numerical solution. Theoretically, ẽ1 and e1 should give similar results. However,
computed quantities can greatly deviate from their theoretical counterparts. Although the
modified Gram–Schmidt Arnoldi algorithm shown in Table 1 is known to be a more reli-
able orthogonalization procedure than the standard Arnoldi algorithm [3], it can still show
numerical difficulty in practice. The orthogonality of Vm can be destroyed by round-off so
that the resulting quantity V T

m v1 = ẽ1 is not close to e1. In Sect. 4.1, we demonstrate some
examples showing nonconverging solution when using ẽ1, because of the loss of orthogonal-
ity in the Arnoldi vectors Vm obtained from the modified Gram–Schmidt Arnoldi algorithm.
We ensure full orthogonality for Vm when using ẽ1 in order to guarantee reliable numerical
scheme for accurate solutions. We show that a reorthogonalization technique described in
Table 1 with only m(m + 1)/2 additional vector multiplications recovers full orthogonal-
ity of Vm and gives converging solutions to a machine accuracy. One might consider the
Householder algorithm [3] as an alternative; however, that causes some additional cost in
computation.

123

J Sci Comput

Table 1 Algorithms for the Arnoldi process based on the modified Gram–Schmidt [3] and reorthogonaliza-
tion [19] methods

To compute matrix exponential eHm , one can use Padé and Chebyshev rational approxima-
tions, discussed in detail in [4,7]. In our implementation, we compute the eigenvalues of the
Hessenberg matrix Hm using available library packages and compute an ordinary exponential
function for the eigenvalues. For large-scale computations, we carry out our implementation
in Fortran. We consider computing eHm by diagonalizing Hm = Xm�m X−1

m with a diagonal-
izer Xm and a diagonal matrix�m = diag{λ1, λ2, . . . , λm}, so that it involves computing only
an ordinary exponential function eλk for each k instead of computing a matrix exponential.
Matlab is useful for solving and analyzing small-scale problems with easy implementation.
Matlab has a function for computing the eigenvalues �m and the diagonalizer Xm for Hm .
We summarize our implementation for Eq. (4) as follows:

1. To compute eHm using the relation Hm = Xme�m X−1
m ,

(a) In Fortran: use LAPACK package from Netlib [22].
i. call zgeev: get a diagonalizer Xm and a diagonal matrix �m of Hm such

that Hm Xm = Xm�m .
ii. call zgetrf: get an LU factorized matrix X̃m for Xm .

iii. call zgetri: get the inverse matrix (Xm)
−1 of Xm .

(b) In Matlab: use existing Matlab functions.
i. [Xm,�m] = eig(Hm): get a diagonalizer Xm and a diagonal matrix�m of Hm

such that Hm Xm = Xm�m .
ii. [Y] = inv(Xm): get the inverse matrix Y = (Xm)

−1 of Xm .

2. Compute ẽ1 = V T
m v1 ∈ Rm by setting ẽ1 = (vT

1 v1, v
T
2 v1, . . . , v

T
mv1)

T .
3. Compute VmeHm V T

m q̄ = ‖q̄‖Vm Xme�m X−1
m ẽ1 = ‖q̄‖Vm(XmC)where C =diag{βeλk }m

k=1
for a scalar β = Y (1, :)ẽ1.

We apply the Krylov approximation for solving a system of time-dependent linear ordinary
differential equations given as

q′(t) = Aq(t), t > 0, (8)

123

J Sci Comput

Table 2 Exponential time integration based on the Krylov approximation

do n̄ = 0, 1, 2,..., # of timesteps
q̄ = qn̄

[Hm , Vm] = arnoldi (A, q̄)
ẽ1 = (vT

1 v1, ..., v
T
mv1)

T

q̄ = ‖q̄‖Vme�t Hm ẽ1
qn̄+1 = q̄

enddo

whose analytic solution is q(t) = eAt q(0) with q(t) = (q1(t), q2(t), . . . , qn(t))T and an
SEDG spatial discretization operator A ∈ Rκ×κ . For a given�t , the solution at t = (n̄+1)�t
can be expressed as

qn̄+1 = e�t Aqn̄, (9)

where qn̄ = q(n̄�t) for t = n̄�t (n̄ = 0, 1, 2, . . .).
We summarize our exponential time integration scheme in Table 2. For the Arnoldi process,

in general one can use the modified Gram–Schmidt algorithm in the first column of Table 1
to obtain the Arnoldi vectors and Hessenberg matrix. When the orthogonality of the Arnoldi
vectors breaks down, one can add the reorthogonalization loop as in the second column of
Table 1. The error arising from the approximation (4) for e�t A is strictly dependent on the
spectral properties of A that can be bounded with respect to �t [4,9] as follows:

‖e�t Aq̄ − Vme�t Hm V T
m q̄‖ ≤ C�tm, (10)

where the constant C is a function of A and m.

3 Spatial Discretization

We consider applying the exponential time integration method to the SEDG scheme in space
for solving the Maxwell’s equations. In this section we describe a weak formulation using
discontinuous Galerkin approach and spectral-element discretizations. Consider the nondi-
mensional form of the source-free Maxwell’s equations in free space defined on � as

∂q
∂t

+ ∇ · F(q) = 0, ∇ · H = 0, ∇ · E = 0, (11)

where the field vectors H = (Hx , Hy, Hz)
T and E = (Ex , Ey, Ez)

T with

q =
[

H
E

]
and F(q) =

[
FH
FE

]
=

[
ei × E

−ei × H

]
, (12)

where ei (i = x, y, z) are ex = (1, 0, 0), ey = (0, 1, 0), and ez = (0, 0, 1).

3.1 Discontinuous Galerkin Formulation

We begin by formulating a weak form of the Maxwell’s equations defined on � with
nonoverlapping elements �e such that � = ∪E

e=1�
e. Define local test functions 	l =

(0, . . . , φ̄l , . . . , 0)T for l = 1, . . . , 6 where φ̄l is a nonzero scalar function at the i-th location,

123

J Sci Comput

to be defined later. Multiplying the local test functions	l to Eq. (11) by vector multiplication
and integrating by parts, we have

∫

�e

	l · ∂q
∂t

d�−
∫

�e

F(q) · ∇	ld� = −
∫

∂�e

	l · [
n · F(q)

]
d�, (13)

where ∇	l = (0, . . . ,∇φ̄l , . . . , 0)T , ∂�e represents the surface boundary of the element,
and n = (nx , ny, nz) is the unit normal vector pointing outward. In the discontinuous Galerkin
approach, we define a numerical flux F∗ that is a function of the local solution q and the
neighboring solution q+ at the interfaces between neighboring elements. The numerical flux
combines the two solutions that are allowed to be different at the interfaces. Replacing F(q)
on the right-hand side of (13) by the numerical flux F∗(q) as

∫

�e

	l · ∂q
∂t

d�−
∫

�e

F(q) · ∇	ld� = −
∫

∂�e

	l · [
n · F∗(q)

]
d�̄, (14)

and integrating by parts again, we obtain a weak formulation as
(
∂q
∂t

+ ∇ · F(q),	l

)

�e
= (

n · [
F(q)− F∗(q)

]
,	l

)
∂�e . (15)

With a properly chosen numerical flux F∗, either a central or an upwind flux as in [11], we
have the integrand for the right-hand side of (15) as

n · (FH − F∗
H) = 1/2(−n × [E] − αn × n × [H]) (16)

n · (FE − F∗
E) = 1/2(n × [H] − αn × n × [E]), (17)

where [E] = E+ − E and [H] = H+ − H, and α = 0 for the central flux and α = 1 for the
upwind flux. Boundary conditions are weakly imposed through the surface integration for
the flux term. We consider problems with periodic and perfect electric boundary conditions.

