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Abstract—As the number of processors increases to hundreds of blocking I/O” (rblO), and a tuned MPI-IO collective apprdeolO).

thousands in parallel computer architectures, the failure probability

rises correspondingly, making fault tolerance a highly immrtant and

challenging task. Application-level checkpointing is one of the most
popular techniques to proactively deal with unexpected fdures because
of its portability and flexibility. During the checkpoint ph ase, the local
states of the computation spread across thousands of prosess are
saved to stable storage. Unfortunately, this approach redts in heavy
1/0 load and can cause an I/O bottleneck in a massively paradl system.
In this paper, we examine application-level checkpointingor a massively
parallel electromagnetic solver system calledNekCEM on the IBM Blue

Gene/P at Argonne National Laboratory. We discuss an applition-level,
two-phase 1/O approach, called “reduced-blocking 1/0” (rblO), and a
tuned MPI-IO collective approach (colO), and we demonstra¢ their

performance advantage over the “1 POSIX file per processor” pproach.

Our study shows that rblO and colO result in 100x improvement
over previous checkpointing approaches on up to 65,536 pressors of
the Blue Gene/P using the GPFS. Our study also demonstrates 26x

production performance improvement for NekCEM. We show how to

optimize parameter settings for those parallel 1/0 approates and to
verify results by 1/0O profilings. In particular, we examine the performance
advantage of rblO and demonstrate the potential benefits ofttis approach
over the traditional MPI-1O routine, colO.

Keywords Parallel 1/0, checkpointing, fault tolerance, Blue Gene/P

|. INTRODUCTION

We demonstrate their performance advantage against pstyiased
1PFPP approach. Our objective is to provide an approachdtiates
the checkpointing time, gives users more flexibility witheckpoint-
restart data files, and provides guidance for further I/dgperance
tuning on different systems.

This paper is organized as follows. In Section Il, we provale
general overview of checkpointing and some work that has deee
in this area. In Section IlI-A, we introduce the petascalpligption
code, NekCEM, used in our study. In Section IV, we discuss
several parallel /0 approaches. In Section V, we deschieeRiue
Gene/P system, compare different approaches, and proeizéedi
experiment results. In Section VI, we compare our appraactith
related work in the literature. In Section VII, we give oumctusions
and discuss some future work.

II. OVERVIEW OF CHECKPOINTING

Application checkpoint/restart is an effective fault talece tech-
nique in distributed systems. Checkpoint/restart allowpragram
to save local states periodically so that, in the event of stesy
crash, the program can roll back to the most recently saa®,st
avoiding total loss of work. This technique is especiallypartant

As current leadership-class computing systems such asBille | for those computational science and engineering appicatie.g.,

Blue Gene series [1] move closer to exascale capabilityjkbkhood

parallel partitioned solvers) that normally iterate fornpasteps and

of an unrecoverable node or network failure is high [2]. Wlen require a long time to complete. Checkpointing can happtreeat

component fails, the application in progress loses vatuatdrk and
must be restarted, thereby wasting computing time, powet,staff
effort.

Another trend in current petascale systems is that theyeshhigh
degree of hardware, including memory and caches within s)aut-
work infrastructure between nodes, and a shared storagsyg@m
for the whole machine. During the checkpointing phase, lgjites
or even terabytes of checkpoint data from hundreds of thmissaf
processors can be written into the shared back-end stosegens
making I/O a bottleneck. In extreme cases, traditional lppreaches
such as “1 POSIX file per processor” (1PFPP) for checkpaintin
a 128K-processor partition render poor performance or dwek
the file system and hang the application until it is removesmfr
the job queue [3]. Thus, scalable and effective 1/0 apprescire
needed so that users can better utilize the computing catlesated
on massively parallel systems, yielding more productivierse per
compute cycle.

The key contribution of this paper is a performance studyiitéd
ent parallel /0 approaches applied to application-letelakpointing
for a production petascale electromagnetics solver Nek@E&kton
for Computational ElectroMagnetics) [4]. In particulare imple-
ment an application-level, two-phase 1/0 approach callediticed-

the operating system level or at the application level.

System-level checkpointirigpically provides checkpointing in an
user-transparent manner, where the data is managed by ¢hatiog
system and checkpointing can happen at any time. While this a
proach requires no additional effort from the applicatisagpammer
and sees the application as a black box, none of the inteznastics
or characteristics of the application are recognized. Tthes whole
state of the computation—including CPU register informatand
memory information—must be stored during each checkpuinti
This approach dramatically increases the total amount t& ttabe
stored, especially on large-scale systems. Examples @ffiproach
include 10DC [5] , which will be reviewed in Section VI.

