
Parallel I/O Performance for Application-Level Checkpointing
on the Blue Gene/P System

Jing Fu,† Misun Min,§ Robert Latham,§ Christopher D. Carothers†

†Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY 12180
{fuj,chrisc}@cs.rpi.edu

§Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439
{mmin,robl}@mcs.anl.gov

Abstract—As the number of processors increases to hundreds of
thousands in parallel computer architectures, the failure probability
rises correspondingly, making fault tolerance a highly important and
challenging task. Application-level checkpointing is one of the most
popular techniques to proactively deal with unexpected failures because
of its portability and flexibility. During the checkpoint ph ase, the local
states of the computation spread across thousands of processors are
saved to stable storage. Unfortunately, this approach results in heavy
I/O load and can cause an I/O bottleneck in a massively parallel system.
In this paper, we examine application-level checkpointingfor a massively
parallel electromagnetic solver system calledNekCEM on the IBM Blue
Gene/P at Argonne National Laboratory. We discuss an application-level,
two-phase I/O approach, called “reduced-blocking I/O” (rbIO), and a
tuned MPI-IO collective approach (coIO), and we demonstrate their
performance advantage over the “1 POSIX file per processor” approach.
Our study shows that rbIO and coIO result in 100× improvement
over previous checkpointing approaches on up to 65,536 processors of
the Blue Gene/P using the GPFS. Our study also demonstrates a25×
production performance improvement for NekCEM. We show how to
optimize parameter settings for those parallel I/O approaches and to
verify results by I/O profilings. In particular, we examine t he performance
advantage of rbIO and demonstrate the potential benefits of this approach
over the traditional MPI-IO routine, coIO.

Keywords Parallel I/O, checkpointing, fault tolerance, Blue Gene/P

I. I NTRODUCTION

As current leadership-class computing systems such as the IBM
Blue Gene series [1] move closer to exascale capability, thelikelihood
of an unrecoverable node or network failure is high [2]. Whena
component fails, the application in progress loses valuable work and
must be restarted, thereby wasting computing time, power, and staff
effort.

Another trend in current petascale systems is that they share a high
degree of hardware, including memory and caches within nodes, net-
work infrastructure between nodes, and a shared storage I/Osystem
for the whole machine. During the checkpointing phase, gigabytes
or even terabytes of checkpoint data from hundreds of thousands of
processors can be written into the shared back-end storage system,
making I/O a bottleneck. In extreme cases, traditional I/O approaches
such as “1 POSIX file per processor” (1PFPP) for checkpointing on
a 128K-processor partition render poor performance or evenlock
the file system and hang the application until it is removed from
the job queue [3]. Thus, scalable and effective I/O approaches are
needed so that users can better utilize the computing cyclesallocated
on massively parallel systems, yielding more productive science per
compute cycle.

The key contribution of this paper is a performance study of differ-
ent parallel I/O approaches applied to application-level checkpointing
for a production petascale electromagnetics solver NekCEM(Nekton
for Computational ElectroMagnetics) [4]. In particular, we imple-
ment an application-level, two-phase I/O approach called “reduced-

blocking I/O” (rbIO), and a tuned MPI-IO collective approach (coIO).
We demonstrate their performance advantage against previously used
1PFPP approach. Our objective is to provide an approach thatreduces
the checkpointing time, gives users more flexibility with checkpoint-
restart data files, and provides guidance for further I/O performance
tuning on different systems.

This paper is organized as follows. In Section II, we providea
general overview of checkpointing and some work that has been done
in this area. In Section III-A, we introduce the petascale application
code, NekCEM, used in our study. In Section IV, we discuss
several parallel I/O approaches. In Section V, we describe the Blue
Gene/P system, compare different approaches, and provide detailed
experiment results. In Section VI, we compare our approaches with
related work in the literature. In Section VII, we give our conclusions
and discuss some future work.

II. OVERVIEW OF CHECKPOINTING

Application checkpoint/restart is an effective fault tolerance tech-
nique in distributed systems. Checkpoint/restart allows aprogram
to save local states periodically so that, in the event of a system
crash, the program can roll back to the most recently saved state,
avoiding total loss of work. This technique is especially important
for those computational science and engineering applications (e.g.,
parallel partitioned solvers) that normally iterate for many steps and
require a long time to complete. Checkpointing can happen either at
the operating system level or at the application level.

System-level checkpointingtypically provides checkpointing in an
user-transparent manner, where the data is managed by the operating
system and checkpointing can happen at any time. While this ap-
proach requires no additional effort from the application programmer
and sees the application as a black box, none of the internal semantics
or characteristics of the application are recognized. Thus, the whole
state of the computation—including CPU register information and
memory information—must be stored during each checkpointing.
This approach dramatically increases the total amount of data to be
stored, especially on large-scale systems. Examples of this approach
include IODC [5] , which will be reviewed in Section VI.

Assume that we have 150 MB of data in memory for each processor
for checkpointing. A 65,536-processor partition will generate roughly
10 TB data at each checkpoint step, which is too heavy for a typical
shared-I/O subsystem in such large parallel systems. Moreover,
because system-level checkpointing records a snapshot fora specific
system (e.g., register information, software stacks, memory layout),
it is not portable between different platforms.

On the other hand, althoughapplication-level checkpointingre-
quires more manual effort from an application programmer, it takes
the content and semantics of an application into consideration; the

application programmer decides which critical data needs to be stored
to disk. The application programmer also has the freedom to choose
a safe time and appropriate frequency for checkpointing. Since these
checkpoint data files are user-defined, they are easily ported to
different platforms. Also, these files can be used for other purposes,
such as data visualization or other postprocessing analysis, which are
extremely useful for many computational applications. Examples of
this approach include ADIOS [6] and data partitioning techniques [7],
[8], which are reviewed in Section VI.

