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We present a spectral-element discontinuous Galerkin lattice Boltzmann method to solve incompressible
natural convection flows based on the Bousinessq approximation. A passive-scalar thermal lattice
Boltzmann model is used to resolve flows for variable Prandtl number. In our model, we solve
the lattice Boltzmann equation for the velocity field and the advection–diffusion equation for the
temperature field. As a result, we reduce the degrees of freedom when compared with the passive-scalar
double-distribution model, which requires the solution of several equations to resolve the temperature
field. Our numerical solution is represented by the tensor product basis of the one-dimensional Legen-
dre–Lagrange interpolation polynomials. A high-order discretization is employed on body-conforming
hexahedral elements with Gauss–Lobatto–Legendre quadrature nodes. Within the discontinuous
Galerkin framework, we weakly impose boundary and element-interface conditions through the numer-
ical flux. A fourth-order Runge–Kutta scheme is used for time integration with no additional cost for mass
matrix inversion due to fully diagonal mass matrices. We study natural convection fluid flows in a square
cavity and a horizontal concentric annulus for Rayleigh numbers in the range of Ra = 103–108. We
validate our numerical approach by comparing it with finite-difference, finite-volume, multiple-
relaxation-time lattice Boltzmann, and spectral-element methods. Our computational results show good
agreement in temperature profiles and Nusselt numbers using relatively coarse resolutions.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Natural convection flow simulations have been an active area of
research for many years. These flows are set in motion by a buoy-
ancy force that occurs as a result of a small density gradient and
the presence of an external force such as gravity. Understanding
the behavior of natural convection flows is important in nuclear
reactor design, cooling of electronic equipment, and determination
of heat loss from steam pipes.

In recent decades, thermal lattice Boltzmann methods (TLBMs)
have emerged as reliable methods for simulating natural
convection flows. TLBMs generally fall into two approaches: the
multispeed approach and the passive-scalar approach. The
multispeed approach is an extension of the isothermal model,
where the density distribution function is solely used to describe
the mass, momentum, and temperature [1,2]. The passive-scalar
approach uses additional equations, independent of the density dis-
tribution, to describe the temperature. When viscous heating and
compression work due to pressure are negligible, as is the case in
most natural convection flows, the temperature does not influence
the momentum—it is advected and diffused ‘‘passively’’ [3].

The multispeed approach does have limitations. In particular, it
suffers from severe numerical instability and restricts the Prandtl
(Pr) number to a fixed quantity [1]. However, numerous models
have been proposed to rectify these issues. In [4], McNamara
et al. were able to improve the stability by implementing a
Lax–Wendroff advection scheme. Using higher-order symmetric
velocity lattices, Vahala et al. [5] showed better stability properties
over lower-order symmetric lattices. Prasianakis and Karlin [6]
built a model using the standard velocity lattice (D2Q9), which
incorporated equilibrium expansions up to the fourth order in
velocity and correction terms to the lattice Boltzmann equation
(LBE) in order to enhance stability for high Rayleigh number (Ra)
flow. The correction terms also allowed their model to investigate
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variable Pr. Watari and Tsutahara [7] proposed a finite-difference
lattice Boltzmann method (FDLBM) that utilized a second-order
upwinding difference scheme to improve stability. And to investi-
gate variable Pr, Soe et al. [8] introduced an extended collision ma-
trix without affecting the stability.

One version of the passive-scalar approach utilizes a double-
distribution model based on the multiple component LBE proposed
by Shan and Chen [3]. In this approach, one component (i.e., density
distribution function) represents motion of the fluid and the other
(i.e., energy distribution function) describes the passive tempera-
ture field. Two independent relaxation times are utilized for each
component, thus allowing for variable Pr. In [9], Shan showed that
the double-distribution model enhanced numerical stability over
the multispeed approach for high Ra. He et al. [10] also proposed
a double-distribution model in which the density distribution
function recovers the macroscopic mass and momentum variables
while an internal energy density distribution function recovers
the energy. Because the model in [10] directly solves evolution of
the internal energy, a Chapman–Enskog multiscale expansion
analysis shows that viscous heat dissipation and compression work
are correctly recovered in the macroscopic energy equation.

Since the work of He et al. [10], simpler double-distribution
models have been proposed in the incompressible limit. Both
Palmer and Rector [11] and Peng et al. [12] neglected viscous
dissipation entirely and dropped complicated spatial gradients to
study Rayleigh-Bénard convection and natural convection within
a square cavity. In [13], Shi et al. proposed a double-distribution
model that incorporates only viscous heat dissipation to study
thermal Couette flow. Guo et al. [14] proposed a double-
distribution model based on the total energy, which allows for a
simpler computation of viscous dissipation and compression work.
Others have proposed smaller lattice velocity models for the
energy distribution functions [15].

The double-distribution model has also been used on irregular
or unstructured grids to handle natural convection flows. Dixit
and Babu [16] employed an interpolation supplemented lattice
Boltzmann method [17] on a nonuniform mesh to study natural
convection in a square at Ra > 106. Shi et al. [18] extended the
method proposed by Guo and Zhao [19] and used FDLBM on the
polar representation of the double-distribution model. Shu et al.
[20] used a Taylor series expansion and least-squares-based lattice
Boltzmann method (TLLBM) to solve the double-distribution
model. The TLLBM has proved useful for complex geometries
[21]. Finite-volume lattice Boltzmann methods (FVLBMs) have also
been proposed and implemented on unstructured meshes [22].
Although FVLBM has been applied to isothermal flows, an exten-
sion to either a multispeed or double-distribution model seems
feasible.