Assume that we have 150 MB of data in memory for each processor
for checkpointing. A 65,536-processor partition will geate roughly
10 TB data at each checkpoint step, which is too heavy for Eayp
shared-1/O subsystem in such large parallel systems. Mergo
because system-level checkpointing records a snapshatdpecific
system (e.g., register information, software stacks, nmgntayout),
it is not portable between different platforms.

On the other hand, althougapplication-level checkpointinge-
quires more manual effort from an application programmtetakes
the content and semantics of an application into considerathe



application programmer decides which critical data needzetstored Input File
to disk. The application programmer also has the freedonhtose

a safe time and appropriate frequency for checkpointingceSthese Parameters (103 lines) Rank Vertex Numbering
. . . . bl umber of Timesteps
checkpoint data files are user-defined, they are easily gocide «  Timestep Size @
. . = Checkpointing Frequency
different platforms. Also, these files can be used for otheppses, « Checkpointing Option ARLL____E 8 columns ___ _ __ _ -
such as data visualization or other postprocessing asakysich are - A R &
extremely useful for many computational applications. gtes of '.‘°9+,°,,a,'f;",v','._f,'::;ica._nux i : j : : ; : zz : : !
this approach include ADIOS [6] and data partitioning teghas [7], * Tvpe of Timestepping Scheme i :
8 hh . dSt Vl i3 1 7 3 5 28 34 30 32,
[8], which are reviewed in Section VI. Mesh Data (global) 0 D
i H iA- inti if = Total Number of El ts (=E )
. In this paper, we focu.s on appllcatlonlleyel check.pomFngeuf L Problem Dimension( oy A 1
ically, our applications involve checkpointing certaintalan a co- { Element# 1 i N
. L | [vertex1 vertex2 vertex3 vertex4] !
ordinated manner, where all processors start and end checkpointing 1 [vertexs vertexs vertex7 vertexsl ! | | gxample:
: :
synchronously. (Throughout the paper, we use the term gssmrs” ! Element# 2 L[ | Agcase of total number of elements: B=27
« ,, . . . rtex 1 2 3 vertex 4] "
to mean “cores.”) In such a situation, no processor begiasntxt L [vartexs veroxe varex? variexsl | Each ow epresents 8 verticesforeach clement
iteration until the last processor completes its checkpain and ! i | [_Processorranks: 0~15 such that p = 2" ~1<27
thus any significant 1/O latency on a single processor camlires | |SvemkE s verexs vertexa) i Lorae sine vertex data can be
in keeping all other processors in the partition waiting.r @uain | [veriexs vertexs vertex? vertexs] | stored In a binary format and read
. . . . .. o " 1 in a separate file (*.re2)
motivation in developing efficient parallel 1/0 approachiss to i;;["lﬂeé?:iesﬂz_?%?fn_Ff?i ]
balance the I/O latency among all processors and reducevéinbead Restart Option — 1 J outputdata in ASCII and binary can be read
or even completely hide the 1/O latency by using dedicateédl 1/
communicators in the optimal case. Fig. 1. Input files for NekCEM.

I1l. SOFTWARE AND I/O FILE FORMAT

We consider the production code NekCEM, which is a singl
comprehensive electromagnetic software package, clyreapa-
ble of scalable simulations up to more than 131K processars
leadership-class machines such as the IBM Blue Gene/P.i$n t
section, we describe the key features of NekCEM includingneso

GH:(Hw?Hy,HZ) so that communication can occur only once at
each time step between neighboring elements. Thus, conoation
atency can be reduced by a factor of six compared to the chse o
saving the face values into six different arrays for each mament

B - of the fields.
of its capabilities. ) ] ]
NekCEM is written in Fortran and C. The code uses the core
A. NekCEM infrastructure of the incompressible Navier-Stokes soNek5000,

r151warded the Gordon Bell prize in 1999 [15]. NekCEM uses the
distributed-memory message-passing interface (MPI) raragiing
model and the single program, multidata model (SPMD) sod¢hah

Highly efficient and accurate modeling on advanced computi
platforms will enable the relevant science and engineecorgmuni-
ties to advance their understanding of complex systemsatieatoo )
large for experimental study and will reduce both the cost g Processor independently executes a copy of the same prognam
risk involved in conventional trial-and-error procedures distinct subsets of data.