In this paper, we focus on application-level checkpointing. Specif-
ically, our applications involve checkpointing certain data in a co-
ordinated manner, where all processors start and end checkpointing
synchronously. (Throughout the paper, we use the term “processors”
to mean “cores.”) In such a situation, no processor begins the next
iteration until the last processor completes its checkpointing, and
thus any significant I/O latency on a single processor can result
in keeping all other processors in the partition waiting. Our main
motivation in developing efficient parallel I/O approachesis to
balance the I/O latency among all processors and reduce the overhead
or even completely hide the I/O latency by using dedicated I/O
communicators in the optimal case.

III. SOFTWARE AND I/O FILE FORMAT

We consider the production code NekCEM, which is a single,
comprehensive electromagnetic software package, currently capa-
ble of scalable simulations up to more than 131K processors on
leadership-class machines such as the IBM Blue Gene/P. In this
section, we describe the key features of NekCEM including some
of its capabilities.

A. NekCEM

Highly efficient and accurate modeling on advanced computing
platforms will enable the relevant science and engineeringcommuni-
ties to advance their understanding of complex systems thatare too
large for experimental study and will reduce both the cost and the
risk involved in conventional trial-and-error procedures.

NekCEM is an Argonne-developed, high-order, spectral-element
discontinuous Galerkin (SEDG) code [4] designed for simulation-
based investigations for understanding the fundamental optical prop-
erties and predicting optimal designs of electromagnetic devices
in particle accelerator physics and nanoscience applications [9].
This code features spectrally accurate solutions with lessnumerical
dispersion for long time simulations with geometric flexibility using
body-fitted conforming meshes [10].

NekCEM solves the two- and three-dimensional Maxwell curl
equations in the time domain. Spectral-element discretizations are
used based on hexahedral element meshes. For the time-advancing,
the code currently supports explicit time-stepping schemes such as
the five-stage, fourth-order Runge-Kutta [11] and the exponential
time integration methods [12]. Tensor product bases of the one-
dimensional Lagrange interpolation polynomials using theGauss-
Lobatto-Legendre grid points result in a diagonal mass matrix, which
requires no additional cost for mass matrix inversion [13],making the
code highly efficient. The stiffness matrix is a tensor product form
of the one-dimensional differentiation matrix [13].

The discontinuous Galerkin scheme based on the domain de-
composition approach performs communication only at the element
faces (excluding the information of vertices and edges) between
neighboring elements through a numerical flux [14]. The facevalues
at the interfaces are saved in a single array for the six compo-
nents of the electric fieldE=(Ex, Ey, Ez) and the magnetic field

Fig. 1. Input files for NekCEM.

H=(Hx,Hy,Hz) so that communication can occur only once at
each time step between neighboring elements. Thus, communication
latency can be reduced by a factor of six compared to the case of
saving the face values into six different arrays for each component
of the fields.

NekCEM is written in Fortran and C. The code uses the core
infrastructure of the incompressible Navier-Stokes solver Nek5000,
awarded the Gordon Bell prize in 1999 [15]. NekCEM uses the
distributed-memory message-passing interface (MPI) programming
model and the single program, multidata model (SPMD) so thateach
processor independently executes a copy of the same programon
distinct subsets of data.

NekCEM has an instruction for the following three tasks that
are performed consecutively at run time:presetup, solver, and
checkpointing. Presetup includes initialization of processors, setting
compile-time data sizes, reading run-time parameters and global
mesh data from input files, distributing mesh data to each processor,
and assigning numbering for nodal points and coordinates for a
geometry. Solver involves the SEDG spatial operator evaluation and
time iterations. Checkpointing generates output files for the global
field data computed from the solver; these files can be used for
restarting.

Parallel performance and scalability of NekCEM are discussed
in [16], showing strong scaling performance of three-dimensional
cylindrical waveguide simulations using the number of elements
E=136K andE=273K with the polynomial approximation orders
N=5 andN=15, resulting in a total number of grid pointsn from
29 million to 1.1 billion. As the number of grid points per processor
increases, the efficiency increases. Specifically, NekCEM achieves
75% efficiency on 131,072 processors forn/P=8,530 (still not a
large amount) grid points per processor, compared to a base case on
16,384 processors forn/P=68,250 grid points per processor. Even
with an unrealistically small number of grid points per processor
n/P=224, NekCEM achieves 58% efficiency on 131,072 processors,
compared to a base case on 16,384 processors forn/P=1,793 grid
points per processor. CPU time per time step is≈0.13 seconds on
131K processors for the case ofE=273K with 1.1 billion grid points.

Fig. 2. Output file format for NekCEM.

B. I/O File Format

NekCEM has two input data files, as shown in Figure 1, providing
the information on global mesh (*.rea) data and global mapping
(*.map) for vertices including processor distribution foreach element.
For simplicity, data files are kept in global format so that users are not
required to deal with mesh partition before compile/runs with easier
management for many different mesh configurations. Input files are
autogenerated from meshing tools such as prex and genmap [15],
which are also included in the NekCEM package [4].

Data files are read at the very beginning stage, before the actual
solver runs. Reading the global data for a mesh takes from 7.5sec-
onds to 28 seconds, with the numbers of elementE=136K and 546K
on P=32,768 and 131,072 processors of BG/P, respectively. Since
read only occurs once during the whole execution, our optimization
focus would be on the more frequent write operations.

Figure 2 shows the structure of an output file of NekCEM. A
self-defined output format generally provides users more flexibility,
although users have to maintain a special reader interface for data
analysis tools. An open file format such asvtk legacycan be directly
read by postprocessing tools for visualization using ParaView or
VisIt. NekCEM uses the vtk legacy format, where the master header
includes the application name, file type (binary or ASCII), application
type, grid point coordinates, cell numbering, and cell type.

