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ABSTRACT

MINPACK-1 is a package of Fortran subprograms for the
numerical solution of systems of nonlinear equations and
nonlinear least squares problems. This report provides an
overview of the algorithms and software in the package and
includes the documentation and program listings.

Preface

’

The MINPACK Project is a research effort whose goal is the development of
a systematized collection of quality optimization software. The first step
towards this goal has been realized in MINPACK-1, a package of Fortran
programs for the numerical solution of systems of nonlinear equations and

nonlinear least squares problems.
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objectives; the main ones are reliability, ease of use, and transportability.

At the algorithmic level, reliability derives from the wunderlying
algorithms having a sound theoretical basis. Entirely satisfactory global
convergence results are available for the MINPACK-1 algorithms and, in

addition, their properties allow scale invariant implementations.

At the software level, reliability derives from extensive testing. The
heart of the testing aids 1is a large collection of test problems (Moré,
Garbow, and Hillstrom [1978])). These test problems have been used to measure
the performance of the software on the following computing systems: IBM
360/370, CcDC 6000-7000, Univac 1100, Cray-1, Burroughs 6700, DEC PDP-10,
Honeywell 6000, Prime 400, Itel AS/6, and ICL 2980. At Argonne, software
performance has been further measured with the help of WATFIV and BRNANL
(Fosdick [1974]). WATFIV detects run—time errors such as undefined variables
and out-of-range subscripts, while BRNANL provides execution counts for each
block of a program and, in particular, has established that the MINPACK-1 test

problems execute every non-trivial program block.

Reliability further implies efficient and robust implementations. For
example, MINPACK-1 programs access matrices sequentially along columns (rather
than rows), since this improves efficiency, especially on paged systems.

Also, there are extensive checks on the input parameters, and computations are
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formulated to avoid destructive un
be safely ignored; overflows due to the problem should of course be

investigated.

Ease of use derives from the design of the user interface. Each

mic path in MINPACK-1 includes a core subroutine and a driver with a

algorith
simplified calling sequence made possible by assuming default settings for
certain parameters and by returning a limited amount of in
applications do not require full flexibility and in these cases the drivers
can be invoked. On the other hand, the core subroutines enable, for example,

of intermediate results at specified

cscaline & 1
scaling of the variables and print:

iterations.

Ease of use is also facilitated by the documentation. Machine-readable
documentation is provided for those programs normally called by the user. The
documentation includes discussions of all calling sequence parameters and an
actual example illustrating the use of the corresponding algorithm. In
addition, each program includes detailed prologue comments on its purpose and
the roles of its parameters; in-line comments introduce major blocks in the

body of the program.

To further clarify the underlying structure of the algorithms, the
programs have been formatted by the TAMPR system of Boyle and Dritz [1974].
TAMPR produces implementations in which the loops and logical structure of the
programs are clearly delineated. In addition, TAMPR has been used to produce
the single precision version of the programs from the master (double

precision) version.

Transportability requires that a satisfactory transfer to a different
computing system be possible with only a small number of changes to the
software. In MINPACK-1, a change to a new computing system only requires
changes to one program in each precision; all other programs are written in a
portable subset of ANSI standard Fortran acceptable to the PFORT verifier
(Ryder [1974]). This one machine-dependent program provides values of the
machine precision, the smallest magnitude, and the largest magnitude. Most of
the values for these parameters were obtained from the corresponding PORT
library program (Fox, Hall, and Schryer [1978]); in particular, values are

provided for all of the computing systems on which the programs were tested.



MINPACK-1 1s fully supported. Comments, questions, and reports of poor

or incorrect performance of the MINPACK-1 programs should be directed to

Burton S. Garbow

Applied Mathematics Division
Argonne National Laboratory
9700 South Cass Avenue

Avoanne T1. 60/ 20
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Phone: (312) 972-7184

Of particular interest would be reports of performance of the MINPACK-1

package on machines not covered in the testing.

[«¥

)

The MINPACK-1 package consists of the programs, their documentation,

the testing aids. The package comprises approximately 28,000 card images and

is transmitted on magnetic tape. The tape is available from the following two

sources.