Another passive-scalar approach is to solve the macroscopic
energy equation for the temperature and couple it with the
isothermal LBE in order to resolve the velocity. This approach is
beneficial for flows with negligible viscous dissipation, and there-
fore the macroscopic energy equation simplifies to an advection–
diffusion equation for the temperature. This model eliminates the
need to solve multiple equations as is required in the double-
distribution model. In addition, flows with variable Pr number
can be investigated. Lallemand and Luo [23] proposed this type
of approach, solving the advection–diffusion equation for the tem-
perature using a finite-difference method. They showed enhanced
stability for simple Cartesian geometries such as a cubic box. For
complex geometries, however, finite-difference stencils may not
have the same symmetries as the underlying discrete velocity,
and extrapolation might cause loss of local conservation.

Implementation of physically accurate hydrodynamic and
thermal boundary conditions is crucial in both the multispeed
and passive-scalar models. Extensive research on boundary
treatment techniques has been done and we refer the reader to
the following literature: [24–30].

In this paper, we present a spectral-element discontinuous
Galerkin (SEDG) method to solve a passive-scalar thermal lattice
Boltzmann model. Our numerical scheme is extended from the pre-
viously developed spectral-element discontinuous Galerkin lattice
Boltzmann method (SEDG-LBM) presented in [31]. We include a
force term, resulting from the Bousinessq approximation [9], into
the discrete Boltzmann (DB) and lattice Boltzmann (LB) equations.
This approach allows us to examine flows in the incompressible
limit (i.e. for low Mach (Ma) numbers and small density fluctuations).

We use the SEDG-LBM to solve the LBE for the density
distribution function thereby resolving the mass and momentum
conservation laws. With proper coupling to the LBE, we then deter-
mine the temperature field by solving the advection–diffusion (i.e.
energy) equation. We use a high-order spectral-element discontin-
uous Galerkin (SEDG) discretization based on the tensor product
basis of the one-dimensional Legendre–Lagrange interpolation
polynomials. Our SEDG discretization is employed upon body-
conforming hexahedral elements with Gauss–Lobatto–Legendre
(GLL) grid points. Bounceback boundary conditions are applied
weakly through the numerical flux without the additional effort
of interpolation for complex geometries as required by other lattice
Boltzmann (LB) schemes [25–27].

The paper is organized as follows. In Section 2, we present
the governing equations, namely, the LBE with a Bousinessq
approximation and the advection–diffusion equation. In Section 3,
we discuss the formulation of our numerical scheme. Section 4
presents computational results and their validation for natural
convection heat transfer in a square cavity and horizontal concen-
tric annulus. We discuss our conclusions in Section 5.

2. Governing equations

In this section we describe our governing equations for natural
convection flows. We derive the lattice Boltzmann equation with a
forcing term and the formulation for the collision and streaming
steps. We also present a simplified macroscopic energy equation
for incompressible natural convection flows.

2.1. Lattice Boltzmann equation: Collision and Streaming

We write the discrete Boltzmann equation with a forcing term,
where the collision term is approximated by the Bhatnagar–
Gross–Krook, or single-relaxation-time, operator [32]:

@fa
@t
þ ea � rfa ¼ �

fa � f eq
a

k
þ ðea � uÞ � Gf eq

a

qc2
s

; ð1Þ

where fa (a ¼ 0;1; . . . ;Na) is the particle density distribution
function defined in the direction of the microscopic velocity ea; k is
the relaxation time, and Na is the number of microscopic velocities.
We consider the two-dimensional 9-velocity model (D2Q9)
associated with ea ¼ ð0;0Þ for a ¼ 0; ea ¼ ðcos ha; sin haÞ with
ha=ða� 1Þp=2 for a = 1, 2, 3, 4; and ea ¼

ffiffiffi
2
p
ðcos /a; sin /aÞ with

/a=ða� 5Þp=2þ p=4 for a = 5, 6, 7, 8. The second term on the
right-hand side of Eq. (1) represents the force term. G is the external
body force, depending on space and time. We consider a Bousinessq
approximation for G. Details on the formulation for G are discussed
in Section 4. The equilibrium distribution function is given by

f eq
a ¼ taq 1þ ea � uð Þ

c2
s
þ ea � uð Þ2

2c4
s
� u � uð Þ

2c2
s

" #
; ð2Þ

where q is the density; u is the macroscopic velocity;
t0 ¼ 4=9; ta¼1;4 ¼ 1=9, and ta¼5;8 ¼ 1=36 are the weights; and
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cs ¼ 1=
ffiffiffi
3
p

is the speed of sound [33]. We obtain the LBE by discret-
izing Eq. (1) along characteristics over the time step dt as shown in
[31].

faðx; tÞ � faðx� eadt; t � dtÞ ¼ �
Z t

t�dt

fa � f eq
a

k
dt0

þ
Z t

t�dt

ðea � uÞ � Gf eq
a

qc2
s

dt0 ð3Þ

Applying the trapezoidal rule for the integration on the right-hand
side of Eq. (3), we have the following for each termZ t

t�dt

fa � f eq
a

k
dt0 � fa � f eq

a

2s

����
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����
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a

qc2
s
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ðea � uÞ � Gf eq
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2qc2
s