3.2 Spectral Element Discretizations

We define a local approximate solution in �e for each component of Eq. (11) that can be
written as

q N (x, y, z, t) =
N∑

i, j,k=0

q N
i jkψi jk(ξ, η, γ) for (ξ, η, γ) ∈ [−1, 1]3, (18)

where q N
i jk = q N (xi , y j , zk, t) and ψi jk(ξ, η, γ) = li (ξ(x))l j (η(y))lk(γ (z)) using the

one-dimensional Lagrange interpolation basis li (ξ) based on the Gauss-Lobatto-Legendre
quadrature nodes {ξ0, ξ1, . . . , ξN }. The Gordon-Hall mapping transforms the physical domain
(x, y, z) ∈ �e into the reference domain (ξ, η, γ) ∈ [−1, 1]3, and all the computations are
carried out in the reference domain [20].

For time and spatial derivatives, we have

∂q N

∂t
=

N∑

i, j,k=0

dq N
i jk

dt
ψi jk,

∂q N

∂x
=

N∑

i, j,k=0

q N
i jk
∂ψi jk

∂x
, (19)

∂q N

∂y
=

N∑

i, j,k=0

q N
i jk
∂ψi jk

∂y
,

∂q N

∂z
=

N∑

i, j,k=0

q N
i jk
∂ψi jk

∂z
, (20)

123

J Sci Comput

where the chain rule gives

∂ψi jk

∂x
= ∂ψi jk

∂ξ

∂ξ

∂x
+ ∂ψi jk

∂η

∂η

∂x
+ ∂ψi jk

∂γ

∂γ

∂x
, (21)

∂ψi jk

∂y
= ∂ψi jk

∂ξ

∂ξ

∂y
+ ∂ψi jk

∂η

∂η

∂y
+ ∂ψi jk

∂γ

∂γ

∂y
, (22)

∂ψi jk

∂z
= ∂ψi jk

∂ξ

∂ξ

∂z
+ ∂ψi jk

∂η

∂η

∂z
+ ∂ψi jk

∂γ

∂γ

∂z
. (23)

We define the Jacobian J for the coordinate transformation as in [24] by

J =

∣∣∣∣∣∣∣∣

∂x
∂ξ

∂x
∂η

∂x
∂γ

∂y
∂ξ

∂y
∂η

∂y
∂γ

∂z
∂ξ

∂z
∂η

∂z
∂γ

∣∣∣∣∣∣∣∣
(24)

from the following relation:
⎛

⎜⎜⎝

∂x
∂ξ

∂x
∂η

∂x
∂γ

∂y
∂ξ

∂y
∂η

∂y
∂γ

∂z
∂ξ

∂z
∂η

∂z
∂γ

⎞

⎟⎟⎠

⎛

⎜⎜⎜⎝

∂ξ
∂x

∂ξ
∂y

∂ξ
∂z

∂η
∂x

∂η
∂y

∂η
∂z

∂γ
∂x

∂γ
∂y

∂γ
∂z

⎞

⎟⎟⎟⎠ ≡
⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ . (25)

We denote our solution vector as qN = (H N
x , H N

y , H N
z , E N

x , E N
y , E N

z)
T ∈ Rκ . We express

each field component of qN in the form of (18), plug them into the weak formulation (15)
with the test function 	l defined with φ̄l = ψî ĵ k̂ for each l with î, ĵ, k̂ = 0, 1, . . . , N , and
apply the Gauss quadrature rule to get the following semidiscrete form:

M
d H N

x

dt
= −(Dy E N

z − Dz E N
y)− R(HN)x , (26)

M
d H N

y

dt
= −(Dz E N

x − Dx E N
z)− R(HN)y, (27)

M
d H N

z

dt
= −(Dx E N

y − Dy E N
x)− R(HN)z, (28)

M
d E N

x

dt
= (Dy H N

z − Dz H N
y)− R(EN)x , (29)

M
d E N

y

dt
= (Dz H N

x − Dx H N
z)− R(EN)y, (30)

M
d E N

z

dt
= (Dx H N

y − Dy H N
x)− R(EN)z, (31)

where mass and stiffness matrices are defined as

M = (ψi jk, ψî ĵ k̂)�e , Dx =
(
∂ψi jk

∂x
, ψî ĵ k̂

)

�e
, (32)

Dy =
(
∂ψi jk

∂y
, ψî ĵ k̂

)

�e
, Dz =

(
∂ψi jk

∂z
, ψî ĵ k̂

)

�e
, (33)

and the surface integration as

R(HN) =
(

n · [
FH − F∗

H
]
, φî ĵ k̂

)

∂�e
, (34)

123

J Sci Comput

R(EN) =
(

n · [
FE − F∗

E
]
, φî ĵ k̂

)

∂�e
. (35)

Applying the Gauss quadrature rule to (32–35), we have

(ψi jk, ψî ĵ k̂)�e =
N∑

l,m,n=0

Jlmnρlmnlî (ξl)li (ξl)l ĵ (ηm)l j (ηm)lk̂(γn)lk(γn)

= J (M̂ ⊗ M̂ ⊗ M̂), (36)
(
∂ψi jk

∂x
, ψî ĵ k̂

)

�e
=

N∑

l,m,n=0

Gξ x
lmn Jlmnρlmnlî (ξl)l

′
i (ξl)l ĵ (ηm)l j (ηm)lk̂(γn)lk(γn)

+
N∑

l,m,n=0

Gηx
lmn Jlmnρlmnlî (ξl)li (ξl)l ĵ (ηm)l

′
j (ηm)lk̂(γn)lk(γn)

+
N∑

l,m,n=0

Gγ x
lmn Jlmnρlmnlî (ξl)li (ξl)l ĵ (ηm)l j (ηm)lk̂(γn)l

′
k(γn)

= (Gξ x J Dξ + Gηx J Dη + Gγ x J Dγ), (37)
(
∂ψi jk

∂y
, ψî ĵ k̂

)

�e
=

N∑

l,m,n=0

Gξ y
lmn Jlmnρlmnlî (ξl)l

′
i (ξl)l ĵ (ηm)l j (ηm)lk̂(γn)lk(γn)