National Energy Software Center
Argonne National Laboratory
9700 South Cass Avenue

Argonne, IL 60439

Phone: (312) 972-7250

IMSL

Sixth Floor-NBC Building

7500 Bellaire Blvd.

Houston, TX 77036

Phone: (713) 772-1927
The package includes both single and double precision versions of the
programs, and for those programs normally called by the user machine-readable
documentation is provided in both single and double precision forms. An

implementation guide (Garbow, Hillstrom, and More [1980]) is also included

with the tape.
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The purpose of this chapter is to provide an overview of the algorithms
and software in MINPACK-1. Most users need only be acquainted with the first
six sections of this chapter; the remaining two sections describe lower-level

software called from the main programs.

1.1 Systems of Nonlinear Equations

If n functions £1,f9,...,f, of the =n variables X]:X9,...,%X, are
specified, then MINPACK-1 subroutines can be used to find values for

X]15X9,...,X, that solve the system of nonlinear equations
fi(xl,X2,...,Xn)=0, liiin .

To solve this system we have implemented a modification of Powell's hybrid
algorithm. There are two variants of this algorithm. The first variant only
requires that the user calculate the functions f;, while the second variant
requires that the user calculate both the functions f; and the n by n Jacobian

matrix
af. (x)
i

9x .
]

1.2 Nonlinear Least Squares Problems

If m functions fl’fZ""’fm of the n variables X];X9,...,X  are specified

n
with m > n, then MINPACK-l1 subroutines can be used to find values for

X]1s5X9,...,X, that solve the nonlinear least squares problem
u 2 n
min{ L E.(x)7: xeR
i=1 '

To solve this problem we have implemented a modification of the Levenberg-

Marquardt algorithm. There are three variants of this algorithm. The first
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variant only requires that the user calculate the functions f;, while the

m by n Jacobian matrix

\

\

The third variant also requires that the user ca

/afi(x)\ ' _
T’, 1§l£m, 15:]_(_1’1 .
o/

te the functions and
the Jacobian matrix, but the latter only one row at a time. This organization
only requires the storage of an n by n matrix (rather than m by n), and is
thus attractive

functions and a moderate number of variables.

1.3 Derivative Checking

The main advantage of providing the Jacobian matrix 1is increased
reliability; for example, the algorithm is then much less sensitive to
functions subject to errors. However, providihg the Jacobian matrix is an
error-prone task. To help identify errors, MINPACK-1 also contains a
subroutine CHKDER that checks the Jacobian matrix for consistency with the

function values.

1.4 Algorithmic Paths: Core Subroutines and Easy-to-Use Drivers

There are five general algorithmic paths in MINPACK-1. Each path
includes a core subroutine and an easy-to-use driver with a simplified calling
sequence made possible by assuming default settings for certain parameters and
by returning a limited amount of information; many applications do not require
full flexibility and in these cases easy-to-use drivers can be invoked. On
the other hand, the ’core subroutines enable, for example, scaling of the

variables and printing of intermediate results at specified iterationms.

1.5 MINPACK-1 Subroutines: Systems of Nonlinear Equations

The MINPACK-1 subroutines for the numerical solution of systems of
nonlinear equations are HYBRDl, HYBRD, HYBRJl, and HYBRJ. These subroutines

provide alternative ways to solve the system of nonlinear equations

fi(Xl,Xz,...,Xn)=0 N 1i1_<_n
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by a modification of Powell's hybrid algorithm. The principal requirements of

the subroutines are as follows (see also Figure 1).

HYBRD1, HYBRD

The user must provide a subroutine to calculate the functions

fl’fZ"“’fn' The Jacobian matrix 1is

difference approximation or by an update formula of Broyden. HYBRDI is

the easy-to-use driver for the core subroutine HYBRD.

HYBRJ1, HYBRJ -
The wuser must provide a subroutine to calculate the functions

fl’fZ""’fn and the Jacobian matrix

Bfi(x)

dx. ’
J

1<i<n, 1<j3<n.

(Subroutine CHKDER can be used to check the Jacobian matrix for
consistency with the function values.) HYBRJ]l is the easy-to-use driver

for the core subroutine HYBRJ.