����
ðx�eadt;t�dtÞ
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ðea � uÞ � Gf eq

a

2qc2
s

����
ðx;tÞ

; ð5Þ

where the dimensionless relaxation time is s ¼ k=dt with a relation
to the kinematic viscosity by m ¼ sc2

s dt. We now introduce a
modified particle distribution function �f a and its corresponding
equilibrium distribution function �f eq

a [32] defined as

�f a ¼ fa þ
fa � f eq

a

2s
� ðea � uÞ � Gf eq

a

2qc2
s

dt ð6Þ

and

�f eq
a ¼ f eq

a �
ðea � uÞ � Gf eq

a

2qc2
s

dt: ð7Þ

Substituting Eqs. (4)–(7) into Eq. (3), we have

�f aðx; tÞ ¼ �f aðx� eadt; t � dtÞ � 1
sþ 1=2

�f a � �f eq
a

� �����
ðx�eadt;t�dtÞ

þ dt
ðea � uÞ � Gf eq

a

qc2
s

����
ðx�eadt;t�dtÞ

: ð8Þ

Similar to the procedure in [31], we solve Eq. (8) in two steps:

� Collision
�f �aðx; t � dtÞ ¼ �f aðx; t � dtÞ � 1
sþ 1=2

�f a � �f eq
a

� �����
ðx;t�dtÞ

þ dt
ðea � uÞ � Gf eq

a

qc2
s

����
ðx;t�dtÞ

; ð9Þ
which is followed by the substitution �f aðx; t � dtÞ ¼ �f �aðx; t � dtÞ.
� Streaming
�f aðx; tÞ ¼ �f aðx� eadt; t � dtÞ: ð10Þ
The density and momentum can be computed by taking
moments as follows:

q ¼
X8

a¼0

�f a and qu ¼
X8

a¼0

ea
�f a þ

dt
2

G: ð11Þ

The streaming step can be expressed as a solution of the linear
advection equation in an Eulerian framework [34], which can be
written as follows:

@�f a

@t
þ ea � r�f a ¼ 0: ð12Þ
2.2. Energy equation: advection–diffusion equation

The temperature is modeled with the macroscopic energy equa-
tion. Assuming the flow to be incompressible and compression
work due to pressure to be negligible, we can simplify the energy
equation to the following advection–diffusion equation:

@T
@t
þ u � rT ¼ vr2T; ð13Þ

where v ¼ j
qcp

is the thermal diffusivity, cp is the specific heat at con-

stant pressure, and j is the thermal conductivity.

3. Numerical discretization

In this section, we present our computational scheme. We pro-
vide details to the discontinuous Galerkin weak formulation,
numerical fluxes, and boundary conditions for Eqs. (12) and (13).
Details on the spectral element discretizations and time-stepping
schemes are also discussed.

3.1. Weak formulation of the LB advection equation

We formulate a weak form of Eq. (12) defined on the computa-
tional domain X ¼ [E

e¼1X
e with nonoverlapping elements Xe.

Choosing proper test functions /a, multiplying them with Eq.
(12), and integrating by parts twice in a manner similar to [31],
we obtain the following weak formulation:

@�f a

@t
þr � Fað�f Þ;/a

 !
Xe

¼ n � Fað�f Þ � F�að�f Þ
� �

;/a
� �

@Xe ; ð14Þ

where Fað�f Þ ¼ ea
�f a represents the flux vector with the microscopic

velocities ea ¼ ðeax; eayÞ and n ¼ ðnx;nyÞ is the unit normal vector
pointing outward on the element boundary, @Xe. The numerical flux
F�að�f Þ ¼ F�að�f ;�fþÞ in Eq. (14) is a function of the local solution �f a and
the neighboring solution �fþa at the interfaces between neighboring
elements. We choose the Lax–Friedrichs flux in [31,35] expressed
as the following:

n � ðFa � F�aÞ ¼
ðn � eaÞ½�f a � �fþa � for n � ea < 0;

0 for n � ea P 0:

(
ð15Þ

When n � ea < 0, we can write

n � ðFa � F�aÞ ¼ ðnxeax þ nyeayÞ�f a þ ðnþx eax þ nþy eayÞ�fþa : ð16Þ

The proper upwinding scheme, inherent in the Lax-Friedrichs flux,
allows momentum transfer at the element interface to depend only
on those particles that are entering into the element.

Boundary conditions are weakly imposed through the numeri-
cal flux. The wall boundary condition, with specific details pro-
vided in [24,31], is given as follows:

�f a � �fþa ¼
�f a � �f a� � 2taq0ðea � ubÞ=c2

s for n � ea < 0
0 for n � ea P 0;

(
ð17Þ

where �f a� is the particle distribution function moving in the oppo-
site direction of �f a;ub is the macroscopic velocity prescribed at
the wall boundary, and q0 is the reference density, chosen to be
unity.

3.2. Weak formulation of the advection–diffusion equation

Applying the incompressible assumption and expressing
Eq. (13) as a system of first-order equations [35], we have
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@T
@t
þr � ðuTÞ ¼ r � q; ð18Þ

q ¼ vrT: ð19Þ

We refer to q as the auxiliary variable. In addition, we define a flux
vector by FðTÞ ¼ uT ¼ ðuxT; uyTÞ and introduce numerical fluxes
F�;q� and T�. As was done for Eq. (14), we define proper test func-
tions �/ and ��/ and obtain the following set of weak formulations
for Eqs. (18) and (19) as

@T
@t
þr � ðFðTÞ � qÞ; �/

� 	
Xe
¼ n � ½q� � q� � n � ½F� � F�; �/
� �

@Xe ð20Þ

q� vrT; ��/

 �

Xe
¼ v n T� � T½ �; ��/


 �
@Xe
: ð21Þ

We use the Lax-Friedrich flux for F� in Eq. (20), defined by

F�ðT; TþÞ ¼ 1
2

FðTÞ þ FðTþÞ
� �

þ C
2

nðT � TþÞ
� �

; ð22Þ

where

C ¼max n � @F
@T

����
���� ¼max n � uj j; ð23Þ
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(b) Thermal Boundary Conditions

Fig. 1. Spatial operator (left) and eigenvalue spectrum (right) for Eq. (43) for E ¼ 9 and N ¼ 3 with periodic (a) and thermal (b) boundary conditions nz represents the number
of non-zero elements in the spatial operator.