+
N∑

l,m,n=0

Gηy
lmn Jlmnρlmnlî (ξl)li (ξl)l ĵ (ηm)l

′
j (ηm)lk̂(γn)lk(γn)

+
N∑

l,m,n=0

Gγ y
lmn Jlmnρlmnlî (ξl)li (ξl)l ĵ (ηm)l j (ηm)lk̂(γn)l

′
k(γn)

= (Gξ y J Dξ + Gηy J Dη + Gγ y J Dγ), (38)
(
∂ψi jk

∂z
, ψî ĵ k̂

)

�e
=

N∑

l,m,n=0

Gξ z
lmn Jlmnρlmnlî (ξl)l

′
i (ξl)l ĵ (ηm)l j (ηm)lk̂(γn)lk(γn)

+
N∑

l,m,n=0

Gηz
lmn Jlmnρlmnlî (ξl)li (ξl)l ĵ (ηm)l

′
j (ηm)lk̂(γn)lk(γn)

+
N∑

l,m,n=0

Gγ z
lmn Jlmnρlmnlî (ξl)li (ξl)l ĵ (ηm)l j (ηm)l

′
k(γn)lk̂(γn)

= (Gξ z J Dξ + Gηz J Dη + Gγ z J Dγ), (39)

where ρlmn = wlwmwn using one-dimensional weight wi , J = diag{Jlmn} represents the
Jacobian at each node, and M̂îi = ∑N

k=0 li (ξk)lî (ξk)wk = diag{wi } is the mass matrix
associated with the one-dimensional reference domain [−1, 1]. The stiffness matrices can be
represented by using tensor product forms of

Dξ = M̂ ⊗ M̂ ⊗ M̂ D̂, Dη = M̂ ⊗ M̂ D̂ ⊗ M̂, Dγ = M̂ D̂ ⊗ M̂ ⊗ M̂, (40)

where the one-dimensional differentiation matrix is defined by D̂ ji = l ′i (ξ j). The geometric

factors Gξ x = ∂ξ/∂x = diag{Gξ x
lmn}, Gηy = ∂η/∂y = diag{Gηy

lmn}, and Gγ z = ∂γ /∂z =

123

J Sci Comput

diag{Gγ z
lmn} represent their values at each node (ξl , ηm, γn), and similarly for Gξ y , Gξ z , Gηx ,

Gηz , Gγ x , and Gγ y . The two-dimensional surface integrations in Eqs. (34–35) are written as

R(HN) =
6∑

f =1

N2d∑

s=1

1

2
(−n × R f

s {[EN
i jk]} − n × n × R f

s {[HN
i jk]})ws J f

s , (41)

R(EN) =
6∑

f =1

N2d∑

s=1

1

2
(n × R f

s {[HN
i jk]} − n × n × R f

s {[EN
i jk]})ws J f

s , (42)

where R f
s {·} extracts the information of {·} at the nodes situated on each face of the local

element for the face number f ;ws is the weight on the surface, J f
s is the surface Jacobian at the

nodes on each face, and N2d = (N + 1)2. To define the unit normal vector n corresponding
to the face in the reference element with respect to ξ , η, and γ (i.e., nξη, nηγ , and nγ ξ ,
respectively), we consider the infinitesimal displacement x = (x, y, z) on the tangential plane
along the boundary ∂�e, which can be written as εξ = ∂x

∂ξ
dξ, εη = ∂x

∂η
dη, and εγ = ∂x

∂γ
dγ.

Then, the normal vectors are defined as

nξη = 1

Jξη

(
∂x
∂ξ

× ∂x
∂η

)
,nηγ = 1

Jηγ

(
∂x
∂η

× ∂x
∂γ

)
,nγ ξ = 1

Jγ ξ

(
∂x
∂γ

× ∂x
∂ξ

)
,

where the surface Jacobians are defined for J f
s as

Jξη =
∥∥∥∥
∂x
∂ξ

× ∂x
∂η

∥∥∥∥ , Jηγ =
∥∥∥∥
∂x
∂η

× ∂x
∂γ

∥∥∥∥ , Jγ ξ =
∥∥∥∥
∂x
∂γ

× ∂x
∂ξ

∥∥∥∥ . (43)

Finally, we can express the semidiscrete scheme of Eqs. (26–31) in matrix form as

dqN

dt
= AqN, (44)

where A = (M̄)−1 Ā ∈ Rκ×κ with Ā = D̄− R̄, κ = 3n for n = E(N +1)2 in two dimensions
and κ = 6n for n = E(N + 1)3 in three dimensions. The mass matrix can be written as

M̄ = diag{M,M,M,M,M,M}, (45)

which is fully diagonal so that mass matrix inversion (M̄)−1 gives also a fully diagonal
matrix. The stiffness matrix can be written as

D̄ =

⎡

⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 Dz −Dy

0 0 0 −Dz 0 Dx

0 0 0 Dy −Dx 0
0 −Dz Dy 0 0 0
Dz 0 −Dx 0 0 0
−Dy Dx 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎦
, (46)

and R̄ is the surface integration acting on the boundary face of the local element obtained
from Eqs. (41–42).

3.3 Spatial Operator and Stability

We examine the structures and eigenvalue spectra of the SEDG spatial operator Ā = M̄ A
from Eq. (44) for the cases of the central and upwind fluxes. Figures 1, 2 demonstrate
the patterns of the structures and eigenvalue distributions of the two- and three-dimenional

123

J Sci Comput

0 200 400 600 800

0

100

200

300

400

500

600

700

800

900

nz = 6912

2D: Structure of Spatial Operator (Central)

−1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2D: Eigenvalue Distribution (Central)

max: real(λ)=5.3484e−16, imag(λ)=1.4894

0 200 400 600 800

0

100

200

300

400

500

600

700

800

900

nz = 7740

2D: Structure of Spatial Operator (Upwind)

−1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2D: Eigenvalue Distribution (Upwind)

max: real(λ)=5.1492e−16, imag(λ)=1.4826

Fig. 1 Structures of the SEDG spatial operators Ā and eigenvalue distributions for the central and upwind
fluxes in 2D with E = 3 × 3 and N = 5, κ = 3E(N + 1)2. nz is the number of nonzeros in A ∈ Rκ×κ

problems with periodic boundary conditions using relatively small E and N for simplicity.
The dimension of Ā is κ × κ for κ = 3n with n = E(N + 1)2 = 324 in two dimensions
and for κ = 6n with n = E(N + 1)3 = 729 in three dimensions. The eigenvalues λ for
the central flux reside on the imaginary axis and those for the upwind flux on the negative
half-plane. The RK4 (5-stage) [33] timestepping method has been considered for this type
of spatial discretizations in [10,11] due to its low storage and larger stability region.