Since NeKCEM checkpoints the local state on each processor in a
coordinatedmanner, the output files share a similar structure as well:
every file has a master header followed by data blocks. Themaster
header typically specifies metadata information such as application
name, version, local state list, and offset table. Thedata blocksare
sorted mostly in the order of fields. In each data block, thereis a
header recording metadata such as data block size and field name. The
data block contains the actual values of the field from the NekCEM
computation.

This “bursty” I/O access of NekCEM is a very typical pattern
for many computational science applications [17], especially parallel
partitioned solvers. In our previous paper [3], we did an extensive
amount of strong scaling tests on tuning different parallel I/O
techniques for a CFD application to get best raw I/O bandwidth.
In this paper, we apply optimal configurations of these techniques

Fig. 3. Architecture diagrams for different I/O approaches: (a) 1PFPP, (b)
coIO, and (c) rbIO.

to NekCEM and focus on NekCEM (weak scaling) production
performance improvement and potential performance benefitof rbIO
optimizations.

IV. PARALLEL I/O APPROACHES

In this section, we discuss three I/O approaches, namely, 1 POSIX
File Per Processor, collective I/O, and reduced-blocking I/O, for
generating checkpointing files. An architecture diagram for each
approach is given in Figure 3. On a fixed number of processors (np),
each approach specifies the number ofgroup (ng) processors that
access the file system and the number of output files (nf) generated
by thosewriter processors.

A. 1 POSIX File Per Processor: 1PFPP

With the 1PFPP approach, all processors access a file system,and
each processor generates one file output (i.e.,np=nf) based on the
traditional POSIX I/O. POSIX stands for portable operatingsystem
interface for Unix [18]. It is a standard application programming

interface that defines the I/O interface for standard services on the
operating system using functions such asopen(), read(), write(),
and close(). POSIX I/O has a simple access capability that was
designed originally for a single machine with a single memory space
to a streaming device. Because of its well-defined semanticsand
portability, 1PFPP has been widely used by many parallel application
codes for decades. However, since the semantics of this interface
prevent the sharing of file descriptors between nodes and each
processor has to write its own file output, performance becomes very
limited when shared storage is accessed by hundreds of thousands
processors simultaneously, generating huge overheads from excessive
metadata traffic, disk block locking, and so on.

B. Collective I/O: coIO

The collective I/O approach is based on the MPI-IO library, which
defines a set of routines that transfer data to and from external storage.
This approach offers a number of advantages over the traditional
POSIX I/O approach. MPI-IO provides mechanisms for collective
access (i.e., many processors collectively read and write to shared
file descriptors), asynchronous I/O, and strided data access. Many
platforms support the MPI-IO interface. Applications run essentially
unchanged, and the files written by MPI-IO are portable between
platforms.

Our implementation uses ROMIO [19] which is a high-
performance, portable implementation of the MPI-IO library. ROMIO
is supported by many platforms including IBM SP, Cray T3E, NEC
SX-4, and SGI Origin2000 with variable file systems such as PVFS,
IBM PIOFS, NEC SFS, and SGI XFS. Details can be found in the
parallel I/O chapter of MPI-2 [20].

ROMIO is optimized for collective I/O and noncontiguous access
patterns, which are important in parallel I/O. In our implementation,
all processors call the collective I/O routine to write datato a
number of files. The number of output files, typicallynf=2m < np,
m=0,1,2,..., is a user-tunable parameter. Ifnf=1, all processors in
MPI_COMM_WORLD follow the instructions

call MPI_File_write_at_all_begin(),

call MPI_File_write_at_all_end(),

which are collective nonblocking functions to write all data into
one shared file. Ifnf>1, the processors are divided evenly into
nf (=ng) groups, and thenp/nf processors in each group (i.e.,
local MPI communicator) collectively write to one file in parallel.
Collective routines involve only processes that open the file and
thus generally perform better than noncollective ones since smaller
requests would be merged into fewer bigger requests when a group
of processes coordinate. Nonblocking routines initiate a request and
return immediately, provided with a request identifier thatwill be
completed by calling an additional routine. This allows forI/O
operations to be overlapped with computation or communication.

C. Reduced-Blocking I/O: rbIO

The reduced-blocking I/O approach also utilizes the MPI-IOli-
brary. This approach divides compute processors into two categories:
workers (application compute node) and writers (I/O aggregator
node). Amongnp processors, onlyng groups (orng writers) are
allowed to access the file system. In each group, one writer node
takes charge of the other application compute nodes in the group.
When the workers want to write data to a disk, they send their data
to their dedicated writer (i.e., the processor at the left side of each
“Group” as indicated in Figure 3(c)) with

Fig. 4. Architectural diagram of the 557 TFlop IBM Blue Gene/P system.

call MPI_Isend()

and return from this nonblocking call quickly, without any interrup-
tion for I/O. The writer aggregates the data from all workersin
its group, reorders data blocks, and writes to disk using either a
noncollective function

call MPI_File_write_at()

or a collective nonblocking function set

call MPI_File_write_at_all_begin(),

call MPI_File_write_at_all_end().

MPI_File_write_at() uses theMPI_COMM_SELF communi-
cator to produce one file per writer.MPI_File_write_at_all
_begin() andMPI_File_write_at_all_end() producenf
files, wherenf can be between 1 andng. The number of writers (ng)
and number of files (nf) are both user-tunable parameters in the I/O
subsystem; in our case we setnf=ng.

V. PERFORMANCE ANDANALYSIS

In this section, we describe experiment test cases and demonstrate
I/O performance of the different parallel I/O approaches that we
implemented in NekCEM. We carry out the performance tests using
the GPFS [21] file system on the Blue Gene/P “Intrepid” at Argonne
National Laboratory.