Fig. 2. Geometry and boundary conditions of natural convection in a square cavity.
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and the central flux for q� and T� in Eqs. (20) and (21), defined
by

q� ¼ 1
2

qþ qþ½ � and T� ¼ 1
2

T þ Tþ
� �

: ð24Þ

Boundary conditions are weakly imposed through the numeri-
cal flux [35]. For this paper, we are concerned with implementing
two types of thermal wall boundary conditions: constant temper-
ature (i.e. Dirichlet) and heat flux (i.e. Neumann) boundary cond-
tions. Dirichlet boundary conditions are imposed through the
Fig. 3. Streamlines (left) and isotherms (right) of nat
primary variable, T ¼ Tw, while Neumann boundary conditions
are imposed via the auxiliary variable q ¼ qw. Tw and qw represent
the specified constant temperature and heat flux, respectively. We
impose these conditions in the following way:

(i) Constant temperature (Dirichlet) boundary conditions, T ¼ Tw

Tþ ¼ �T þ 2Tw; qþ ¼ q; ðuTÞþ ¼ uT: ð25Þ

(ii) Heat flux (Neumann) boundary conditions, q ¼ qw

Tþ ¼ T; qþ ¼ �qþ 2qw; ðuTÞþ ¼ uT: ð26Þ
ural convection cavity flow; E ¼ 256 and N ¼ 5.
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3.3. Spectral element discretizations

We seek a local approximate solution uN on Xe expressed by the
finite expansion of the basis wijðn;gÞ as

uNðx; y; tÞ ¼
XN

i;j¼0

ðuNÞijwijðn;gÞ; ð27Þ

where ðuNÞij ¼ uNðxi; yj; tÞ represents the approximate solution uN on
the nodal points ðxi; yjÞ at time t and wijðn;gÞ ¼ liðnðxÞÞljðgðyÞÞ, or
simply wij, is the tensor product basis of the one-dimensional Legen-
dre–Lagrange interpolation polynomials

liðnÞ ¼ NðN þ 1Þ�1ð1� n2ÞL0NðnÞ=ðn� niÞLNðniÞ for n 2 ½�1;1�; ð28Þ

based on the GLL quadrature nodes ni where LNðnÞ is the Nth-order
Legendre polynomial. The physcial domain ðx; yÞ 2 Xe is mapped to
the reference domain ðn;gÞ 2 ½�1;1�2, through the Gordon-Hall
mapping [36].

Let us denote our approximate solutions by �f N
a for the density

distribution functions, TN for the temperature, and qN ¼ ðqN
x ; q

N
y Þ

for the auxiliary function and express each component in the form
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Fig. 4. Temperature profiles for natural convection square cavity flow at Ra ¼ 1000,
demonstrating convergence of the solution for increasing N ¼ 3;5;7 with E ¼ 256.
of (27). Choosing wî̂j ¼ l̂iðnðxÞÞl̂jðgðyÞÞ with a different index set for
each test function /a;

�/, and ��/ and plugging the approximate solu-
tions into the corresponding weak formulations Eqs. (14), (20), and
(21), we get a set of semidiscrete schemes

dfa

dt
þM�1D1fa ¼M�1R1fa; ð29Þ

dT
dt
þM�1D2T�M�1Dq ¼M�1ðRq� R2TÞ; ð30Þ

qx � vM�1DxT ¼ vM�1RxT; ð31Þ
qy � vM�1DyT ¼ vM�1RyT; ð32Þ

where the solution vectors are defined by fa ¼ ½ð�f N
a Þij�;T ¼ ½T

N
ij �, and

q ¼ ðqx;qyÞ with qx ¼ ½ðqN
x Þij� and qy ¼ ½ðqN

y Þij� on a local element.

The mass matrix is defined as

M ¼ ðwij;wî̂jÞXe ¼ JðM̂ � M̂Þ; ð33Þ

where M̂îi ¼
PN

k¼0 l̂iðnkÞliðnkÞwk is the one-dimensional mass matrix
with the quadrature weight wk defined on the reference domain
½�1;1� and J ¼ ½Jll� ¼ diagfJijg represents the value of the Jacobian
at each node ðxi; yjÞwith l ¼ iþ ðN þ 1Þj on Xe. The one-dimensional

mass matrix M̂ is diagonal because of the orthogonal property of the
Legendre-Lagrange interpolation polynomials on the GLL nodes, and
thus the two-dimensional mass matrix M is also diagonal. The gra-
dient matrices are defined by

D1 ¼ eaxDx þ eayDy; D2 ¼ DxðuxÞ þ DyðuyÞ; and Dq

¼ Dxqx þ Dyqy; ð34Þ
Table 3
Convergence of Nuo ;Numax

o , and Numin
o for Ra ¼ 105.