Yes Is the Jacobian No
matrix available?

Is flexibility No Yes Is flexibility

Y . .
required? — required?

No

HYBRJ [ HYBRJ1 } ] HYBRD J HYBRD1

Figure 1
Decision Tree for Systems of Nonlinear Equations
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1.6 MINPACK-1 Subroutines: Nonlinear least Squares Froblems

The MINPACK-1 subroutines for the numerical solution of nonlinear least
squares problems are IMDIFl, IMDIF, IMDERI, IMDER, LMSTRl, and LMSTR. These
subroutines provide alternative ways to solve the nonlinear least squares

PRGN S oy
PLUULCUX

(T \
minélL £.(x)°: x € an
. i
i=1
by a modification of the Levenberg-Marquardt algorithm. The principal

. R S . e e 1 1 - \
requirements OI C[he subDroutlnes are as IL[O0l1lO0wS (see also rigure 2/.

IMDIFl, IMDIF

The wuser must provide a subroutine to calculate the functions
o The Jacobian matrix is then calculated by a forward-
difference approximation. LMDIFl is the easy-to-use driver for the core

gl,fz,...,f
subroutine LMDIF.

IMDER1, IMDER
The user must provide a subroutine to calculate the functions

£1,f9,...,f, and the Jacobian matrix

3fi(x)

dx. ’

J

1<i<m, 1<j<n.

(Subroutine CHKDER can be wused to check the Jacobian matrix for
consistency with the function values.) IMDERl is the easy-to-use driver

for the core subroutine IMDER.

IMSTR1, LMSTR
The wuser must provide a subroutine to calculate the functions

f1,f9,...,£f, and the rows of the Jacobian matrix

of. (x)
i

ox. ’
J

1<i<m, i<j<n,

one row per call. (Subroutine CHKDER can be used to check the row of the
Jacobian matrix for consistency with the corresponding function value.)

IMSTR] is the easy-to-use driver for the core subroutine IMSTR.
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Yes Is the Jacobian No

— matrix available? |———
| '

Y a8 No
—ES limited? k—————~

11 '
t—!

€
o]
+rf
e

— \———l'
[Is flexibilityl IIs flexibilityI
Yes . No Yes ) ”
I required? —1 required? —]
i | i
l IMSTR l IMSTR1 {[ IMDER ' ' IMDER1 ‘
Figure 2

Decision Tree for Nonlinear Least Squares Problems

1.7 Machine-Dependent Constants

There are three machine-dependent constants that have to be set before
the single or double precision version of MINPACK-1 can be used; for most
machines the correct values of these constants are encoded into DATA state-

ments in functions SPMPAR (single precision) and DPMPAR (double precision).

These constants are:

Bl-l

, the machine precision ,
®min~1 :
B , the smallest magnitude ,

. e
(1 -8 2)B MaX ' the largest magnitude ,

where 4 is the number of base B digits on the machine, €nin is the smallest

machine exponent, and €nax 1S the largest machine exponent.

The most critical of the constants is the machine precision €ys Since the

MINPACK-1 subroutines treat two numbers a and b as equal if they satisfy

Ib-al < eylal ,
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and the above test forms the basis for deciding that no further improvement 1is

143 i

possible with the algorithm.
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Most users of MINPACK-1 need only be acquainted with the core subroutines

and easy-to-use drivers described in the previous sections. Some users,
however, may wish to experiment by modifying an algorithmic path to improve

the performance of the algorithm on a particular application. A modification

to an algorithmic path can often be achieved by modifying or replacing one of

rh

o 1
LT 4l 1

s. Additionally, the internal subprograms may be
useful independent of the MINPACK-1 algorithmic paths in which they are
employed.

For these reasons brief descriptions of the MINPACK-1 internal

subprograms are included below; more complete descriptions can be found in the

prologue comments in the program listings of Chapter 5.

DOGLEG

Gi;en the QR factorization of an m by n matrix A, an n by n nonsingular
diagonal matrix D, an m-vector b, and a positive number A, this
subroutine determines the convex combination of the Gauss-Newton and

scaled gradient directions that solves the problem
min{#Ax-bl : IDxll < A} .