A. Overview of the Blue Gene/P System

Blue Gene’s philosophy is to balance the computing power of a
massive number of processors with fast network that interconnect
processors and other auxiliary networks for I/O and so forth. The
Intrepid system has 40 racks of 40,960 quad-core compute nodes
(with a total of 163,840 processors) and 80 TB of memory, with
a peak performance of 557 TF. There are five networks in BG/P
system: a 3-D torus network that interconnects compute nodes (point-
to-point network), a collective network that connects compute nodes
and I/O nodes, a tree-based collective network for barrier operations,
a Gigabit Ethernet that delivers data between I/O nodes and data
storage serves, and a JTAG network that connects compute nodes
to service nodes. The bandwidth for each torus link is 425 MBps
per direction and 5.1 GBps bidirectional bandwidth per node[1].
BG/P compute nodes run a special lightweight kernel called the

compute node kernel (CNK); I/O nodes run a different kernel that
has more functions than CNK. In order to improve the scalability of
the Blue Gene architecture, dedicated I/O nodes (IONs) act as system
call proxies between the compute nodes and the storage nodes; the
collection of an ION and its compute nodes called a “pset”. Each
BG/P pset contains one ION and 64 4-core compute nodes; in total,
640 IONs are connected to the parallel storage system.

The parallel storage system consists of 16 Data Direct Network
(DDN) 9900 SAN storage arrays, where each DDN exports the disk
block as LUNs. Each LUN is directly connected to 8 file servers,
and there are 128 file servers in total. These servers are shared by
the file systems, GPFS [21] and PVFS [22]. They are connected to
I/O nodes via 10 Gigabit Ethernet. The theoretical reading peak is
60 GB/s and that of writing is 47 GB/s [22].

We note that the file systems are shared between Intrepid, Eureka
(a visualization system), and some other clusters whose I/Oworkload
may affect the I/O performance observed on Intrepid. Also, all our
tests were done under normal load, where there might be noisefrom
other online users.

An architectural diagram of Intrepid is shown in Figure 4.

B. Parallel I/O Performance for NekCEM

We implemented two parallel I/O approaches in NekCEM and
performed weak scaling on the Argonne Blue Gene/P. We carried out
3D cylindrical waveguide simulations for different sizes of meshes
and different numberss of processors with(E,P)=(68K, 16K),
(137K, 32K), and(273K, 65K), whereE is the number of elements
for a mesh andP is the number of processors. The total number of
grid points isn=E(N + 1)3, whereN is the approximation order.
The number of grid points per processor is approximatelyn/P . We
usedN=15 so that the number of grid points per element is fixed
at 163. The total numbers of grid pointsn and the file sizesS
are(n, S)=(275M,39GB), (550M,78GB), and (1.1B,156GB) per I/O
step.

We investigated the write bandwidth for different I/O approaches
for NekCEM. The bandwidth was measured as the total amount
of data across all processors divided by overall wall-clocktime
(including open, write, and close file) of the slowest processor to
finish. Note that most of these experiments were runmultiple times
and the data points were sampled from themedian number.

Figure 5 shows the write bandwidth as a function of the number
of processors. As expected from previous experience [3], 1PFPP
renders poor performance with 16K and 32K processors because of
a high number of metadata operations. This is caused by generating
all output filesnf=np in one directory. Better performance may be
achieved by producing a single file per directory. However, most
parallel file systems are not designed to deal with hundreds of
thousands of small files, and manageability becomes a significant
issue.

With collective routines, all processes in a given MPI communi-
cator call the routine together. The MPI implementation, with the
knowledge of which tasks participate in a call, can then perform sig-
nificant optimizations. These collective routines providetremendous
performance benefits for both networking and I/O [23]. The Blue
Gene MPI-IO library makes some adjustments to the ROMIO collec-
tive buffering optimization [24]. First, data accesses arealigned to file
system block boundaries. Such an alignment reduces lock contention
in the write case and can yield big performance improvements[25].
Second, and perhaps most important from a scalability perspective,
the “I/O aggregators” are a small subset of the total number of
processors. On Blue Gene, the MPI-IO hint “bgpnodespset” defines

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

16384 32768 65536

B
an

dw
id

th
(G

B
/s

)

Number of processors

Write performance with NekCEM on Intrepid GPFS

1PFPP
coIO, nf=1

coIO, np:nf=64:1
rbIO, np:ng=64:1, nf=1

rbIO, np:ng=64:1, nf=ng

Fig. 5. Write performance of different I/O approaches in NekCEM on
GPFS file systems of Intrepid, as a function of processor number for the
problem sizes of(np, n, S)= (16K,275M,39GB), (32K,550M,78GB), and
(64K,1.1B,156GB).

a ratio. For each pset allocated to a parallel job, that many nodes will
be designated as aggregators. The default ratio for a job running
in “virtual node” is one aggregator for every 32 MPI processes.
Furthermore, these aggregators are distributed over the topology of
the application so that no node has more than one aggregator and no
pset contains more than “bgpnodespset” aggregators. In Figure 5,
we show the case of one I/O aggregator per every 64 MPI processes
(np:ng=64:1). The performance comparison study for 64:1, 32:1, and
16:1 for rbIO is discussed later in this section.

For coIO, we examine two cases:nf=1 and np:nf = 64:1.
For nf=1, all processors inMPI_COMM_WORLD will call MPI-IO
collective routines in a synchronized manner. Fornp:nf=64:1, all
processors are evenly divided intonp/64 groups (split collective).
These 64 processors (i.e., one from each group) write its data into one
common file in a synchronized manner using an MPI-IO collective
routine, but between groups these function calls are independent of
each other. Figure 5 shows that the bandwidth fornp:nf=64:1 case
is larger than the one fornf=1 on 16K, 32K and 64K processors.
The case withnf=1 experiences a file locking overhead where all
processors need communication and synchronization duringwrite
operations, while the case ofnp:nf=64:1 independent collective
writers experiences less locking overhead.