In this paper, we consider an exponential time integration approach. The solution of
Eq. (44) can be expressed by Eq. (9) with A = (M̄)−1 Ā that has the similar patterns for the
structure and eigenvalue distribution as those of Ā because (M̄)−1 is a fully diagonal matrix.
Applying the Arnoldi algorithm at each timestep, we obtain the upper Hessenberg matrix
Hm and Arnoldi vectors that satisfy Hm = V T

m AVm and Eq. (4). Defining the logarithmic
norm μ for a square matix as in [18], the following condition [7] holds

123

J Sci Comput

0 1000 2000 3000 4000

0

500

1000

1500

2000

2500

3000

3500

4000

nz = 23328

3D: Structure of Spatial Operator (Central)

−2 −1 0 1 2

−3

−2

−1

0

1

2

3

3D: Eigenvalue Distribution (Central)

max: real(λ)=3.3862e−15, imag(λ)=3.0622

0 1000 2000 3000 4000

0

500

1000

1500

2000

2500

3000

3500

4000

nz = 33048

3D: Structure of Spatial Operator (Central)

−2 −1 0 1 2

−3

−2

−1

0

1

2

3

3D: Eigenvalue Distribution (Central)

max: real(λ)=1.5734e−15, imag(λ)=2.9386

Fig. 2 Structures of the SEDG spatial operators Ā and eigenvalue distributions for the central and upwind
fluxes in three dimensions with E = 3 × 3 × 3 and N = 2, κ = 6E(N + 1)3. nz is the number of nonzeros
in A ∈ Rκ×κ

‖Vme�t Hm V T
m ‖2 ≤ ‖e�t Hm ‖2 ≤ eμ(�t Hm) ≤ eμ(�t A) ≤ 1, (47)

if the eigenvalues of the spatial operator A are in the negative half-plane. This implies that
the exponential time integration scheme is suitable for our SEDG spatial approximations to
ensure the stability.

4 Computational Results

This section presents computational results of the exponential time integration method with
our SEDG approximation (often denoted by EXP throughout this paper) for simulating a
periodic solution in 1D and wave guide solutions in 2D and 3D [32], defined as follows:

123

J Sci Comput

Example 1 One-dimensional periodic solution:

Hy = − sin kx sinwt, Ez = cos kx coswt on � = [−π, π], (48)

where k and w are integers with k = w.

Example 2 Two-dimensional waveguide solution:

Hx = 2(ky/w) sin(ky y) sin(kx x + wt),

Hy = 2(kx/w) cos(ky y) cos(kx x + wt), (49)

Ez = 2 cos(ky y) cos(kx x + wt),

where kx = 2π , ky = π , and w =
√

k2
x + k2

y for � = [−0.5, 0.5]2. The solution represents

the periodic boundary in x and PEC boundary in y.

Example 3 Three-dimensional waveguide solution:

Hx = −kywπγ
−2 sin(kxπx) cos(kyπy) sin(wt − kzz),

Hy = kxwπγ
−2 cos(kxπx) sin(kyπy) sin(wt − kzz),

Hz = 0,

Ex = kx kzπγ
−2 cos(kxπx) sin(kyπy) sin(wt − kzz), (50)

Ey = kykzπγ
−2 sin(kxπx) cos(kyπy) sin(wt − kzz),

Ez = sin(kxπx) sin(kyπy) cos(wt − kzz),

wherew =
√

k2
z + γ 2 and γ = π

√
k2

x + k2
y on� = [0, 1]2×[0, 2π]. The solution represents

the PEC boundary in x and y and periodic boundary in z.

4.1 Cases on Loss of Orthogonality for Vm

A practical implementation for computing eHm and VmeHm V T
m q was addressed in Sect. 2.

Here we focus on case studies showing nonconvergence behaviors of computing VmeHm V T
m q

by using the numerical quantity ẽ1 = V T
m v1 based on the modified Gram–Schmidt algo-

rithm. Consider the one- and two-dimensional solutions defined in Eqs. (48) and (49).
We investigate the closeness of V T

m+1Vm+1 to an identity matrix Im+1 in a matrix norm

‖K‖1 = max1≤ j≤m+1
∑m+1

i=1 |ki j | for K = [ki j]. In Fig. 3, we demonstrate the orthog-
onality of Vm+1 for varying N = 3, 4, 5, . . . , 24. We consider m = 3, 5, 7 with E = 3
in one dimension, and m = 3, 7, 11 with E = 32 in two dimensions. We observe that
orthogonality breaks down severely as the spatial approximation order N increases for both
1D and 2D implementations in Matlab and Fortran, respectively. In Table 3, we demon-
strate each component of the matrix Ĩ = V T

m+1Vm+1 depending on N = 5, 10, 15 for
m = 3 for the one-dimensional example (48) with k = 1. It shows that Vm+1 rapidly
loses orthogonality as N increases. For the case of Table 3, the analytic solution (48)
can be expressed by q = c1z1 + c2z2 + · · · + cm zm with z1 = (sin x sin t, 0)T and
z2 = (0, cos x cos t)T , z3 = · · · = zm = 0. If the orthognalization algorithm is not good, the
algorithm does not provide good Arnoldi vectors that are orthogonal to the previously com-
puted Arnoldi vectors after two iterations during Arnoldi procedure. Table 3 shows nonzero
values for Ĩ (3, 1), Ĩ (4, 1), Ĩ (1, 3), Ĩ (1, 4) as N increases, meaning that v1 and v3 are not
orthogonal; the same is true for v1 and v4.

123

J Sci Comput

5 10 15 20 25

10
−15

10
−10

10
−5

10
0

N

|V
m

+
1

T
V

m
+

1−
I m

+
1|

1D: Loss of Orthogonality for V
m+1

m=3
m=5
m=7

5 10 15 20 25

10
−15

10
−10

10
−5

10
0

N

|V
m

+
1

T
V

m
+

1−
I m

+
1|

2D: Loss of Orthogonality for V
m+1

m=3
m=7
m=11

Fig. 3 ‖V T
m+1Vm+1 − Im+1‖1 as a function of N and loss of orthogonality for Vm+1: 1D Matlab imple-

mentation with m = 3, 5, 7 and E = 3 (left) and 2D Fortran implementation with m = 3, 7, 11 and E = 32

(right)

Table 3 Loss of orthogonality of Vm by showing each component of the matrix Ĩ = [Ĩi j] = V T
m+1Vm+1 ∈

R(m+1)×(m+1) for m = 3 with N = 5, 10, 15, considering the solution in Eq. (48) with k = 1

Ĩ = V T
m Vm by modified Gram–Schmidt Arnoldi algorithm

Order Ĩ (i, j) Ĩ (:, 1) Ĩ (:, 2) Ĩ (:, 3) Ĩ (:, 4)