ENORM

This function computes the Euclidean norm of a vector x.

FDJACI
This subroutine computes a forward-difference approximation to the
Jacobian matrix associated with n functions in n variables. It includes

a banded Jacobian option.

FDJAC2
This subroutine computes a forward-difference approximation to the

Jacobian matrix associated with m functions in n variables.
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IMPAR
Given the QR factorization of an m by n matrix A, an n by n nonsingular
diagonal matrix D, an m-vector b, and a positive number A, this subrou-

tine is used to solve the problem

min{iAx-bi : iDxi < 4} .

factorization of a rectangular matrix, this subroutine

accumulates the orthogonal matrix Q from its factored form.

QRFAC
This subroutine uses Householder transformations with optional column

‘pivoting to compute a QR factorization of an arbitrary rectangular

matrix.

QRSOLV
Given the QR factorization of an m by n matrix A, an n by n diagonal
matrix D, and an m-vector b, this subroutine solves the linear least
squares problem

(B = (3) :

RWUPDT
This subroutine is used in updating the upper triangular part of the QR

decomposition of a matrix A after a row is added to A.

RIMPYQ
This subroutine multiplies a matrix by an orthogonal matrix given as a

product of Givens rotations.

RI1UPDT
This subroutine is used in updating the lower triangular part of the LQ

decomposition of a matrix A after a rank-l matrix is added to A.
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CHAPTER 2

A1

Algorithmic Details

Th o +~ 3 < ~ e 23 e o D PR T,
pur of this chapter is to provide informationm about the

The purpose
algorithms and to point out some of the ways in which this information can be
used to improve their performance. The first two sections are essential for

the rest of the chapter since they provide the necessary background, but the

other sections are independent of each other.

2.1 Mathematical Background

To describe the algorithms for the solution of systems of nonlinear
equations and nonlinear least squares problems, it is necessary to introduce

some notation.
Let R" represent the n-dimensional Euclidean space of real n-vectors

X1

and lIxl the Euclidean norm of x,

b

n
it = [ )
=l 3

3
A function F with domain in R" and range in R™ is denoted by F: R® > R®, Such

a function can be expressed as

fl(x)
f,(x)

F(x) =| 2 ,
£ ()

where the component function £ R® + R is sometimes called the i-th residual
of F. The terminology derives from the fact that a common problem is to fit a

model g(t,x) to data y, in which case the f; are of the form
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F(x) = y; - gleg,x)

where y; is measured at t; and x is the set of fit parameters.

In this notation a system of nonlinear equations is specified by a

N w¥ 3~ RO
1 N

- . — -~ o
't RT ! and a solution vector X* in ich that
function F: K* = K7, ana

is such tha
F(x*) =0

Similarly, a nonlinear least squares problem is specified by a function

F: R® > R® with m > n, and a solution vector x* in R" is such that

IF(x*)I < IF(x)I  for x € N(x*) ,

where N(x*) is a neighborhood of x¥*. If N(x*) is the entire domain of
definition of the function, then x* is a global solution; otherwise, x* is a
local solution.

Some of the MINPACK-1 algorithms require the specification of the
Jacobian matrix of the mapping F: R® * R®; that is, the m by n matrix F'(x)
whose (1i,j) entry is

af. (x)
_r

9x.

J
A related concept is the gradient of a function f: R® + R, which is the

mapping Vi: R™ > R" defined by

9f(x)
3x1

If(x)

VE(x) = e
2

df(x)

ax
n

Note that the i-th row of the Jacobian matrix F'(x) is the gradient Vf;(x) of

the i-th residual.
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It 1s well-known that 1f x*¥ 1is a solution of the nonlinear least squares

m
L E.(x)VE. (x) =0
&1 i

In terms of the Jacobian matrix this implies that
' * T * -—
F'(x*) F(x*) = 0 ,

and shows that at the solution the vector of residuals is orthogonmal to the
columns of the Jacobian matrix. This orthogonality condition 1is also
satisfied at maximizers and saddle points, but algorithms usually take

precautions to avoid these critical points.