For rbIO, we tested the cases ofnf=1 andnp:ng=64:1. The rbIO
writers use independentMPI_File_write_at() for the case of
nf=ng, with the MPI_COMM_SELF communicator because writing
is not performed across all processors. Fornf=1, rbIO issues a
collective routines file. In both cases, workers send a data package
only to their corresponding writer in a group withMPI_Isend().
The performance in Figure 5 shows that, for rbIO, the bandwidth for
nf=ng is two times better than the case ofnf=1, as a result of less
file locking overhead. In addition, the writers utlized the buffer in a
more efficient manner, yielding a lower I/O flush rate. Recallthat in
the file format, each file is written by fields (to maintain gridpoints
numbering consistency in a file scope); thus, fornf=1 writers must
commit each field to disk before processing the next field, while for
nf=ng writers can keep multiple fields until the buffer is full before

 1

 10

 100

 1000

16384 32768 65536

T
im

e
(s

ec
on

ds
)

Number of processors

Overall time with NekCEM on Intrepid GPFS

1PFPP
coIO, nf=1

coIO, np:nf=64:1
rbIO, np:ng=64:1, nf=1

rbIO, np:ng=64:1, nf=ng

Fig. 6. Overall time per checkpointing step for different I/O approaches
in NekCEM on GPFS on Intrepid, as a function of processor number for
the problem sizes of(np, n, S)=(16K,275M,39GB), (32K,550M,78GB), and
(64K,1.1B,156GB).

committing data to disk (similar to internal data sieving optimization
in MPI-IO collectives). In both cases of coIO, all the processors all
commit data by fields.

The performance ofnf=1 for coIO and rbIO is similar, demonstrat-
ing that the application’s two-phase optimization does notinterfere
with MPI-IO’s two-phase optimization. We note that rbIO in the case
of nf=ng performs no worse than coIO in the case ofnp:nf = 64:1
at larger scale. This implies that if the application manages its own
data aggregation carefully with the other optimization techniques, it
is possible to get comparable raw I/O bandwidth without blocking the
majority of processors (63/64 = 98%) in I/O operations. We further
discuss potential performance gains in Section V-C2. We notice a
significant performance drop for coIO withnp:nf = 64:1 at 64k
processors and will explain this later from I/O time distribution in
Figure 10.

Figure 6 demonstrates the overall time per checkpointing step for
different I/O approaches. It shows a significant reduction in time with
the rbIO and cIO parallel I/O approaches compared with the 1PFPP
approach. The relatively flat time bars for rbIO also impliesthat rbIO
scales well on up to 65K processors, compared with those by other
approaches.

Figure 7 shows the ratio of checkpoint time over computation
time for different I/O approaches. Note that NekCEM’s computational
performance scales well on Intrepid so the computation timeis almost
the same for 16K, 32K, and 64K processors. We observe that the
ratio for rbIO stays flat when compared with others, meaning that
it is more scalable than other approaches. Denoting the checkpoint
frequency bync, one can express the production time improvement
as

T 1pfpp
c + nc ∗ Tcomp

T rbIO
c + nc ∗ Tcomp

=
Ratio1pfpp + nc

RatiorbIO + nc

, (1)

whereTc is the checkpoint time andTcomp is the computation time.
For nc=20, Ratio1pfpp is generally above 1000 while RatiorbIO is
under 20. Thus, the end-to-end performance of rbIO over 1PFPP

 10

 100

 1000

 10000

16384 32768 65536

R
at

io
: T

(c
he

ck
po

in
t)

/T
(c

om
pu

ta
tio

n)

Number of processors

Checkpoint Time v.s. Computation Time
 for NekCEM on Intrepid GPFS

1PFPP
coIO, nf=1

coIO, np:nf=64:1
rbIO, np:ng=64:1, nf=1

rbIO, np:ng=64:1, nf=ng

Fig. 7. Ratio of checkpoint time per I/O step over computation time per single
time step for different I/O approaches of NekCEM on Intrepid. A smaller ratio
of an I/O approach represents a shorter I/O time per single computation step
for the problem sizes of(np, n, S)=(16K,275M,39GB), (32K,550M,78GB),
and (64K,1.1B,156GB).

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

256 512 1024 2048 4096

B
an

dw
id

th
(G

B
/s

)

Number of files

Write performance of rbIO with NekCEM on Intrepid GPFS

16,384 processors
32,768 processors
65,536 processors

Fig. 8. Performance of rbIO (with nf=ng) as a function of number of files
under different numbers of processors on GPFS on Intrepid.

achieves approximately 25× improvement.
It has been shown in Figure 5 that rbIO withnf=ng scales well.

Figure 8 provides a closer look by varying the number of filesnf
on different numbers of processorsnp and showing the write perfor-
mance of rbIO withnf=ng at differentnp:ng ratios. We observe that
better performance at different scales occurs for the case of nf=1024.
This indicates that the file system has a preference for having larger
numbers of files written into the file system concurrently. InFigure 5,
performance is poor when this number is too small (nf=1) or too big
(nf=np). For the GPFS file system deployed on Intrepid, this number
stays around 1,024 when running on 16K, 32K, and 64K processors.
This optimal number could vary from one file system to another, as

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 2000 4000 6000 8000 10000 12000 14000 16000

T
im

e(
se

co
nd

s)

Processor Ranks

I/O time distribution for NekCEM
 with 16,384 processors on Intrepid GPFS

1PFPP

Fig. 9. I/O time distribution among 16,384 processors for one checkpointing
step, with 1PFPP in NekCEM on GPFS of Intrepid.

 0

 10

 20

 30

 40

 50

 0 10000 20000 30000 40000 50000 60000

T
im

e(
se

co
nd

s)

Processor Ranks

I/O time distribution for NekCEM
 with 65,536 processors on Intrepid GPFS

coIO, np:nf=64:1

Fig. 10. I/O time distribution among 65,536 processors for one checkpointing
step, with coIO in NekCEM on GPFS of Intrepid.

we previously showed a different optimal number for the GPFSon
a Blue Gene/L at different scales [3].