N = 5 Ĩ (1, :) 1.00e+00 0 2.74e−14 5.60e−14

Ĩ (2, :) 0 1.00e+00 6.77e−20 4.42e−17

Ĩ (3, :) 2.74e−14 6.77e−20 1.00e+00 7.31e−16

Ĩ (4, :) 5.60e−14 4.42e−17 7.31e−16 1.00e+00

N = 10 Ĩ (1, :) 1.00e+00 0 -1.91e−09* −4.02e−09*

Ĩ (2, :) 0 1.00e+00 −2.77e−17 −1.12e−17

Ĩ (3, :) −1.91e−09* −2.77e−17 1.00e+00 6.79e−16

Ĩ (4, :) −4.02e−09* −1.12e−17 6.79e−16 1.00e+00

N = 15 Ĩ (1, :) 1.00e+00 0 1.31e−04* 3.12e−04*

Ĩ (2, :) 0 1.00e+00 −1.04e−17 −3.20e−17

Ĩ (3, :) 1.31e−04* −1.04e−17 1.00e+00 −6.66e−16

Ĩ (4, :) 3.12e−04* −3.20e−17 −6.66e−16 1.00e+00

We examine convergence behaviors of the solution (48) for N = 5, 10, 15, 20 after 100
timesteps with �t = 0.001, where �t is small enough not to influence the spatial errors.
Table 4 shows that the scheme does not converge further as N increases, because of the
loss of orthogonality in the Arnoldi vectors as shown in Fig. 3, especially for m ≥ 3.
For m = 2, however, the modified Gram–Schmidt algorithm gives reasonable orthogonal
Arnoldi vectors for the first two iterations in the Arnodi process and stops the iteration. Hence,
spectral convergence can be observed in Table 4 for m = 2. For m ≥ 3, we can recover full
orthogonality and obtain converging solution by adding a reorthogonalization technique to
the modified Gram–Schmidt algorithm as in Table 1; the results are shown in Table 5 for
m = 5.

123

J Sci Comput

Table 4 Spatial convergence for
Eq. (48) using the modified
Gram–Schmidt algorithm with
m = 2, 3, 4 and
N = 5, 10, 15, 20 for E = 3 after
100 timesteps with �t = 0.001

Order m = 2 m = 3 m = 4

N = 5 2.3201e−04 2.3328e−04 2.3328e−04

N = 10 2.2220e−09 1.6375e−09 5.7495e−09

N = 15 8.3266e−15 2.3154e−05 9.8542e−05

N = 20 7.5495e−15 7.2517e−06 8.7112e−06

Table 5 Spatial convergence for
Eq. (48) using the modified
Gram–Schmidt with
reorthogonalization algorithm for
m = 5, E = 3 with
N = 5, 10, 15, 20 after 100
timesteps with �t = 0.001

Order m = 5

N = 5 4.2691e−05

N = 10 1.1471e−10

N = 15 1.0935e−14

N = 20 1.0377e−14

0 5 10 15 20 25

10
−10

10
−5

10
0

1D: Varying Wavenumber k (n=120 and m=5)

N

L ∞ E
rr

or
s

k=1
k=3
k=6
k=14
k=22
k=30
k=38

0 2 4 6 8
10

−15

10
−10

10
−5

10
0

m

L ∞
 E

rr
or

s
1D: Errors and Eigenmodes for (N+1,E)=(40,3)

 2 eigenmodes
 4 eigenmodes
 6 eigenmodes
 8 eigenmodes
10 eigenmodes

Fig. 4 Errors depending on point per wavelength (ppw = n/k) for varying wavenumber k with n = 120
at time t = 100 with �t = 0.0005 (left). Errors depending on the Krylov dimension m = 2, 3, . . . , 6 for
solutions with multiple eigenmodes (right)

4.2 Convergence and Eigenmodes

In this section, we first investigate the error behaviors depending on points per wave-
length, which can indicate how many grids points per wavelength and what approxima-
tion order N are required for a desired level of accuracy. We consider the one-dimensional
solution (48) of varying wavenumber k propagating the domain 15.9 times. We fix the
resolution with a total number of grid points n = E(N + 1) = 120 but with varying
N = 1, 2, 3, 4, 5, 7, 9, 11, 14, 19. In Fig. 4, the left panel shows that, for a fixed Krylov
subspace dimension m = 5 with �t = 0.0005, the error drops rapidly with increasing N
for a large number of points per wavelength (ppw = n/k), but accurate propagation for
ppw < 8 requires N > 8.

In order to represent solution almost exactly by a linear combination of the orthogonal
basis of the Krylov subspace of dimension m, one can choose the approximation order m
greater than the number of eigenmodes in the solution. Here we examine error behaviors
depending on m for the solution including multiple modes, which is defined by

Hy = −
6−k̄0∑

k̄=6

sin k̄x sinwt and Ez =
6−k̄0∑

k̄=6

cos k̄x coswt, (51)

123

J Sci Comput

10
4

10
5

10
6

10
7

10
−12

10
−8

10
−4

10
−1

Total Number of Grid Points

L ∞
 E

rr
or

s
3D: RK4

N=5
N=6
N=7
N=8
N=10
N=12
N=14
N=16

10
4

10
5

10
6

10
710

0

10
1

10
2

10
3

10
4

Total Number of Grid Points

C
P

U
 T

im
e/

P
 (

se
c)

3D: RK4

N=5
N=6
N=7
N=8
N=10
N=12
N=14
N=16

10
4

10
610

−15

10
−10

10
−5

10
0

Total Number of Grid Points: E(N+1)3

L 2 E
rr

or
s

3D: EXP (m=11)

E=3x3x3
E=6x6x6
E=12x12x12

10
4

10
6

10
2

10
4

10
6

Total Number of Grid Points: E(N+1)3

C
P

U
 T

im
e/

P
 (

se
c)

3D: EXP (m=11)

E=3x3x3
E=6x6x6
E=12x12x12

Fig. 5 Top (RK4): spatial convergence (left) and CPU time per core (right) after 1,000 timesteps on 32 cores
of Linux clusters with E = 43–163 and N = 5–16 for a periodic solution. Bottom (EXP, m = 11): spatial
convergence (left) and CPU time per core (right) after 10,000 timesteps on the number of cores P = 24, 27,
210 on Argonne Blue Gene/P with E = 33, 63, 123, respectively, and N = 4–14

where k̄0 = 0, 1, . . . , 4. Equation (51) is represented by 2(k̄0 + 1) eigensolutions. In Fig. 4,
the right panel shows that, for a single mode k̄ = 6 by setting k̄0 = 0, Krylov subspace
dimension m = 2 is enough to get an accurate solution. For the solution represented by
multimode eigensolutions, we also observe that the errors already reach to the limit 10−10,
which is dominated by the spatial resolution n = 120 for E = 3, when having m ≥ 2(k̄0 +1)
for k̄0 = 1, 2, 3, 4. Thus one can expect the best approximate solution in time when the
Krylov subspace dimension m is larger than the number of the eigensolutions. This imples
that, as an extreme example, a Gaussian pulse represented by 20 modes can be represented
almost exactly in time by the Krylov subspace approximation of dimension m = 40.