2.2 Overview of the Algorithms

Consider a mapping F: R > R™, where m = n for systems of nonlinear
equations and m > n for nonlinear least squares problems. The MINPACK-1

algorithms in these two problem areas seek a solution x*¥ of the problem

(1) min{IF(x)I: x € R} .

In particular, if m = n it is expected that F(x*) = 0.

Our initial description of the algorithms will be at the macroscopic

level where the techniques used in each problem area are similar.

With each algorithm the user provides an initial approximation x = X, to
the solution of the problem. The algorithm then determines a correction p to
x that produces a sufficient decrease in the residuals of F at the new point
x+p; it then sets .

Xpg =X +p

and begins a new iteration with x, replacing x.

A sufficient decrease in the residuals implies, in particular, that

IF(x+p)l < UF(x)N



N
(=)

and thus the algorithms guarantee that

||F(x+)u < HE(x)N .

A, and an approximation J to the Jacobian matrix of F at x. Users of the core

o drivers
c 4Q

subroutines can specify initial values Dj and 4,; in the easy-to-us rivers
D, and A are set internally. If the user is providing the Jacobian matrix,
v
then J, = F'(x,); otherwise the algorithm sets J, to a forward difference
. . .
approximation to F'(x,).
To compute p, the algorithm solves (approximately) the problem

(2) min{ I f+Jpli: UIDpl < A} ,

where f is the m-vector of residuals of F at x. If the solution of this

problem does not provide a suitable correction, then A is decreased and, if
appropriate, J is updated. A new problem is now solved, and this process is
repeated (usually only once or twice) until a p is obtained at which there is
sufficient decrease in the residuals, and then x is replaced by x+p. Before

the start of the next iteration, D, &, and J are also replaced.

The motivation for using (2) to obtain the correction p is that for
appropriate choices of J and A, the solution of (2) is an approximate solution

of

min{ IF(x+p)l: #Dpl < A} .
It follows that if there is a solution x* such that
(3) ID(x-x*)I < A,

then x+p is close to x*. If this is not the case, then at least x+p is a
better approximation to x* than x. Under reasonable conditioms, it can be

shown that (3) eventually holds.

The algorithms for systems of nonlinear equations and for nonlinear least

squares problems differ, for example, in the manner in which the correction p
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is obtained as an approximate solution of (2). The nonlinear equations

algorithm obtains a p that minimizes Wf+Jpll in a two-dimensional subspace of

o
[}

the ellipsoid {p: IDpl < Af. The nonlinear least squares algorit
p that is the exact solution of (2) with a small (10%) perturbation of A.
Other differences in the algorithms include convergence criteria (Section 2.3)

and the manner in which J is computed (Section 2.4).

It is appropriate to close this overview of the algorithms by discussing
two of their limitations. First, the algorithms are limited by the precision
he algorithms are globally convergent under
reasonable conditions, the convergence proofs are only valid in exact
-arithmetic and the algorithms may fail in finite precision due to roundoff.

This implies that the algorithms tend to perform better in higher precision.
It also implies that the calculation of the function and the Jacobian matrix
should be as accurate as possible and that improved performance results when

the user can provide the Jacobian analytically.

Second, the algorithms are only designed to find local solutions. To

illustrate this point, consider
_ .3
F(x) = x~ - 3x + 18
In this case, problem (1) has the global solution x* = -3 with F(x*) = O and
the local solution x* = 1 with F(x*) = 16; depending on the starting point,

the algorithms may converge either to the global solution or to the local

solution.

2.3 Convergence Criteria

The convergence test in the MINPACK-1l algorithms for systems of nonlinear
equations is based on an estimate of the distance between the current approxi-
mation x and an actual solution x* of the problem. If D is the current
scaling matrix, then this convergence test (X-convergence) attempts to

guarantee that

(1) ID(x-x*)1Il < XTOLe IDx*I

where XTOL is a user-supplied tolerance.
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thms for

There are three convergence tests im &
nonlinear least squares problems. .One test is again for X-convergence, but
the main convergence test is based on an estimate of the distance between the

norm IF(x)Il of the residuals at the current approximation x and the

T aan o
o Call (vl LNay

15
optimal value IF(x*)Il at an actual solution x* of the problem. This conver-

gence test (F-convergence) attempts to guarantee that
(2) IF(x)I < (1 + FTOL)*UIF(x*)Il ,

where FTOL is a second user-supplied tolerance.