NekCEM is an Argonne-developed, high-order, spectrahelat NekCEM has an instruction for the following three tasks that
discontinuous Galerkin (SEDG) code [4] designed for siiota are performed consecutively at run timpresetup, solverand
based investigations for understanding the fundamentitadprop- checkpointing Presetup includes initialization of processors, setting
erties and predicting optimal designs of electromagnetwicts Ccompile-time data sizes, reading run-time parameters dobaj
in particle accelerator physics and nanoscience appmitsti{9]. Mesh data from input files, distributing mesh data to eachgz®or,
This code features spectrally accurate solutions with teseerical and assigning numbering for nodal points and coordinatesafo
dispersion for long time simulations with geometric flelithiusing ~geometry. Solver involves the SEDG spatial operator etiainand
body-fitted conforming meshes [10]. time iterations. Checkpointing generates output files far global

NekCEM solves the two- and three-dimensional Maxwell cufield data computed from the solver; these files can be used for
equations in the time domain. Spectral-element discritizs are restarting.
used based on hexahedral element meshes. For the timecamyan Parallel performance and scalability of NekCEM are disedss
the code currently supports explicit time-stepping sctesiech as in [16], showing strong scaling performance of three-disienal
the five-stage, fourth-order Runge-Kutta [11] and the erptial cylindrical waveguide simulations using the number of edats
time integration methods [12]. Tensor product bases of the- 0 £F=136K and £=273K with the polynomial approximation orders
dimensional Lagrange interpolation polynomials using @auss- N=5 and N=15, resulting in a total number of grid points from
Lobatto-Legendre grid points result in a diagonal massimatihich 29 million to 1.1 billion. As the number of grid points per pessor
requires no additional cost for mass matrix inversion [h3king the increases, the efficiency increases. Specifically, NekCENiezes
code highly efficient. The stiffness matrix is a tensor paidiorm 75% efficiency on 131,072 processors fof P=8,530 (still not a
of the one-dimensional differentiation matrix [13]. large amount) grid points per processor, compared to a kEsean

The discontinuous Galerkin scheme based on the domain d#,384 processors fai/P=68,250 grid points per processor. Even
composition approach performs communication only at tleeneht with an unrealistically small number of grid points per pssor
faces (excluding the information of vertices and edgesveeh n/P=224, NekCEM achieves 58% efficiency on 131,072 processors,
neighboring elements through a numerical flux [14]. The fealees compared to a base case on 16,384 processors /fB=1,793 grid
at the interfaces are saved in a single array for the six cempmoints per processor. CPU time per time stepei3.13 seconds on
nents of the electric field&E=(E., Ey, E.) and the magnetic field 131K processors for the case BE273K with 1.1 billion grid points.



Output File

VTK legacy format

Header
VTK Version

Data Type (ASCII or Binary) n=EN+1)’
Unstructured Grid 3
nc=EN
JPontData ___ ______________
[x -coordinate  y-coordinate  z-coordinate] ' nrows
CelliData _ _ ________________
:_[s vi_ v2 v3 v4 v5 v6 v v8]! nc rows
gell LA ¢, 1row &

nc columns

t] <= nrows

Fig. 2. Output file format for NekCEM.

B. I/O File Format

NekCEM has two input data files, as shown in Figure 1, progdin
the information on global mesh (*.rea) data and global ngpi
(*.map) for vertices including processor distribution &ach element.

For simplicity, data files are kept in global format so thatnssare not
required to deal with mesh partition before compile/runghveasier
management for many different mesh configurations. Inpas fdre

autogenerated from meshing tools such as prex and genmgp [15

which are also included in the NekCEM package [4].

Data files are read at the very beginning stage, before thalact

solver runs. Reading the global data for a mesh takes fronsét5h
onds to 28 seconds, with the numbers of elenfeni36K and 546K

on P=32,768 and 131,072 processors of BG/P, respectively.eSinc

read only occurs once during the whole execution, our op#tion
focus would be on the more frequent write operations.

Figure 2 shows the structure of an output file of NekCEM.
self-defined output format generally provides users morebiléy,
although users have to maintain a special reader interfaceldta
analysis tools. An open file format such\ak legacycan be directly
read by postprocessing tools for visualization using Pena\or
Vislt. NekCEM uses the vtk legacy format, where the masteidbe
includes the application name, file type (binary or ASClppkcation
type, grid point coordinates, cell numbering, and cell type

Since NeKCEM checkpoints the local state on each processar i

coordinatedmanner, the output files share a similar structure as well:

every file has a master header followed by data blocks. Mister
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Fig. 3. Architecture diagrams for different 1/0 approach@ 1PFPP, (b)
colO, and (c) rblO.

to NekCEM and focus on NekCEMwgak scalinyy production
performance improvement and potential performance beoiefiilO
_optimizations.

IV. PARALLEL |/O APPROACHES
In this section, we discuss three 1/0O approaches, namel@®3IR

headertypically specifies metadata information such as appbeati File Per Processor, collective /0, and reduced-blockif®, Ifor

name, version, local state list, and offset table. Taéa blocksare
sorted mostly in the order of fields. In each data block, thera
header recording metadata such as data block size and frakel Ade
data block contains the actual values of the field from theQ\&W
computation.

generating checkpointing files. An architecture diagram dach

approach is given in Figure 3. On a fixed number of processgs (
each approach specifies the numbergoup (ng) processors that
access the file system and the number of output fité} generated
by thosewriter processors.