SEDG-LBM (N) Nuo Numax
o Numin

o

3 4.3187 9.5203 0.3362
5 4.5191 7.6878 0.7310
7 4.5216 7.7184 0.7295
9 4.5216 7.7189 0.7286

Wang et al. [39] 4.5214 7.7161 0.7279
Hortmann et al. [40] 4.52164 7.72013 –
De Vahl Davis [41] 4.509 7.717 0.729

Table 2
Convergence of Nuo ;Numax

o , and Numin
o for Ra ¼ 104.

SEDG-LBM (N) Nuo Numax
o Numin

o

3 2.2236 3.7078 0.5413
5 2.2447 3.5303 0.5863
7 2.2448 3.5306 0.5852
9 2.2448 3.5309 0.5851

Wang et al. [39] 2.2448 3.5310 0.5849
Hortmann et al. [40] 2.24475 3.53087 –
De Vahl Davis [41] 2.238 3.528 0.586

Table 1
Convergence of Nuo ;Numax

o , and Numin
o for Ra ¼ 103.

SEDG-LBM (N) Nuo Numax
o Numin

o

3 1.1165 1.5261 0.6847
5 1.1177 1.5063 0.6916
7 1.1178 1.5063 0.6913
9 1.1178 1.5063 0.6913

Wang et al. [39] 1.1178 1.5063 0.6912
De Vahl Davis [41] 1.117 1.505 0.692



Fig. 5. Streamlines (left) and isotherms (right) of natural convection cavity flow for Ra > 105.

Table 4
Computed Nusselt numbers, Nuo , for Ra ¼ 106 ;107;108.

Ra 106 107 108

SEDG-LBM 8.820 16.517 30.242

Wang et al. [39] 8.8192 – –
Dixit and Babu [16] 8.805 16.79 30.506
Le Quéré [43] 8.8252 16.523 30.225
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where the differentiation matrices can be represented by a tensor
product form of the one-dimensional differentiation matrix
D̂ ¼ ½D̂îi� ¼ l0iðnîÞ as

Dx ¼
@wij

@x
;wî̂j

� 	
¼ GnxJ½M̂ � M̂D̂� þ GgxJ½M̂D̂� M̂�; ð35Þ

Dy ¼
@wij

@y
;wî̂j

� 	
¼ GnyJ½M̂ � M̂D̂� þ GgyJ½M̂D̂� M̂�; ð36Þ



Fig. 6. Geometry and boundary conditions of natural convection in a horizontal
concentric annulus.
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where Gnx, Gny, Ggx, and Ggy represent diagonal matrices for the geo-
metric factors @n

@x,
@n
@y,

@g
@x, and @g

@x, respectively, at the nodal points ðxi; yjÞ.
The surface integrations acting on the boundary nodes on each face
of the local element in Eqs. (29)–(32) are represented by

R1fa ¼
X4

s¼1

XN

k¼0

Rs
k n � ½Fað�f Þ � F�að�f Þ�
� 


wkJs
k; ð37Þ

R2T ¼
X4

s¼1

XN

k¼0

Rs
k n � ½F�ðTÞij � FðTÞij�
n o

wkJs
k; ð38Þ

Rq ¼
X4

s¼1

XN

k¼0

Rs
k n � ½q�ij � qij�
n o

wkJs
k; ð39Þ

RxT ¼
X4

s¼1

XN

k¼0

Rs
kfnx½ðTÞ�ij � ðTÞij�gwkJs

k; ð40Þ

RyT ¼
X4

s¼1

XN

k¼0

Rs
kfny½ðTÞ�ij � ðTÞij�gwkJs

k; ð41Þ

where Rs
kf�g extracts the information of f�g at the nodes situated on

each face of the local element for the face number s and Js
k is the sur-

face Jacobian at the nodes on each face.
The semidiscrete schemes for Eqs. (29) and (30) can be written

simply as

dfa

dt
¼ L1fa; ð42Þ

dT
dt
¼ L2TþM�1DqþM�1Rq; ð43Þ

where L1 ¼M�1ð�D1 þ R1Þ and L2 ¼M�1ð�D2 � R2Þ. We have
shown the eigenvalue distributions for the spatial operator of Eq.
(42) in [31]. Fig. 1 shows the matrix structure and eigenvalue (k)
distribution for the spatial operator in Eq. (43) with periodic
(Fig. 1(a)) and non-periodic (Fig. 1(b)) boundary conditions. The
non-periodic boundary conditions include the thermal (i.e. Dirichlet
and Neumann) boundary formulations, which were written in Eqs.
(25) and (26). A uniform spectral element mesh is used with the
number of elements E ¼ 3	 3 and polynomial order N ¼ 3. For con-
venience, we set the velocity u ¼ ð1;1Þ and v ¼ 1. Eigenvalues with
positive real parts, Re (k), can lead to numerical solutions which
grow dramatically in time and lead to instability. Fig. 1 shows that
the eigenvalue distributions reside entirely in the negative half-
plane. As a result, we can choose the fourth-order, five-stage low-
storage Runge–Kutta (RK) time integration method [37] which has
a slightly larger stability region and requires less memory than
the classical RK methods.
4. Computational results

In this section, we show computational results and validation
for two benchmark problems: natural convection in a square cavity
and a horizontal concentric annulus in two dimensions. We begin
with a brief discussion of how relevant parameters are determined.