4.3 Convergence in Space and Time

This section demonstrates convergence in space and time for the exponential time integration
method applied to our SEDG method in higher dimensions. We also include results from
parallel computations. No additional parallel implementation is required for the EXP scheme
other than the flux communication between neighboring elements in the spatial operator.

Figure 5 shows spatial convergence for different problem sizes with varying approxima-
tion order N for RK4 and EXP with m = 11. For RK4, simulations are carried out for a

123

J Sci Comput

0 500 1000
10

−15

10
−10

10
−5

10
0

Time

L 2 E
rr

or
s

2D: RK4, Δ t= CFL*dxmin, CFL=0.75

N=4
N=6
N=8
N=10
N=12
N=14

0 500 1000
10

−15

10
−10

10
−5

10
0

Time

L 2 E
rr

or
s

2D: EXP(m=5), Δ t= CFL*dxmin, CFL=0.8

N=4
N=6
N=8
N=10
N=12
N=14

0 500 1000
10

−15

10
−10

10
−5

10
0

Time

L
2

 E
rr

or
s

2D: EXP(m=7), Δ t= CFL*dxmin, CFL=1.5

N=4
N=6
N=8
N=10
N=12
N=14

0 500 1000
10

−15

10
−10

10
−5

10
0

Time

L 2 E
rr

or
s

2D: EXP(m=9), Δ t= CFL*dxmin, CFL=2.8

N=4
N=6
N=8
N=10
N=12
N=14

Fig. 6 Long-time integrations for 2D waveguide simulations on � = [−0.5, 0.5]2. Traveling distance is
666.66 wavelengths at time t = 1, 000. Error behaviors in time for RK4 and EXP(m) with m = 5, 7, 9 and
N = 4, 6, 8, 10, 12, 14 for a fixed E = 32

three-dimensional periodic solution with N = 5–16 and E = 43–163 on 32 cores of Linux
clusters at Argonne. For EXP, simulations are performed for a waveguide solution with
N = 4, 6, 8, 10, 12, 14 and E = 32, 62, 122 on P = 24, 27, 210 cores on the Argonne BG/P.
The figures on the left show exponential convergence as N increases. We observe that for a
fixed resolution, the accuracy is better with a larger N .

It is equally important that high-order methods be competitive in terms of computational
costs. We demonstrate the CPU time per core for 1,000 and 10,000 timesteps for RK4 and
EXP, respectively. We observe that the CPU time per core increases linearly depending on
the total number of grid points n = E(N + 1)3, but not solely depending on the approxima-
tion order N . This ensures that higher-order approximation N is not a source of increasing
computational cost in space. We also note that a larger N generally affords less resolution
for the same accuracy, particularly suitable for long-time integrations.

Figures 6, 7 demonstrate error behaviors in time and space for long-time integration
with traveling distance of more than 666 and 238 wavelengths in 2D and 3D, respectively,
for the monochromatic wave solutions in Eqs. (49–50). We consider the EXP scheme for
m = 5, 7, 9 with a maximum allowable timestep size for each m and examine convergence
for N = 4, 6, 8, 10, 12, 14 and E = 32 in 2D and E = 33 in 3D. We choose a timestep
size �t = CFL*dxmin by defining CFL = c�t

dxmin with c = 1 and dxmin = minN ,E {�},
where � = 1

2

√
�x2 +�y2 +�z2. We find the CFL number numerically that gives the

123

J Sci Comput

0 500 1000
10

−15

10
−10

10
−5

10
0

Time

L 2 E
rr

or
s

3D: RK4, Δ t= CFL*dxmin, CFL=0.75

N=3
N=4
N=6
N=8
N=10
N=12

0 500 1000
10

−15

10
−10

10
−5

10
0

Time

L 2 E
rr

or
s

3D: EXP(m=5), Δ t= CFL*dxmin, CFL=0.80

N=3
N=4
N=6
N=8
N=10
N=12

0 500 1000
10

−15

10
−10

10
−5

10
0

Time

L 2 E
rr

or
s

3D: EXP(m=7), Δ t= CFL*dxmin, CFL=1.50

N=3
N=4
N=6
N=8
N=10
N=12

0 500 1000
10

−15

10
−10

10
−5

10
0

Time

L 2 E
rr

or
s

3D: EXP(m=9), Δ t= CFL*dxmin, CFL=2.60

N=3
N=4
N=6
N=8
N=10
N=12

Fig. 7 Long-time integrations for 3D rectangular waveguide simulations on � = [−0.5, 0.5]2 × [0, 2π].
Traveling distance is 238.73 wavelengths at time t = 1, 000. Error behaviors in time for RK4 and EXP(m)
with m = 5, 7, 9 and N = 3, 4, 6, 8, 10, 12 for a fixed E = 33

maximum allowable �t for a stable solution. For comparison, we carried out the same
simulations with RK4 (5-stage). For RK4, we use CFL≈0.75. Although our EXP scheme
is expected to have bounded solutions because of the A-stable property, the timestep size
has to be reasonably small to get accurate solutions. For the EXP scheme, the maximum
allowable timestep increases as m increases. We use CFL≈0.8,1.5,2.8 for m = 5, 7, 9 in 2D
and CFL≈0.8,1.5,2.6 for m = 5, 7, 9 in 3D. According to the theoretical studies showing
convergence rate of O(�tm−1) for the EXP scheme [4,7], we consider EXP(m = 5) as the
fourth-order scheme that can be compared to RK4. We observe that the CFL numbers are very
close to each other for EXP(m = 5) and RK4, but the EXP scheme shows superconvergence
for the monochromatic wave solutions, with several orders of magnitude difference as N
increases.

4.4 Computational Costs

This section demonstrates convergence rate depending on the timestep size and the compu-
tational cost depending on m, provided with comparisons between RK4 and EXP.

Figure 8 shows convergence in time with respect to CFL/m for EXP and CFL/5 for RK4,
based on the same cost (recall that the 5-stage RK4 involves five times the spatial operation
per timestep and EXP requires m times the spatial operation per timestep, but neglecting
vector-vector multiplications and additions in the Arnoldi process). For a monochromatic

123

J Sci Comput

10
−2

10
−1

10
0

10
−10

10
−5

10
0

CFL/m

L 2 E
rr

or
s

Convergence with CFL

RK4
m=5
m=7
m=9

10
−2

10
−1

10
010

−10

10
−5

10
0

CFL/m

E
rr

or
s

Convergence with CFL

RK4
EXP(m=5)
EXP(m=7)
EXP(m=9)

Fig. 8 Convergence in time for variable CFL numbers for 2D waveguide simulations with E = 42 and
N = 10 at time t = 100 for a traveling distance of 66.66 wavelengths. Error comparison for RK4 and EXP
with m = 5, 7, 9, 11 for a monochromatic solution (left) and a solution represented by 25 different wavemodes
(right)

10
3

10
−4

10
−3

Total Number of Grid Points: E(N+1)2

(C
P

U
/ti

m
es

te
p)

/m
/P

 (
se

c)

2D: CPU Time, P=8

RK4
m=5
m=7
m=9
m=11

10
4

10
510

−4

10
−3

10
−2

10
−1

Total Number of Grid Points: E(N+1)3

(C
P

U
/ti

m
es

te
p)

/m
/P

 (
se

c)

3D: CPU Time, P=32

RK4
m=5
m=7
m=9
m=11

Fig. 9 CPU time: comparison between RK4 and EXP with E = 42, P = 8 in 2D (left) and with E = 43, P =
32 in 3D (right) for N = 4, 6, 8, 10, 12, 14, 16, 18 and m = 5, 7, 9, 11. Parallel runs are performed on the
Argonne BG/P

wave solution, we observe superconvergence for the EXP scheme. In practice, however,
many physics problems involve more complicated wave phenomena than a single-mode wave
structure. Thus, in general, convergence as a function of timestep size typically behaves as
illustrated in the right side of Fig. 8. In particular, considering an accuracy of 1 × 10−7, EXP
allows a CFL number 8–9 times larger with m = 7–9, compared with RK4.