The third convergence test for the nonlinear least squares problem

(G-convergence) guarantees that

T
Iaif|
(3) max-ﬂ—a?n—m:lilsn SGTOL,
L J

where aj,ap,...,a, are the columns of the current approximation to the

Jacobian matrix, f is the vector of residuals, and GTOL is a third user-

supplied tolerance.

Note that individual specification of the above three tolerances for the
nonlinear least squares problem requires direct user call of the appropriate
core subroutine. The easy—-to-use driver only accepts the single value TOL.

It then internally sets FTOL = XTOL = TOL and GTOL = 0.

The X-convergence condition (1) is a relative error test; it thus fails
when x* = 0 unless x = 0 also. Also note that if (1) is satisfied with
XIOL = 10‘k, then the larger components of Dx have k significant digits, but
smaller components may not be as accurate. For example, if D is the identity

matrix, XTOL = 0.001, and

x* = (2.0, 0.003) ,
then

x = (2.001, 0.002)

satisfies (1), yet the second component of x has no significant digits. This

may or may not be important. However, note that if instead
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D = diag(1,1000) ,

then (1) is not satisfied even for XTOL = 0.1. These scaling considerations
can make it important to choose D carefully. See Section 2.5 for more

information on scaling.

Since x* is unknown, the actual criterion for X-convergence cannot be

based on (l); instead it depends on the step bound A. That is, the actual
convergence test 1is
A < XTOLelDxl .
The F-convergence condition {(2) is a relative error test; it thus fails

when F(x*) = 0 unless F(x) = 0 also. It is for this reason that F-convergence
is not tested for systems of nonlinear equations where F(x*) = 0 is the
expected result. Also note that if (2) is satisfied with FTOL = lO-k,
then IF(x)l has k significant digits, but x may not be as accurate. For
example, if FTOL = 107 and

x - 1
F(x) = s
1

then x* =1, IF(x*)Il = 1, and if x = 1.001 then (2) 1is satisfied with
FTOL = 10-6, but (1) is only satisfied with XTOL = 1073,

In many least squares problems, if FTOL = (XTOL)2 then X-convergence
implies F-convergence. This result, however, does not hold if IF(x*)l is very
small. For example, if

x -1
F(x) = R
0.0001
then x* = 1 and IF(x*)I = 0.0001, but if x = 1.001 then (1) is satisfied with
XTOL = 1073 and yet

IF(x)I > 100F(x*)I .

Since IF(x*)l is unknown, the actual criterion for F-convergence cannot

be literally (2); instead it is based on estimates of the terms in (2). If f



and f, are the vectors of residuals at the current solution approximation x

then the (relative) actual reduction 1s

while the (relative) predicted reduction 1is

PRERED = (I £l - WE+Jpl)/Ufl .

The F-convergence test then requires that

|ACTRED| < FTOL

ACTRED < 2¢PRERED

all hold.

The X-convergence and F-convergence tests are quite reliable, but it is
impo-tant to note that their validity depends critically on the correctness of
the Jacobian. If the user is providing the Jacobian, he may make an error.
(CHKDER can be used to check the Jacobian.) If the algorithm is estimating
the Jacobian matrix, then the approximation may be incorrect if, for example,
the function is subject to large errors and EPSFCN is chosen poorly. (For
more details see Section 2.4.) In either case the algorithm usually
terminates suspiciously near the starting point; recommended action if this
occurs is to rerun the problem from a different starting point. If the
algorithm also terminates near the new starting point, then it is very likely

that the Jacobian is being determined incorrectly.