C. I/O Time Distribution and Speedup Analysis

1) I/O Time Distribution on the GPFS System:Figure 9 shows
the I/O time distribution with a 16,384-processor partition for 1PFPP.
Each ‘×’ point in the graph stands for a timing value for a certain
processor. Clearly, some processors finish I/O within several seconds,
while others take more than 300 seconds. Heavy metadata access
(request to create, write, and close 16,384 small files simultaneously)
to the file system can be a reason for the high degree of variance in
per processor I/O performance.

Figure 10 shows the I/O time distribution with a 65,536-processor
partition for coIO. Note they-axis range is much smaller than in the
1PFPP case and thus is more synchronized. Several outliers spend

TABLE I
PERCEIVED WRITE PERFORMANCE WITH RBIO FOR NEKCEM UNDER

16K, 32K,AND 64K PROCESSORS ON THEINTREPID.

Procs Time (CPU cycle) Bandwidth (TB/s)
16K 10152 251
32K 11539 442
64K 9346 1091

 0

 2

 4

 6

 8

 10

 12

 14

 0 10000 20000 30000 40000 50000 60000

T
im

e(
se

co
nd

s)

Processor Ranks

I/O time distribution for NekCEM
 with 65,536 processors on Intrepid GPFS

rbIO, np:ng=64:1, nf=ng

Fig. 11. I/O time distribution among 65,536 processors for one checkpointing
step, with rbIO in NekCEM on GPFS on Intrepid.

longer than the average time to finish their writing part. Because of
these outliers (caused by noise and/or other factors under normal user
load), although most of the processors finish within 10 seconds, the
performance was hindered since all the other processors hadto wait
for the slowest processor to finish.

Figure 11 shows the I/O time distribution with a 65,536-processor
partition for rbIO. There appears to be two “lines” in this plot. The
upper line represents the finish time for writers, while the lower one
is the finish time plot for workers. Most workers spent a smallamount
of time sending their data to writers. We also notice that theupper
line for writers is almost flat, showing good synchronization even
though these writers use the independentMPI_File_write_at()
routine to commit data to disk. One reason can be that in this
np:ng=64:1 case, the file system access concurrency is only 50%
of the concurrency in the coIO case (MPI-IO default ratio is 32:1).

Table I shows the average perceived write performance with
rbIO for NekCEM on 16K, 32K, and 64K processors on Intrepid.
The notion of perceivedwriting speed is defined asthe speed at
which worker processors can transfer their data. This measure is
calculated as the total amount of data sent across all workers over
the maximum time thatMPI_Isend() takes to complete. So rbIO
leverages the Blue Gene/P’s internal memory bandwidth and powerful
torus network to transfer I/O data to the writer. From a worker’s
perspective, this operation finishes when returning from non-blocking
MPI_Isend(), which significantly cuts application execution time.

Figure 12 shows the Darshan [26] log analysis for rbIO and coIO.
Clearly, the performance of the two approaches is not significantly
different. However, because coIO’s writing activity is notas synchro-
nized, we can see there are lock contentions in collective writes, even
though the group size is relatively small and the total file number is

Fig. 12. Write activity of rbIO with nf = ng (top) and coIO withnp:ng =
64:1 (bottom) in the 32K processor case.

not too large. From Figure 5 we can confirm that coIO is not as
scalable as rbIO.

Initially we investigated the performance characteristics of these
I/O configurations on PVFS as well and intended to compare GPFS
performance with lock-free PVFS. However, at the time we ranthese
tests, significant hardware configuration differences, e.g. cache was
(and still is) turned off on PVFS, make the comparision very weak
and pointless.

2) Speedup Analysis:Here, we analyze the speedup of rbIO
over coIO by computing the overall I/O block time spent on each
processor:

Speedup =
TcoIO

TrbIO

. (2)

The total time of all processors blocked by I/O operations,TcoIO

andTrbIO, can be defined by

TcoIO = np
S

BWcoIO

, (3)

TrbIO = (np− ng)(
S

BWp

+
λS

BWrbIO

) + ng
S

BWrbIO

, (4)

whereBWcoIO, BWrbIO, and BWp represent the bandwidths of
coIO, rbIO, and perceived write speed, respectively, andλ is the
percentage of writer’s write time that workers are blocked for andS
is the file size. Then we have

TcoIO

TrbIO

=
np S

BWcoIO

(np− ng)(S
BWp

+ λS
BWrbIO

) + ng S
BWrbIO

, (5)

where np−ng

np
≈ 1 and BWcoIO

BWp

np−ng

np
is typically a very small

number (e.g.,BWcoIO/BWp≈10−6 for the test cases in this paper).

This leads to

Speedup ≈
1

(λ+ ng

np
(1− λ))(BWcoIO

BWrbIO
)
. (6)

In our NekCEM case, the writers can flush their I/O requests
roughly in the time between writes, which is O(10) seconds. In this
case,λ is a very small number, close to zero, which yields a speedup
roughly

(

np

ng

)

(

BWrbIO

BWcoIO

)

. (7)

BWrbIO and BWcoIO are close to each other, as shown in the
previous graphs. Even in the worst case whereBWrbIO is roughly
half of BWcoIO, the speedup is still half of the ratio (i.e., 30×).

VI. RELATED WORK

Our previous work showed initial results for rbIO and coIO on
a 32K processor Blue Gene/L for checkpointing a computational
fluid dynamics solver system [3]. In that work, we demonstrated 2.3
GB/s write bandwidth and 21 TB/s perceived bandwidth and explored
tuning possibilities.