4.1. Parameters for benchmark studies

For natural convection flows, we consider a Bousinessq approx-
imation [9] for the force term G in Eqs. (1) and (11) defined as

G ¼ qgbðT � ToÞ; ð44Þ

where To ¼ ðTh þ TcÞ=2 is the average of two different characteristic
temperatures in our benchmark problems (Th > Tc), g is the gravita-
tional acceleration, and b is the thermal expansion coefficient. In
accordance with the Bousinessq approximation, b is constant in
space and time.
We characterize natural convection flows with two nondimen-
sional numbers, the Rayleigh number (Ra) and the Prandtl number
(Pr). They are defined as follows:

Ra ¼ bjgjðTh � TcÞL3

mv and Pr ¼ m
v ; ð45Þ

where L is a characteristic length of the computational domain, v is
the thermal diffusivity, and m is the kinematic viscosity. We define
the characteristic velocity as

U� ¼
ffiffiffiffiffiffi
Ra
Pr

r
m
L
: ð46Þ

We ensure that our characteristic velocity is in the low Mach
number regime, typically Ma ¼ 0:01, so that

U� 6 csMa: ð47Þ

The dimensionless relaxation time s is determined through the
relation m ¼ sc2

s dt where we determine the time-step size dt from

CFL ¼ maxa jea jdt
Dxmin

¼ 0:1. Dxmin is the minimum grid spacing in our mesh.

4.2. Natural convection in a square cavity

We performed steady-state natural convection flow simulations
in a square cavity. The geometry is shown in Fig. 2. The initial
velocity is set as u 
 ð0;0Þ and the initial density as q 
 1. The wall
boundary conditions for the velocity fields are given as ub ¼ ð0;0Þ
and the nonhomogeneous Dirichlet boundary conditions for the
temperature as Tð0; y; tÞ ¼ Th and TðL; y; tÞ ¼ Tc . The adiabatic
boundary conditions are set as @T

@y jðx;0;tÞ ¼ @T
@y jðx;L;tÞ ¼ 0.

Fig. 3 shows the streamlines and isotherms of the square cavity
flows at Ra ¼ 103;104 and 105. The effect of Ra is evident in these
figures. In particular, a given isotherm is passively advected
throughout the domain to a greater degree as Ra increases. Results
for Ra 6 105 are performed on a uniform spectral element mesh
with E ¼ 256 and a fixed polynomial order of N ¼ 5. The total num-
ber of grid points are given by N ¼ ðN þ 1Þ2E. Fig. 4 demonstrates
good convergence of the temperature profiles with increasing
polynomial order N on the same mesh. The profiles are shown at
the vertical line x ¼ 0:5 (Fig. 4)(a)) and at the horizontal line
y ¼ 0:5 (Fig. 4(b)).

We also show the convergence of the Nusselt number, Nuo,
along the axis x ¼ 0, where the Dirichlet boundary condition
T ¼ Th is specified. The Nusselt number is defined as



Fig. 7. Streamlines (left) and isotherms (right) of natural convection in a horizontal annulus, using N ¼ 5 on Mesh A.
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Nuo ¼
Z 1

0
qxjx¼0dy; ð48Þ

where

qx ¼ uxT � @T
@x
: ð49Þ

In Tables 1–3, we present convergence studies of the Nusselt num-
ber for varying polynomial order N ¼ 3;5;7;9, including local min-
imum and maximum values. Validation is conducted by comparing
Nusselt numbers to the work of Wang et al. [39], Hortmann et al.
[40] and De Vahl Davis [41]. Our results are in good agreement with
their results.

We take advantage of our high-order discretization and present
results for Rayleigh numbers Ra > 105. Fig. 5 shows the stream-
lines and isotherms in the square cavity for Ra ¼ 106;107, and
108. For Ra ¼ 106 and 107, the resolution of these simulations are
performed on a uniform spectral element mesh with E ¼ 576 and
a fixed polynomial of order N ¼ 9. And to capture even larger gra-
dients near the walls, a uniform resolution of E ¼ 1024 with N ¼ 9
was used for Ra ¼ 108.



Fig. 8. Two different meshes used for the horizontal annulus simulations.

Table 5
Convergence of Nuavg for Ra ¼ 103.

SEDG-LBM (N) on Mesh A Nuavg

3 1.1295
5 1.1325
7 1.1325
9 1.1325

Kuehn and Goldstein [42] 1.083

Table 6
Convergence of Nuavg for Ra ¼ 104.

SEDG-LBM (N) on Mesh A Nuavg

3 2.0615
5 2.0704
7 2.0705
9 2.0705

Kuehn and Goldstein [42] 2.008
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The effect of convection dominated heat transfer is evident in
these figures and in the calculation of the Nusselt number, Nuo,
which can be seen in Table 4. As the Rayleigh number is increased,
we can see that the flow toward the center of the square becomes
parallel to the adiabatic (horizontal) boundaries. This is evident in
the streamlines. The parallel flow phenomenon was also reported
in the simulations of Dixit and Babu [16]. We also observe a more
stratified flow where cooler fluid remains on the bottom of the cav-
ity while hotter fluid resides on the top–as should be expected in
natural convection. And with larger Rayleigh number, we notice
the thinning of the boundary layer which results in the steeper
temperature gradients. The effect of the larger Rayleigh number
can be seen in Table 4, which shows that the computed Nusselt
number (i.e. a nondimensional temperature gradient) agrees well
with the results in the literature.
Table 7
Convergence of Nuavg for Ra ¼ 5	 104.

SEDG-LBM (N) on Mesh A Nuavg

3 3.0309
5 3.0950
7 3.0956
9 3.0956

Kuehn and Goldstein [42] 2.999
4.3. Natural convection in a horizontal concentric annulus

We studied steady-state natural convection flows inside a hor-
izontal concentric annulus. The geometry and boundary conditions
of the problem are provided in Fig. 6.