This “bursty” I/O access of NekCEM is a very typical pattern

for many computational science applications [17], esplgcimrallel
partitioned solvers. In our previous paper [3], we did arepgive

A. 1 POSIX File Per Processor: 1PFPP
With the 1PFPP approach, all processors access a file syatem,

amount of strong scalingtests on tuning different parallel 1/O each processor generates one file output (ne=nf) based on the
techniques for a CFD application to get best raw 1/0O bandwidttraditional POSIX 1/0. POSIX stands for portable operatgygtem

In this paper, we apply optimal configurations of these tepes

interface for Unix [18]. It is a standard application pragraing



interface that defines the 1/O interface for standard sesvion the Architectural Diagram of the IBM BG/P System
operating system using functions suchaen(), read(), write(),

. . High-L. 1 1/0 Librari 1/0 F di i
and close(). POSIX 1/O has a simple access capability that was —— oouaring ) | Barallel File System

1/0 Middleware

designed originally for a single machine with a single meyrepace T | Drive Management

to a streaming device. Because of its well-defined semaiatnzhs p
portability, 1LPFPP has been widely used by many paralldicgijon
codes for decades. However, since the semantics of thisfaote
prevent the sharing of file descriptors between nodes anti eac
processor has to write its own file output, performance besowery
limited when shared storage is accessed by hundreds ofahdsis
processors simultaneously, generating huge overheaatsexoessive
metadata traffic, disk block locking, and so on.

N
-

.

/
~.

. e

B. Collective 1/O: colO ! T
|Compute Nodes | |Gatewa Nodes |

The collective 1/0 approach is based on the MPI-10 librarkjcki [Commodity Network | [ Storage Nodes |
defines a set of routines that transfer data to and from extstorage.
This approach offers a number of advantages over the waditi Fig. 4. Architectural diagram of the 557 TFlop IBM Blue GeRedystem.
POSIX I/O approach. MPI-IO provides mechanisms for colect
access (i.e., many processors collectively read and woitehared
file descriptors), asynchronous 1/O, and strided data acddsny call MRl _| send()

platforms support the MPI-10 interface. Applications russentially ) ] ] ] ]
unchanged, and the files written by MPI-IO are portable betwe @nd return from this nonblocking call quickly, without anyterrup-
platforms. tion for 1/0. The writer aggregates the data from all workéars

Our implementation uses ROMIO [19] which is a high-its group, reorders data blocks, and writes to disk usinbeeit.

performance, portable implementation of the MPI-IO ligr&omio  honcollective function

is supported by many platforms including IBM SP, Cray T3E,QNE call Pl _File wite at()
SX-4, and SGI Origin2000 with variable file systems such a&®V - - -

IBM PIOFS, NEC SFS, and SGI XFS. Details can be found in ther a collective nonblocking function set
parallel I/O chapter of MPI-2 [20].

ROMIO is optimized for collective /0O and noncontiguous ess
patterns, which are important in parallel 1/0. In our impksrtation,
all processors call the collective I/O routine to write ddta a
number of files. The number of output files, typically=2" < np, MPI_File_ wite_at() uses theMPl _COVM SELF communi-
m=0,1,2,..., is a user-tunable parameternifl, all processors in cator to produce one file per writdvPl _File_ wite_at _all
MPI _COVM _WORLD follow the instructions _begin() andMPl _File_ wite_at_all_end() producenf
files, wherenf can be between 1 army. The number of writersng)
and number of filesr(f) are both user-tunable parameters in the /O
subsystem; in our case we s#t=ng.

cal MPl _File_wite_at_all _begin(),

cal MPl _File_ wite_at_all _end().

cal MPl _File_wite_at_all _begin(),

cal MPl _File_ wite_at_all _end(),

which are collective nonblocking functions to write all dainto V. PERFORMANCE ANDANALYSIS

one shared file. Ifnf>1, the processors are divided evenly into In this section, we describe experiment test cases and dsrate
nf (=ng) groups, and thenp/nf processors in each group (i.e.|/O performance of the different parallel I/O approacheat tive
local MPI communicator) collectively write to one file in @édlel. implemented in NekCEM. We carry out the performance tesitsgus
Collective routines involve only processes that open the dihd the GPFS [21] file system on the Blue Gene/P “Intrepid” at Ay
thus generally perform better than noncollective onesessmaller National Laboratory.
requests would be merged into fewer bigger requests wheowpgr
of processes coordinate. Nonblocking routines initiatequest and A. Overview of the Blue Gene/P System
return immediately, provided with a request identifier thall be Blue Gene’s philosophy is to balance the computing power of a
completed by calling an additional routine. This allows f8® massive number of processors with fast network that intereot
operations to be overlapped with computation or commuigicat  processors and other auxiliary networks for 1/0 and so fofthe
. Intrepid system has 40 racks of 40,960 quad-core computesnod