Figure 9 demonstrates the CPU cost between RK4 and the EXP scheme by examining
(CPU time per timestep)/m per core depending on the total number of grid points for N =
4, 6, 8, 10, 12, 16, 18 with E = 42 on P = 8 cores in two dimensions and E = 43 on P = 32
in three dimensions. In 2D, for problem sizes greater than 103, the CPU cost per timestep
per core divided by m is about 2 times larger with the EXP scheme compared with that
divided by 5 with RK4. This implies that one can get cost reduction when using m = 7, 9, 11
by taking a 10–12 times larger timestep size for a single-mode solution and an 8–9 times
larger timestep size for multimode solutions from the analysis of Fig. 8. For the problem
sizes of less than 103, one can still gain cost reduction for single-mode solutions. In 3D, the
CPU time per timestep per core divided by m increases 2–4 times larger for problem sizes of

123

J Sci Comput

0 500 1000 1500
10

−15

10
−10

10
−5

10
0

Time

L 2 E
rr

or
s

2D: Error Comparison for RK4 and EXP(m=3)

N= 4, rk
N= 8, rk
N=14, rk
N=20, rk
N=4, exp
N=5, exp
N=6, exp
N=7, exp

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1

1.2

Δ t

C
P

U
 T

im
e

R
at

io

2D: CPU Time Ratio = EXP(m)
cpu

/RK4
cpu

error~8e−4, N=5 (exp), N= 8 (rk)
error~1e−5, N=6 (exp), N=14 (rk)
error~5e−7, N=7 (exp), N=20 (rk)

0 500 1000 1500
10

−15

10
−10

10
−5

10
0

Time

L 2 E
rr

or
s

3D: Error Comparison for RK4 and EXP(m=3)

N= 3, rk
N= 5, rk
N= 8, rk
N=12, rk
N=3, exp
N=4, exp
N=5, exp
N=6, exp

0 0.05 0.1 0.15
0

0.2

0.4

0.6

0.8

1

1.2

Δ t

C
P

U
 T

im
e

R
at

io

3D: CPU Time Ratio = EXP(m)
cpu

/RK4
cpu

error~3e−3, N=4 (exp), N= 5 (rk)
error~3e−5, N=5 (exp), N= 8 (rk)
error~2e−6, N=6 (exp), N=12 (rk)

Fig. 10 Comparable errors and corresponding order N for EXP(m) and RK4 for E = 32 in 2D (top left) and
E = 33 in 3D (bottom left) for long-time integration up to time t = 1, 000. CPU time ratio EXP(m)/RK4 for
the comparable level of accuracy with m = 3(circle), m = 5(tr iangle), m = 7(square), m = 9 (inverted
triangle), and m = 11(diamond) in 2D for E = 42 (top right) and 3D for E = 43 (bottom right). Simulations
are performed on P = 24 cores on the Argonne BG/P

n = 104–105 and almost no significant difference for problem sizes greater than n = 105.
This promises that the EXP scheme can deliver dramatic cost reduction, allowing a larger
timestep compared with RK4 as the problem size increases beyond 106 for very large-scale
application problems.

Here we note that the tensor product evaluations in Eq. (40) require the arithmatic oper-
ations of O(nN) for n = E(N + 1)3 in space and thus the total work scales as O(mnN)
per time step for the EXP scheme and O(5nN) for the (5-stage) RK4. Then the total amount
of work dramatically increases depending on N 4 as N increases. This explains the weak
dependency of m or the five times of spatial operations in RK4 for the range of larger N
which we observe in the CPU costs shown in Fig. 9.

Let us denote tEXP and tRK4 as the CPU time per timestep per core divided by m and 5,
respectively, with tEXP = a ∗ tRK4. Assuming that, for a fixed resolution, the EXP scheme
allows a timestep size b times larger than does RK4 (i.e.,�tEXP = b ∗�tRK4), the total CPU
time of RK4 and the EXP scheme for nsteps can be written as

TcRK4 = 5 ∗ tRK4∗nsteps, (52)

TcEXP = m ∗ a ∗ tRK4 ∗ nsteps

b
, (53)

123

J Sci Comput

which implies that one can expect a cost reduction when b > m∗a
5 for the timestep size

�tEXP for EXP(m). For large-scale problems, a ≈1, so that one can estimate the CPU cost
for EXP(m) as

(m
5b

)
% of RK4. For the case of the right panel in Fig. 8 with relatively small

n = E(N + 1)2 = 1, 936, we observe a ≈ 2 and b ≈ 9 for m = 9 so that total CPU time
reduction can be estimated as 60 % from the CPU time ratio TcEXP/T

c
RK ≈ 40.

Figure 10 compares the total CPU time at a certain accuracy for single-mode solutions in
2D and 3D. The figure shows superconvergence with the EXP scheme using low resolution
compared with RK4. The figures in the left panels show that the errors after long-time
integration are approximately similar to the cases of RK4 with N = 3–20 using EXP(m = 3)
and N = 3–7. In such cases, we observe much higher reduction in cost, as shown in the right
panels. For example, at the level of accuracy at 1×10−5, one can achieve more than 70–90 %
cost reduction for m = 3, 5, 7, 9, 11 with the EXP scheme in two and three dimensions.

5 Conclusions

We have presented an efficient high-order time integration method based on the Krylov sub-
space approximation using the modified Gram–Schmidt algorithm and a reorthogonalization
technique for the Arnoldi process. For the spatial approximation, we used a SEDG scheme
based on hexahedral spectral elements, which gives a fully diagonal mass matrix. We consid-
ered the source-free Maxwell’s equations in nondimensional form. Computational results are
shown for periodic solutions and waveguide simulations in 1D, 2D, and 3D. We demonstrate
the convergence behaviors, long-time integrations, and the CPU cost of the SEDG scheme,
compared with the RK4 (5-stage) and exponential time integration methods. Our numerical
experiments show that the exponential time integration method allows a larger timestep size,
compared with RK4, with significant cost reduction up to 70–90 % for single-mode solu-
tions using Krylov subspace dimension m = 3–11 and about 60 % CPU time reduction for a
two-dimensional solution containing 25 multiple modes with m = 9.