We set the initial velocity u 
 ð0;0Þ and the initial density
q 
 1. Wall boundary conditions for the velocity field are
ub ¼ ð0; 0Þ, and temperature boundary conditions are given as
Tðr ¼ ri;u; tÞ ¼ Th ¼ 1 and Tðr ¼ ro;u; tÞ ¼ Tc ¼ 0. We use the ra-
dius ratio ro

ri
¼ 2:6 and the characteristic length L ¼ ro � ri.

Fig. 7 shows the streamlines and isotherms of the horizontal
annulus cavity flows at Ra ¼ 103;104;5	 104 on a spectral element
mesh (see Fig. 8(a)) with E ¼ 512 and N ¼ 5. Again, the effect of Ra
is evident. For Ra ¼ 103, we can observe how diffusion dominates
the hydrodynamic and temperature behavior. In this case, the iso-
therms are nearly circular with slight eccentricity near the top of
the inner cylinder. The streamlines indicate how the flow is nearly
symmetric about the horizontal (u ¼ 0) with the innermost
streamline (central vortex) maintaining its position near u ¼ 0.
We take note that vertical symmetry, about u ¼ p

2 and u ¼ � p
2, per-

sists due to the concentric geometry of the domain. As Ra in-
creases, we see how the isotherms deviate from the circular
pattern and the effect of convection results in a ‘‘plume-like’’ pat-
tern near u ¼ p

2. The innermost streamline (central vortex) also
feels the effect of the Ra and we observe that there is a ‘‘migration’’
of this streamline towards u ¼ p

2. Temperature gradients near the
boundaries seem to be increasing with Ra and we study this effect
by computing average Nusselt numbers. The average Nusselt num-
ber Nuavg is defined by

Nuavg ¼
1
2
ðNuinner þ NuouterÞ; ð50Þ

where

Nuinner ¼ �
1
p

Z p
2

�p
2

ri
@T
@r

����
r¼ri

du; ð51Þ

Nuouter ¼ �
1
p

Z p
2

�p
2

ro
@T
@r

����
r¼ro

du: ð52Þ

Tables 5–7 show convergence of the average Nusselt number Nuavg

on Mesh A with increasing polynomial order N ¼ 3;5;7;9. We com-
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pare our results with those by Kuehn and Goldstein [42], who solve
the Navier–Stokes equations by a finite-difference method. When
compared with the results by Kuehn and Goldstein, our results
are within 5% accuracy.

We examined details of the difference between our SEDG-LBM
results and those from [42] in the temperature profiles at
u ¼ � p

2 ;0;
p
2, demonstrating the comparison in Fig. 9. We observe

that the SEDG-LBM results agree well with those by Kuehn and
Goldstein for u ¼ 0. However, we observe some discrepancy in
the range of r� ¼ 0:1 � 0:3 and r� ¼ 0:2 � 0:9 for the cases of
u ¼ � p

2 and u ¼ p
2, respectively, as shown in Fig. 9. This difference

might be due to the low resolution used in [42], which would
explain the discrepancy in the comparison of Nuavg in Tables 5–7.

Given this difference in Nuavg and temperature profile, we further
seek to verify our results against another benchmark. For this study,
we simulate natural convection within a horizontal concentric
annulus using Nek5000 [38], an open-source Navier–Stokes solver
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Fig. 9. Temperature profiles of SEDG-LBM results vs. those in Ref. [42] for horizonta
Polynomial order for SEDG-LBM is N ¼ 9. The nondimensional radius, r� is defined as r�
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Fig. 10. Temperature profile of SEDG-LBM results vs. Nek5000 [38] for horizontal annulu
orders for SEDG-LBM are N ¼ 3;5;7 and 9. Polynomial order for Nek5000 is N ¼ 11. S
performed on Mesh A.
based on the spectral-element method. Using Nek5000 on Mesh A
with a high polynomial approximation, N ¼ 11, we determine tem-
perature profiles and average Nusselt numbers and use this data as
new benchmarks. Our SEDG-LBM simulations are performed on
Mesh B (see Fig. 8(b)) with E ¼ 256. Fig. 10 demonstrates the conver-
gence of temperature profiles for our SEDG-LBM results at
u ¼ � p

2 ; 0;
p
2 for Ra ¼ 5	 104 and Pr ¼ 0:7. The results show good

agreement with the Nek5000 solver.
In Tables 8–10, we show the convergence of Nuavg with

N ¼ 3;5;7;9 by the SEDG-LBM on Mesh B for Ra ¼ 103;104 and
5	 104. Our results agree well with those determined by
Nek5000. These tables show the advantage of the SEDG approxi-
mation. In particular, on the non-uniform coarse mesh (i.e. Mesh
B) which exhibits biased resolution in the boundary layer region,
SEDG-LBM results achieve the same accuracy as the SEDG-LBM
results determined on the refined mesh (i.e. Mesh A) as given in
Tables 5–7.
0.5 0.6 0.7 0.8 0.9 1

adial dimension, r*

Kuehn and Goldstein @ −π/2
SEDG−LBM @ −π/2
Kuehn and Goldstein @ 0
SEDG−LBM @ 0
Kuehn and Goldstein @ π/2
SEDG−LBM @ π/2

l annulus simulation at Ra ¼ 5	 104 and Pr ¼ 0:7 for u ¼ p
2 ;u ¼ 0, and u ¼ � p

2.
¼ r�ri

L . SEDG-LBM computations were performed on Mesh A.