C. Reduced-Blocking I/O: rblO (with a total of 163,840 processors) and 80 TB of memory, with

The reduced-blocking I/O approach also utilizes the MPIHHO a peak performance of 557 TF. There are five networks in BG/P
brary. This approach divides compute processors into twegosies: system: a 3-D torus network that interconnects computes@quiEnt-
workers (application compute node) and writers (/O aggmag to-point network), a collective network that connects catepnodes
node). Amongnp processors, onlyng groups (orng writers) are and I/O nodes, a tree-based collective network for barperations,
allowed to access the file system. In each group, one writde noa Gigabit Ethernet that delivers data between I/O nodes ata d
takes charge of the other application compute nodes in thapgr storage serves, and a JTAG network that connects computesnod
When the workers want to write data to a disk, they send thetia d to service nodes. The bandwidth for each torus link is 425 MBp
to their dedicated writer (i.e., the processor at the lefesif each per direction and 5.1 GBps bidirectional bandwidth per nftle
“Group’ as indicated in Figure 3(c)) with BG/P compute nodes run a special lightweight kernel calleal t



compute node kernel (CNK); I/O nodes run a different kerineit t Write performance with NekCEM on Intrepid GPFS
has more functions than CNK. In order to improve the scatstuif 18 [ T T
the Blue Gene architecture, dedicated 1/0 nodes (IONs)sasystem
call proxies between the compute nodes and the storage ;nibees
collection of an ION and its compute nodes called a “pset’ctEa
BG/P pset contains one ION and 64 4-core compute nodes;ah tot
640 IONs are connected to the parallel storage system.

The parallel storage system consists of 16 Data Direct Nétwo
(DDN) 9900 SAN storage arrays, where each DDN exports tHe dis
block as LUNs. Each LUN is directly connected to 8 file servers
and there are 128 file servers in total. These servers aredshgr
the file systems, GPFS [21] and PVFS [22]. They are connected t
1/0 nodes via 10 Gigabit Ethernet. The theoretical readiagkpis
60 GB/s and that of writing is 47 GB/s [22].

We note that the file systems are shared between Intrepigk&ur
(a visualization system), and some other clusters whosa/t/@®load
may affect the 1/0O performance observed on Intrepid. Aldlopar
tests were done under normal load, where there might be froise
other online users.

An architectural diagram of Intrepid is shown in Figure 4.

1PFPP —— ]
colO, nf=1 ———

colO, np:inf=64:1 —jill—
rblO, np:ng=64:1, nf=1 @
rblO, np:ng=64:1, nf=ng ---@---

14

12

10

Bandwidth(GB/s)

Py 1

32;68
Number of processors

Fig. 5. Write performance of different I/O approaches in NEKM on

5. Paralel /0 Performance for NekCEM o ion 1 fcesse marey e
We implemented two parallel 1/O approaches in NekCEM an(®4K,1.1B,156GB).

performed weak scaling on the Argonne Blue Gene/P. We choti¢
3D cylindrical waveguide simulations for different sizekmeshes
and different numberss of processors with, P)=(68K,16K), a ratio. For each pset allocated to a parallel job, that maaies will
(137K, 32K), and(273K, 65K ), whereE is the number of elements be designated as aggregators. The default ratio for a johirgn
for a mesh andP is the number of processors. The total number dfi “virtual node” is one aggregator for every 32 MPI processe
grid points isn=FE(N + 1)3, where N is the approximation order. Furthermore, these aggregators are distributed over theagy of
The number of grid points per processor is approximately?. We the application so that no node has more than one aggregatara
used N=15 so that the number of grid points per element is fixepgset contains more than “bgpodes pset” aggregators. In Figure 5,
at 16. The total numbers of grid pointa and the file sizesS we show the case of one I/O aggregator per every 64 MPI presess
are (n, S)=(275M,39GB), (550M,78GB), and (1.1B,156GB) per I/O(np:ng=64:1). The performance comparison study for 64:1, 32:1, and

step.
We investigated the write bandwidth for different 1/0 apgebes

16:1 for rblO is discussed later in this section.
For colO, we examine two casesif=1 and np:nf

64:1.

for NekCEM. The bandwidth was measured as the total amourtr nf=1, all processors invPl _COVM WORLD will call MPI-IO

of data across all processors divided by overall wall-clditke
(including open write, and close file) of the slowest processor to
finish. Note that most of these experiments were mudtiple times
and the data points were sampled from thedian number.