Lofstead et al. [6] designed a portable metadata-rich I/O archi-
tecture (called ADIOS), which chooses between I/O libraries for
application programmer with minimal effort. The authors demonstrate
performance improvement on up to 8K processors on the Cray Jaguar
system at ORNL. Both their work and ours optimize I/O in the
application layer. However, their main focus is to provide ease for
generic application programmers, whereas our focus is to analyze
the detailed I/O pattern from “bursty” I/O applications andleverage
techniques within MPI-IO to maximize application performance.

Choudhary et al. [7] used several file domain partitioning tech-
niques to improve collective I/O performance on the Cray XT4and
on clusters. These techniques include aligning partitionsto file system
lock boundaries and using I/O aggregators. The techniques were
applied to both GPFS and Lustre using I/O benchmark tests andup to
14 GB/s bandwidth with 2,048 processors were observed. However,
I/O bandwidth does not increase with processor count after 2K.

Nisar et al. [5] developed an I/O delegate and caching system
(IODC) that aggregates data by using 10% of processors as I/O
aggregators below the MPI-IO layer and improved I/O benchmarks
using up to 400 processors. Their approach requires thread support
from OS, which is a limiting factor on supercomputers. Our rbIO
differs from this approach in that rbIO works on the application level
with very good scalability and is easy to implement.

Dickens et al. [8] reported poor MPI-IO performance on Lustre,
with an improved I/O performance by redistributing data. Yuet
al. [27] characterized several I/O benchmarks on Jaguar using the
Lustre filesystem and demonstrating the efficacy of their I/Otuning
approaches, such as the two-phase collective I/O. Shan et al. [28]
analyzed the disk access patterns for I/O-intensive applications at
the NERSC and selected parameters for IOR benchmarks [29] to
emulate the application behavior and overall workloads. Fahey et
al. [30] also investigated four I/O approaches (MPI I/O, agg, ser, and
swp) performing subsetting experiments on the Cray XT4 on upto
12,288 processors, achieving a write performance of about 40% of
peak. The rbIO and coIO approaches allow the number of files tobe
a tunable parameter. In their subsetting benchmark, however, only a
single file output approach was considered.

Borrill et al. [31] investigated file I/O performance for theMAD-
bench2 benchmark on different systems, such as Lustre on Cray
and GPFS on Blue Gene/L. They demonstrated I/O performance

depending on concurrency, I/O library and file number, basedon
simulation up to 1K processors.

Another benchmark study of large-scale parallel I/O was conducted
by Lang et al. [22]. They used the Blue Gene/P at Argonne and
demonstrated I/O bandwidths of nearly 60 GB/s (read) and 47 GB/s
(write) using up to 131K processors, using benchmarks including
BTIO and MADbench2 etc. on PVFS. However, the researchers did
not explore the mechanisms of nonblocking I/O for applications,
which is our main focus in this paper.

The Scalable Checkpoint Restart (SCR) library [32] provides a
multi-level checkpointing capability that can leverage local node
storage in the form of RAM disk or SSD. The developers report a
checkpoint performance speedup over writing to a parallel filesystem
of betwen 14x and 234x for the pF3D benchmark using up to 8K
cores. A current barrier to using SCR, however, is that it requires a
compute-side OS that is RAM disk capable; the Blue Gene/P compute
node kernel is not. This barrier will disappear as future leadership
computing systems provide more full-featured OS capabilities.

VII. C ONCLUSIONS AND FUTURE WORK

We demonstrate how rbIO and coIO can improve checkpoint
performance for a data-intensive scientific application compared
with traditional POSIX I/O approaches. We also show significant
production performance improvement using these new parallel I/O
techniques. CoIO uses MPI-IO optimized collective calls todo
smart user-transparent buffering in MPI-IO layer and achieve good
performance and scalability when finely tuned. By utilizingthe fast
point-to-point torus network to aggregate writes and reduce file
system access concurrency, rbIO can use application-level, two-phase
I/O to achieve improved performance and better scalabilitywith
over 13 GB/s write speed on 65K processors. We discuss how to
select parameters on a specific machine in order to get the best
performance by examining I/O log data from both user profiling and
system profiling. We observe a significant performance improvement
for splitting writers from workers in rbIO.

We plan to investigate how rbIO performs on platforms such as
the Cray XT with other file systems such as Lustre and how to tune
rbIO to obtain the best performance.

VIII. A CKNOWLEDGMENTS

This work was supported by the Office of Advanced Scientific
Computing Research, Office of Science, U.S. Department of Energy,
under Contract DE-AC02-06CH11357, while Jing Fu worked as a
Givens Associate at the Mathematics and Computer Science Division
at Argonne National Laboratory. Christopher Carothers wassupported
by the NSF PetaApps Program, OCI-0749152. Additionally, the
authors acknowledge the INCITE allocations from the Nek5000
project led by Paul Fischer, as well as the computing resources and
staff efforts provided by the Argonne Leadership ComputingFacility.

REFERENCES

[1] IBM Blue Gene team, “Overview of the IBM Blue Gene/P project,”
IBM Journal of Research and Development Volume 52 Issue 1/2,2008.

[2] DARPA, “DARPA ExaScale Software Study: Software Challenges
in Extreme Scale System,” http://users.ece.gatech.edu/mrichard/
ExascaleComputingStudyReports/ecss%20report%20101909.pdf,
September 2009.

[3] J. Fu, N. Liu, O. Sahni, K. Jansen, M. Shephard, and C. Carothers,
“Scalable parallel I/O alternatives for massively parallel partitioned
solver systems,” inLSPP workshop of IPDPS, April 2010.

[4] “NekCEM: Computational ElectroMagnetic Code,” https://svn.mcs.anl.
gov/repos/NEKCEM.

[5] A. Nisar, W. Liao, and A. Choudhary, “Scaling parallel I/O performance
through I/O delegate and caching system,” inSupercomputing, 2008.

[6] J. Lofstead, F. Zheng, S. Klasky, and K. Schwan, “Adaptable, metadata
rich IO methods for portable high performance IO,” inIPDPS 09,
Washington, DC, USA, 2009.