0.5 0.6 0.7 0.8 0.9 1

/2

adial dimension, r*

SEDG−LBM @ N = 3
SEDG−LBM @ N = 5
SEDG−LBM @ N = 7
SEDG−LBM @ N = 9
NEK5000 @ N = 11

s simulation at Ra ¼ 5	 104 and Pr ¼ 0:7 for u ¼ p
2 ;u ¼ 0, and u ¼ � p

2. Polynomial
EDG-LBM computations were performed on Mesh B. Nek5000 computations were



Table 8
Convergence of Nuavg for Ra ¼ 103.

SEDG-LBM (N) on Mesh B Nuavg

3 1.2034
5 1.1310
7 1.1325
9 1.1325

Nek5000 (N ¼ 11) 1.1325

Table 9
Convergence of Nuavg for Ra ¼ 104.

SEDG-LBM (N) on Mesh B Nuavg

3 2.2195
5 2.0774
7 2.0702
9 2.0705

Nek5000 (N ¼ 11) 2.0705

Table 10
Convergence of Nuavg for Ra ¼ 5	 104.

SEDG-LBM (N) on Mesh B Nuavg

3 3.0218
5 3.1055
7 3.0975
9 3.0958

Nek5000 (N ¼ 11) 3.0956
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5. Conclusions

We have presented a spectral-element discontinuous Galerkin
lattice Boltzmann method for solving two-dimensional incom-
pressible natural convection flows. In particular, we have pre-
sented results for natural convection in a square cavity and a
horizontal concentric annulus. Our formulation extends the work
of Min and Lee [31] by including a forcing term, defined by the
Bousinessq approximation, in the discrete Boltzmann and lattice
Boltzmann equations. We resolved the temperature field by apply-
ing an SEDG discretization in space to the advection–diffusion
equation. In addition, boundary conditions were weakly imposed
through a proper treatment of the numerical flux based on the
Lax-Friedrichs and central fluxes. We used a passive-scalar ap-
proach that allows us to investigate flows for variable Prandtl num-
ber and to compute the temperature field cost-effectively by
solving only one equation, rather than solving multiple equations
as in the double-distribution approach. We have examined square
cavity flows for Ra = 103–108 and flows in a horizontal concentric
annulus for Ra = 103–5 	 104. Polynomial convergence studies for
temperature profiles and Nusselt numbers have also been con-
ducted. Computational results show good agreement with those
results computed by a finite-difference method, a finite-volume
method, a multiple-relaxation-time LBM, and a spectral element
method [38].

Future work includes extension to three dimensions and perfor-
mance studies in comparison with other approaches, such as dou-
ble-distribution thermal lattice Boltzmann methods.
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[40] Hortmann M, Perić M, Scheuerer G. Finite volume multigrid prediction of
laminar natural convection: Bench-mark solutions. Int J Numer Meth Fluids
1990;11(2):189–207.

[41] De Vahl Davis G. Natural convection of air in a square cavity: a
benchmark numerical solution. Int J Numer Meth Fluids 1983;3(3):
249–64.

[42] Kuehn TH, Goldstein RJ. An experimental and theoretical study of natural
convection in the annulus between horizontal concentric cylinders. J Fluid
Mech 1976;74(4):695–719.

[43] Le Quéré P. Accurate solutions to the square thermally driven cavity at high
Rayleigh number. Comp Fluids 1991;20(1):29–41.

http://refhub.elsevier.com/S0045-7930(14)00084-X/h0180
http://refhub.elsevier.com/S0045-7930(14)00084-X/h0180
http://refhub.elsevier.com/S0045-7930(14)00084-X/h0185
http://refhub.elsevier.com/S0045-7930(14)00084-X/h0185
http://refhub.elsevier.com/S0045-7930(14)00084-X/h0185
http://refhub.elsevier.com/S0045-7930(14)00084-X/h0190
http://refhub.elsevier.com/S0045-7930(14)00084-X/h0190
http://refhub.elsevier.com/S0045-7930(14)00084-X/h0195
http://refhub.elsevier.com/S0045-7930(14)00084-X/h0195
http://refhub.elsevier.com/S0045-7930(14)00084-X/h0200
http://refhub.elsevier.com/S0045-7930(14)00084-X/h0200
http://refhub.elsevier.com/S0045-7930(14)00084-X/h0200
http://refhub.elsevier.com/S0045-7930(14)00084-X/h0205
http://refhub.elsevier.com/S0045-7930(14)00084-X/h0205
http://refhub.elsevier.com/S0045-7930(14)00084-X/h0205
http://refhub.elsevier.com/S0045-7930(14)00084-X/h0210
http://refhub.elsevier.com/S0045-7930(14)00084-X/h0210
http://refhub.elsevier.com/S0045-7930(14)00084-X/h0210
http://refhub.elsevier.com/S0045-7930(14)00084-X/h0215
http://refhub.elsevier.com/S0045-7930(14)00084-X/h0215

	A spectral-element discontinuous Galerkin lattice Boltzmann method for simulating natural convection heat transfer in a horizontal concentric annulus
	1 Introduction
	2 Governing equations
	2.1 Lattice Boltzmann equation: Collision and Streaming
	2.2 Energy equation: advection–diffusion equation

	3 Numerical discretization
	3.1 Weak formulation of the LB advection equation
	3.2 Weak formulation of the advection–diffusion equation
	3.3 Spectral element discretizations

	4 Computational results
	4.1 Parameters for benchmark studies
	4.2 Natural convection in a square cavity
	4.3 Natural convection in a horizontal concentric annulus

	5 Conclusions
	Acknowledgments
	References