collective routines in a synchronized manner. @nf=64:1, all
processors are evenly divided intgp/64 groups (split collective).
These 64 processors (i.e., one from each group) write itsided one
common file in a synchronized manner using an MPI-IO coNecti

Figure 5 shows the write bandwidth as a function of the numbeputine, but between groups these function calls are inuiige of

of processors. As expected from previous experience [3FPEP
renders poor performance with 16K and 32K processors beoafus
a high number of metadata operations. This is caused by afamgpr

each other. Figure 5 shows that the bandwidthrfpmf=64:1 case
is larger than the one fanf=1 on 16K, 32K and 64K processors.
The case withnf=1 experiences a file locking overhead where all

all output filesnf=np in one directory. Better performance may beprocessors need communication and synchronization duwiritg

achieved by producing a single file per directory. Howeveasm
parallel file systems are not designed to deal with hundreds
thousands of small files, and manageability becomes a sgntfi
issue.

With collective routines, all processes in a given MPI cominu
cator call the routine together. The MPI implementationthwthe
knowledge of which tasks participate in a call, can thengrerfsig-
nificant optimizations. These collective routines providemendous
performance benefits for both networking and I/O [23]. TheieBl
Gene MPI-IO library makes some adjustments to the ROMICecell
tive buffering optimization [24]. First, data accessesaligned to file
system block boundaries. Such an alignment reduces lodiermtiion
in the write case and can yield big performance improvemgik
Second, and perhaps most important from a scalability petise,
the “I/O aggregators” are a small subset of the total number
processors. On Blue Gene, the MPI-IO hint “bgpdes pset” defines

operations, while the case afp:nf=64:1 independent collective
writers experiences less locking overhead.

For rblO, we tested the casesmff=1 andnp:ng=64:1. The rblO
writers use independeP! _File_write_at () for the case of
nf=ng, with the MPI _COMM_SELF communicator because writing
is not performed across all processors. Fdel, rblO issues a
collective routines file. In both cases, workers send a datkage
only to their corresponding writer in a group wilPl _I send() .
The performance in Figure 5 shows that, for rblO, the bantiwidr
nf=ng is two times better than the case mfi=1, as a result of less
file locking overhead. In addition, the writers utlized theffbr in a
more efficient manner, yielding a lower 1/O flush rate. Retadit in
the file format, each file is written by fields (to maintain ggdints
numbering consistency in a file scope); thus, fiéx1 writers must
oommit each field to disk before processing the next field |eviur
nf=ng writers can keep multiple fields until the buffer is full bego
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Fig. 6. Overall time per checkpointing step for differen® lapproaches

in NekCEM on GPFS on Intrepid, as a function of processor ramfbr
the problem sizes ofnp, n, S)=(16K,275M,39GB), (32K,550M,78GB), and
(64K,1.1B,156GB).

committing data to disk (similar to internal data sievindioyzation
in MPI-10 collectives). In both cases of colO, all the proaas all
commit data by fields.

The performance afif=1 for colO and rblO is similar, demonstrat-
ing that the application’s two-phase optimization does intgrfere
with MPI-10’s two-phase optimization. We note that rblO hetcase
of nf=ng performs no worse than colO in the casenginf = 64:1
at larger scale. This implies that if the application marsaige own
data aggregation carefully with the other optimizatiorhtgéques, it
is possible to get comparable raw I/O bandwidth without kileg the
majority of processors (63/64 = 98%) in 1/O operations. Wehfer
discuss potential performance gains in Section V-C2. Wécea
significant performance drop for colO withp:nf = 64:1 at 64k
processors and will explain this later from 1/O time distrtibn in
Figure 10.

Figure 6 demonstrates the overall time per checkpointieg &ir
different I/O approaches. It shows a significant reductiotime with
the rblO and clO parallel I/O approaches compared with thePHP
approach. The relatively flat time bars for rblO also imptiest rblO
scales well on up to 65K processors, compared with those logr ot
approaches.

Checkpoint Time v.s. Computation Time
for NekCEM on Intrepid GPFS
T

1PFPP —y—
colO, nf=1 —f——
colO, np:nf=64:1 —Jll—
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Fig. 7. Ratio of checkpoint time per I/O step over computatime per single

time step for different I/O approaches of NekCEM on Intregicsmaller ratio

of an I/O approach represents a shorter 1/O time per singigpotation step

for the problem sizes ofnp, n, S)=(16K,275M,39GB), (32K,550M,78GB),

and (64K,1.1B,156GB).