[7] A. Choudhary, W. Liao, K. Gao, A. Nisar, R. Ross, R. Thakur, and
R. Latham, “Scalable I/O and analytics,”Journal of Physics: Conference
Series, vol. 180, no. 1, 2009.

[8] P. M. Dickens and J. Logan, “Y-lib: A user level library toincrease the
performance of MPI-IO in a Lustre file system environment,” in HPDC,
2009.

[9] M. S. Min, T. W. Lee, P. F. Fischer, and S. K. Gray, “Fourierspectral
simulations and gegenbauer reconstructions for electromagnetic waves in
the presence of a metal nanoparticle,”Journal of Computational Physics,
vol. 213, no. 2, pp. 730–747, 2006.

[10] J. Hesthaven, S. Gottlieb, and D. Gottlieb,Spectral methods for time-
dependent problems,Volume 21 of Cambridge monographs on applied
and computational mathematics. Cambridge University Press, 2007.

[11] M. Carpenter and C. Kennedy, “Fourth-order 2N -storage Runge-Kutta
schemes,”NASA Report TM 109112, 1994.

[12] E. Gallopoulos and Y. Saad, “Efficient solution of parabolic equations
by Krylov approximation methods,”SIAM J. Sci. Stat. Comput., vol. 13,
no. 5, pp. 1936–1964, 1992.

[13] M. Deville, P. Fischer, and E. Mund,High-order methods for incompress-
ible fluid flow, Cambridge Monographs on Applied and Computational
Mathematics. Cambridge University Press, 2002.

[14] J. Hesthaven and T. Warburton,Nodal discontinuous Galerkin methods,
algorithms, analysis, and applications. Springer, 2008.

[15] “Nek5000: Computational Fluid Dynamics Code,” https://svn.mcs.anl.
gov/repos/nek5000.

[16] M. S. Min and J. Fu, “Performance analysis on the IBM BG/Pfor
the spectral-element discontinuous Galerkin method for electromagnetic
modeling,” 2010, MCS, ANL, Preprint ANL/MCS-P1802-1010.

[17] P. Carns, K. Harms, W. Allcock, C. Bacon, S. Lang, R. Latham,
and R. Ross, “Storage access characteristics of computational science
applications,” inProceedings of 27th IEEE Conference on Mass Storage
Systems and Technologies (MSST), 2011.

[18] IEEE/ANSI Std. 1003.1, “Portable operating system interface (POSIX)–
Part 1: System application program interface (API) [C language],” 1996.

[19] R. Thakur, E. Lusk, and W. Gropp, “Users guide for ROMIO:A
high-performance, portable MPI-IO implementation,” 2004, technical
Memorandum ANL/MCS-TM-234, MCS, ANL.

[20] “Message Passing Interface,” http://www.mcs.anl.gov/research/projects/
mpi.

[21] F. B. Schmuck and R. L. Haskin, “GPFS: A shared-disk file system for
large computing clusters,” inFAST, 2002.

[22] S. Lang, P. Carns, R. Latham, R. Ross, K. Harms, and W. Allcock,
“I/O performance challenges at leadership scale,” inSupercomputing,
November 2009.

[23] R. Thakur, W. Gropp, and E. Lusk, “Optimizing noncontiguous accesses
in MPI-IO,” Parallel Computing, vol. 28, no. 1, pp. 83–105, 2002.

[24] H. Yu, R. K. Sahoo, C. Howson, G. Almasi, J. G. Castanos, M. Gupta,
J. E. Moreira, J. J. Parker, T. E. Engelsiepen, R. Ross, R. Thakur,
R. Latham, and W. D. Gropp, “High performance file I/O for the
BlueGene/L supercomputer,” inHPCA-12, February 2006.

[25] W. Liao and A. Choudhary, “Dynamically adapting file domain partition-
ing methods for collective I/O based on underlying parallelfile system
locking protocols,” inSupercomputing, Austin, Texas, November 2008.

[26] P. Carns, R. Latham, R. Ross, K. Iskra, S. Lang, and K. Riley, “24/7
characterization of petascale i/o workloads,” inWorkshop on Interfaces
and Architectures for Scientific Data Storage, September 2009.

[27] W. Yu, J. S. Vetter, and S. Oral, “Performance characterization and
optimization of parallel I/O on the Cray XT,” inIPDPS, 2008.

[28] H. Shan, K. Antypas, and J. Shalf, “Characterizing and predicting the
I/O performance of HPC applications using a parameterized synthetic
benchmark,” inSupercomputing, 2008.

[29] “IOR Benchmark,” https://asc.llnl.gov/sequoia/benchmarks/#ior.
[30] M. R. Fahey, J. M. Larkin, and J. Adams, “I/O performanceon a

massively parallel Cray XT3/XT4,” inIPDPS, 2008, pp. 1–12.
[31] J. Borrill, L. Oliker, J. Shalf, H. Shan, and A. Uselton,“HPC global

file system performance analysis using a scientific-application derived
benchmark,”Parallel Computing, vol. 35, no. 6, pp. 358–373, 2009.

[32] A. Moody, G. Bronevetsky, K. Mohror, and B. R. de Supinski, “De-
sign, modeling, and evaluation of a scalable multi-level checkpointing
system,” inSupercomputing, New Orleans, November 2010.

The following paragraph should be deleted before the paper is
published: The submitted manuscript has been created by UChicago
Argonne, LLC, Operator of Argonne National Laboratory (“Ar-
gonne”). Argonne, a U.S. Department of Energy Office of Science
laboratory, is operated under Contract No. DE-AC02-06CH11357.
The U.S. Government retains for itself, and others acting onits behalf,
a paid-up nonexclusive, irrevocable worldwide license in said article
to reproduce, prepare derivative works, distribute copiesto the public,
and perform publicly and display publicly, by or on behalf ofthe
Government.