Acknowledgments This work was supported by the Office of Advanced Scientific Computing Research,
Office of Science, U.S. Department of Energy, under Contract DE-AC02-06CH11357.

References

1. Moler, C., Loan, C.V.: Nineteen dubios ways to compute the exponential of a matrix, twenty-five years
later. SIAM Rev. 45(1), 3–49 (2003)

2. Hochbruck, M., Ostermann, A.: Exponential integrators. Acta Numer. 19, 209–286 (2010)
3. Saad, Y.: Iterative Methods for Sparse Linear Systems. PWS Publishing, Boston (1996)
4. Saad, Y.: Analysis of some Krylov subspace approximation to the matrix exponential operator. SIAM J.

Numer. Anal. 29, 209–228 (1992)
5. Saad, Y.: Krylov subspace methods on supercomputers. SIAM J. Sci. Stat. Comput. 10(6), 1200–1232

(1989)
6. Gallopoulos, E., Saad, Y.: Efficient solution of parabolic equations by Krylov approximation methods.

SIAM J. Sci. Stat. Comput. 13(5), 1236–1264 (1992)
7. Novati, P.: A low cost Arnoldi method for large linear initial value problems. Int. J. Comput. Math. 81(7),

835–844 (2004)
8. Hochbruck, M., Lubich, C., Selhofer, H.: Exponential integrators for large systems of differential equa-

tions. SIAM J. Sci. Comput. 19(5), 1552–1574 (1996)
9. Hochbruck, M., Lubich, C.: On the Krylov subspace approximations to the matrix exponential operator.

SIAM J. Numer. Anal. 34(5), 1911–1925 (1997)

123

J Sci Comput

10. Hesthaven, J.S., Warburton, T.: Nodal hihg-order methods on unstructured grids. I: time-domain solution
of Maxwell’s equations. J. Comput. Phys. 181(1), 186–221 (2002)

11. Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods, Algorithms, Analysis, and Appli-
cations, Texts in Applied Mathematics. Springer, Berlin (2008)

12. Cockburn, B., Li, F., Shu, C.W.: Locally divergence-free discontinuous Galerkin methods. J. Comp. Phys.
194, 588–610 (2004)

13. Rieben, R., White, D., Rodrigue, R.: High-order symplectic integration methods for finite element solu-
tions to time dependent Maxwell equations. IEEE Trans. Antennas Propag. 56(8), 2190–2195 (2004)

14. Nédeléc, J.C.: Mixed finite elements in R3. Numer. Math. 159(1), 315–341 (1980)
15. Forest, E., Ruth, R.D.: Fourth-order sympletic integration. Physica D 43, 105–117 (1990)
16. Candy, J., Rozmus, W.: A simplectic integration algorithm for separable Hamiltonian functions. J. Comput.

Phys. 92, 230–256 (1991)
17. Golub, G.H., Van Loan, C.F.: Matrix Computations. North Oxford Academic, England (1986)
18. Strom, T.: On logarithmic norms. SIAM J. Numer. Anal. 12(5), 741–753 (1975)
19. Parlett, B.N.: The Symmetric Eigenvalue Problem. Prentice Hall, Englewood Clifts, N.J. (1980)
20. Deville, M.O., Fischer, P.F., Mund, E.H.: High-Order Methods for Incompressible Fluid Flow. Cambridge

Monographs on Applied and Computational Mathematics, vol. 9. Cambridge University Press, Cambridge
(2002)

21. Hesthaven, J.S., Gottlieb, S., Gottlieb, D.: Spectral Methods for Time-Dependent Problems. Cambridge
Monographs on Applied and Computational Mathematics, vol. 21. Cambridge University Press,
Cambridge (2007)

22. LAPACK, Linear Algebra PACKage, http://www.netlib.org/lapack
23. Gray, S.K., Kupka, T.: Propagation of light in metallic nanowire arrays: Finite-difference time domain

studies of silver cylinders. Phys. Rev. B 68, 045415/1–045415/11 (2003)
24. Oliva, J.M., Gray, S.K.: Theoretical study of dielectrically coated metallic nanowires. Chem. Phys. Lett.

379, 325–331 (2003)
25. Zagorodnov, I.: TE/TM field solver for particle beam simulations without numerical Cherenkov radiation.

Phys. Rev. Spec. Top. Accel. Beams 8, 042001 (2005)
26. Gjonaj, E., Lau, T., Schnepp, S., Wolfheimer, F., Weiland, T.: Accurate modeling of charged particle

beams in linear accelerators. New J. Phys. 8, 285 (2006)
27. Min, M.S., Lee, T.W., Fischer, P.F., Gray, S.K.: Fourier spectral simulations and Gegenbauer reconstruc-

tions for electromagnetic waves in the presence of a metal nanoparticle. J. Comput. Phys. 213(2), 730–747
(2006)

28. Min, M.S., Fischer, P.F., Montgomery, J., Gray, S.K.: Large-scale electromagnetic modeling based on
high-order methods: nanoscience applications. J. Phys. Conf. Ser. 180, 012016 (2009)

29. Min, M.S., Fischer, P.F., Chae, Y.C.: Spectral-element discontinuous Galerkin simulations for bunched
beam in accelerating structures. In: Proceedings of PAC07, pp. 3432–3434 (2007)

30. Min, M.S., Lee, T.: A spectral-element discontinuous Galerkin lattice-Boltzmann method for incompress-
ible flows. J. Comput. Phys. 230, 245–259 (2011)

31. Taflove, A., Hagness, S.C.: Computational Electrodynamics, The Finite Difference Time Domain Method.
Artech House, Norwood, MA (2000)

32. Wolf, D.A.: Essentials of Electromagnetics for Engineering. Cambridge University Press, Cambridge
(2000)

33. Carpenter, M.H., Kennedy, C.: Fourth-order 2N -storage Runge-Kutta schemes, NASA Report TM
109112, NASA Langley Research Center (1994)

34. Deville, M.O., Fischer, P.F., Mund, E.H.: High-Order Methods for Incompressible Fluid Flow. Cambridge
University Press, Cambridge (2002)

123

http://www.netlib.org/lapack

	An Efficient High-Order Time Integration Method for Spectral-Element Discontinuous Galerkin Simulations in Electromagnetics
	Abstract
	1 Introduction
	2 Exponential Time Integration Method
	3 Spatial Discretization
	3.1 Discontinuous Galerkin Formulation
	3.2 Spectral Element Discretizations
	3.3 Spatial Operator and Stability

	4 Computational Results
	4.1 Cases on Loss of Orthogonality for Vm
	4.2 Convergence and Eigenmodes
	4.3 Convergence in Space and Time
	4.4 Computational Costs

	5 Conclusions
	Acknowledgments
	References