Write performance of rblO with NekCEM on Intrepid GPFS
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Fig. 8. Performance of rblO (with nf=ng) as a function of nanlof files

Figure 7 shows the ratio of checkpoint time over computatiofnder different numbers of processors on GPFS on Intrepid.

time for different /O approaches. Note that NekCEM'’s comagional
performance scales well on Intrepid so the computation tnagémost

the same for 16K, 32K, and 64K processors. We observe that #ghieves approximately 25improvement.

ratio for rblO stays flat when compared with others, meanhmg t
it is more scalable than other approaches. Denoting thekpbéat

It has been shown in Figure 5 that rblO witfi=ng scales well.
Figure 8 provides a closer look by varying the number of fidés

frequency byn., one can express the production time improvemem different numbers of processarp and showing the write perfor-

as

Ratio'PPP +
Ratio®™© + n,’

1pf
Tcp pp + ne * Tcomp _
TEPIO 4 e % Teomp

@

whereT is the checkpoint time an@c.mp IS the computation time.
For n.=20, RatidP®*? is generally above 1000 while Rathd® is

mance of rblO withnf=ng at differentnp:ng ratios. We observe that
better performance at different scales occurs for the ceé=d.024.
This indicates that the file system has a preference for bdeairger
numbers of files written into the file system concurrentlyFlgure 5,
performance is poor when this number is too smaflE() or too big

(nf=np). For the GPFS file system deployed on Intrepid, this number

stays around 1,024 when running on 16K, 32K, and 64K processo

under 20. Thus, the end-to-end performance of rblO over PPFFhis optimal number could vary from one file system to anqther
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Fig. 9. 1/O time distribution among 16,384 processors foe oheckpointing

step, with 1PFPP in NekCEM on GPFS of Intrepid.

1/0 time distribution for NekCEM
with 65,536 processors on Intrepid GPFS
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Fig. 10. 1/O time distribution among 65,536 processors fug oheckpointing
step, with colO in NekCEM on GPFS of Intrepid.

we previously showed a different optimal number for the GRRS
a Blue Genel/L at different scales [3].

C. 1/O Time Distribution and Speedup Analysis

1) I/O Time Distribution on the GPFS Systerkigure 9 shows
the 1/0 time distribution with a 16,384-processor partitior 1PFPP.

TABLE |
PERCEIVED WRITE PERFORMANCE WITH RBO FORNEKCEM UNDER
16K, 32K,AND 64K PROCESSORS ON THENTREPID.

# Procs  Time (CPU cycle) Bandwidth (TB/s)
16K 10152 251
32K 11539 442
64K 9346 1091

1/0 time distribution for NekCEM
with 65,536 processors on Intrepid GPFS
T
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Fig. 11. 1/O time distribution among 65,536 processors fug oheckpointing
step, with rblO in NekCEM on GPFS on Intrepid.

longer than the average time to finish their writing part. 8ese of
these outliers (caused by noise and/or other factors uraterat user
load), although most of the processors finish within 10 sdspthe
performance was hindered since all the other processorsohadit
for the slowest processor to finish.

Figure 11 shows the I/O time distribution with a 65,536-@s0r
partition for rblO. There appears to be two “lines” in thioplThe
upper line represents the finish time for writers, while thwdr one
is the finish time plot for workers. Most workers spent a sraatbunt
of time sending their data to writers. We also notice thatupper
line for writers is almost flat, showing good synchronizatieven
though these writers use the independdPt _Fil e_write_at ()
routine to commit data to disk. One reason can be that in this
np:ng=64:1 case, the file system access concurrency is only 50%
of the concurrency in the colO case (MPI-IO default ratio 2s13.

Table | shows the average perceived write performance with
rblO for NekCEM on 16K, 32K, and 64K processors on Intrepid.
The notion of perceivedwriting speed is defined athe speed at
which worker processors can transfer their dafBhis measure is
calculated as the total amount of data sent across all woresr
the maximum time thakPl _| send() takes to complete. So rblO

Each x’ point in the graph stands for a timing value for a certaitleverages the Blue Gene/P’s internal memory bandwidth ane:gul

processor. Clearly, some processors finish 1/0O within séssconds,

torus network to transfer 1/0 data to the writer. From a woske

while others take more than 300 seconds. Heavy metadat@sacqeerspective, this operation finishes when returning fromiblocking

(request to create, write, and close 16,384 small files sémebusly)

to the file system can be a reason for the high degree of varignc

per processor 1/0O performance.
Figure 10 shows the 1/O time distribution with a 65,536-@%g0r

MPI _I send(), which significantly cuts application execution time.
Figure 12 shows the Darshan [26] log analysis for rblO an&col

Clearly, the performance of the two approaches is not samifly

different. However, because colO’s writing activity is rast synchro-

partition for colO. Note they-axis range is much smaller than in thenized, we can see there are lock contentions in collectiviesyreven
1PFPP case and thus is more synchronized. Several outfiersl s though the group size is relatively small and the total filenbar is



This leads to

30000 ¢ Speed 1 ©)
peedup =~ — .
25000 | A+ 22(1 = N)(F==2)
20000 L In our NekCEM case, the writers can flush their /O requests
roughly in the time between writes, which is O(10) secondsthis
15000 | case,\ is a very small number, close to zero, which yields a speedup
10000 - roughly
5000 |- np (M) 7
ng BWCOIO '
0
00:01:10 00:01:15 00:01:20 00:01: 25 BW,y10 and BW.,r0 are close to each other, as shown in the
previous graphs. Even in the worst case whBé ;o is roughly
: . : half of BW..:0, the speedup is still half of the ratio (i.e., 3D
30000 V1. RELATED WORK
25000 Our previous work showed initial results for rblO and colO on
20000 k a 32K processor Blue Gene/L for checkpointing a computation
fluid dynamics solver system [3]. In that work, we demonsiia2.3
15000 - GBY/s write bandwidth and 21 TB/s perceived bandwidth andoerd
10000 L tuning possibilities.
Lofstead et al. [6] designed a portable metadata-rich I/€hiar
5000 - tecture (called ADIOS), which chooses between 1/O libsarfer
application programmer with minimal effort. The authorsndastrate

0 : .
o0:01:-10 00:01-20 000130 performance improvement on up to 8K processors on the Cgyada

system at ORNL. Both their work and ours optimize I/O in the
Fig. 12. Write activity of rblO with nf = ng (top) and colO withp:ng = application layer. However, their main focus is to providese for
64:1 (bottom) in the 32K processor case. generic application programmers, whereas our focus is tyae
the detailed 1/O pattern from “bursty” 1/0O applications aeserage
. i . techniques within MPI-10 to maximize application perfomea.
not too large. From Figure 5 we can confirm that colO is not as Choudhary et al. [7] used several file domain partitioninghte
scalable as rblO. niques to improve collective 1/O performance on the Cray X

Initially we investigated the performance charactersio¢ these o, cjysters. These techniques include aligning partitioriite system
I/0 configurations on PVFS as well and intended to compareS5Pl, .« poundaries and using /0 aggregators. The techniques w

performance with lock-free PVFS. However, at the time wett@se  5jieq to both GPFS and Lustre using 1/0 benchmark testsipnd

tests, significant hardware configuration differences, eaghe was 14 Gp/s bandwidth with 2,048 processors were observed. Wawe

(and still is) turned off on PVFS, make the comparision veBaW /0 pandwidth does not increase with processor count aker 2

and pointless. _ Nisar et al. [5] developed an 1/O delegate and caching system
2) Speedup AnalysisHere, we analyze the speedup of rbiQopc) that aggregates data by using 10% of processors as 1/O

over colO by computing the overall 1/O block time spent Onhaacaggregators below the MPI-IO layer and improved I/O benckma

processor. using up to 400 processors. Their approach requires thnapbst
dup — Teoro 5 from OS, which is a limiting factor on supercomputers. OuiOrb
Speedup = 7= (@) differs from this approach in that rblO works on the appimatevel

with very good scalability and is easy to implement.
Dickens et al. [8] reported poor MPI-IO performance on Lestr
with an improved I/O performance by redistributing data. &u

The total time of all processors blocked by I/O operatiofis, ;o
andT,»70, can be defined by

Touror np @3 al. [27] characterized several 1/0 benchmarks on Jaguang uie
BWeoro’ Lustre filesystem and demonstrating the efficacy of theirtl@ng
approaches, such as the two-phase collective I1/0. Shan 8]l
S AS S analyzed the disk access patterns for 1/O-intensive amjics at
Trvro = (np —n + +n , 4
vro = (np g)(BWp BWrbIO) gBWrbIO “) the NERSC and selected parameters for IOR benchmarks [29] to

where BW.o10, BW,s10, and BW, represent the bandwidths ofémulate the application behavior and overall workloadshelyaet
colO, rblO, and perceived write speed, respectively, ani the @l [30] also investigated four I/O approaches (MP! I/O, aggy, and
percentage of writer's write time that workers are blockeddndSs ~ SWP) performing subsetting experiments on the Cray XT4 ortoup

is the file size. Then we have 12,288 processors, achieving a write performance of abo% dof
s peak. The rblO and colO approaches allow the number of filégto
Teoro0 _ "PBEWeoro (5) a tunable parameter. In their subsetting benchmark, howens/ a
Trpro (np — ng)(Bin +E—) T s single file output approach was considered.

B ) . Borrill et al. [31] investigated file /0O performance for théAD-
where =55 ~ 1 and Zgipte =504 s typically a very small pench2 benchmark on different systems, such as Lustre op Cra
number (e.9.BW.orol/ BW,~10"° for the test cases in this paper).and GPFS on Blue Gene/L. They demonstrated 1/O performance
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