The X-convergence and F-convergence tests may also fail if the tolerances
are too large. In general, XTOL and FTOL should be smaller than 10-5;
recommended values for these tolerances are on the order of the square root of
the machine precision. As described in Section 1.7, the single precision
value of the machine precision can be obtained from the MINPACK-1 function
SPMPAR and the double precision value from DPMPAR. Note, however, that on

some machines the square root of machine precision is larger than 1072,
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The G-convergence test (3) measures the angle between the residual vector

and -the columns of the Jacobian matrix and thus can be expected to fail if
either F(x*) = 0 or any column of F'(x*) is zero. Also note that there is no

clear relationship between G-convergence and either X-convergence or
F-convergence. Furthermore, the G-convergence test detects other critical
points, namely maximizers and saddle points; therefore, termination with

G-convergence should be examined carefully.

An important property of the tests described above is that they are scale

invariant. (See Section 2.5 for more details on scaling.) Scale invariance
is a feature not shared by many other convergence tests. For example, the

convergence test
(4) Il < AFTOL ,

where AFTOL is a user-supplied tolerance, is not scale invariant, and this
makes 1t difficult to choose an appropriate AFTOL. As an illustration of the

difficulty with this test, consider the function
F(x) = (3x - 10)exp(10x) .

On a computer with 15 decimal digits
[F(x*)| > 1,

where x* 1s the closest machine-representable number to 10/3, and thus a

suitable AFTOL is not apparent.

If the user, however, wants to use (4) as a termination test, then he can
do this by setting NPRINT positive in the call to the respective core
subroutine. (See Section 2.9 for more information on NPRINT.) This provides
him periodic opportunity, through subroutine FCN with IFLAG = 0, to affect the
lteration sequence, and in this instance he might insert the following program

segment into FCN.
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LAG .NE. 0) GO TO 10
FNORM = ENORM(LFVEC,FVEC)
IF (FNORM .LE. AFTOL) IFLAG = -1

RETURN

IS

10 CONTINUE

In this program segment it is assumed that LFVEC = N for systems of nonlinear
equations and LFVEC = M for nonlinear least squares problems. It is also

assumed that the MINPACK-1 function ENORM is declared to t

computation.

If the user does not provide the Jacobian matrix, then the MINPACK-1

algorithms compute an approximation J. 1In the algorithms for nonlinear least

squares problems, J is always determined by a forward difference approxima
tion, while in the algorithms for systems of nonlinear equations, J is
sometimes determined by a forward-difference approximation but more often by
an update formula of Broyden. It is important to note that the update formula
is also used in the algorithms for systems of nonlinear equations where the
user is providing the Jacobian matrix, since the updating tends to improve the

efficiency of the algorithms.

The forward-difference approximation to the j-th column of the Jacobian

matrix can be written

Flxthie,) = F(x)
(1) ] ,
]

where e; is the j-th column of the identity matrix and hj is the difference
parameter. The choice of hj depends on the precision of the function
evaluations, which is specified in the MINPACK-1 algorithms by the parameter

EPSFCN. To be specific,
1
hy = (EPSFCN) 2lle

unless x5 = 0, in which case
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h. = (EPSFCN)% .

(Y

In the easy-to-use drivers EPSFCN 1is set internally to the machine

precision (see Section 1.7), since these subroutines assume that the functions

can be evaluated accurately. In the core subroutines EPSFCN is a user-
supplied parameter; if there are errors in ‘the evaluations of the functioms,
then EPSFCN may need to be much larger than the machine precision. For

example, if the specification of the function requires the numerical
evaluation of an integral, then EPSFCN should probably be on the order of the
tolerance in the integration routine.

One advantage of approximation (1) is that it is scale invariant. (See

Section 2.5 for more details on scaling.) A disad

1

(1) is that it

or

assumes EPSFCN the same for each variable, for each component function of F,
and for each vector x. These assumptions may make it difficult to determine a
suitable value for EPSFCN. The u;er who is uncertain of an appropriate value
of EPSFCN can run the algorithm with two or three values of EPSFCN and retain
the value that gives the best results. In general, overestimates are better

than underestimates.

The update formula of Broyden depends on the current approximation x, the
correction p, and J. Since
1

F(x+p) - F(x) =| | F'(x+6p)db|p ,
0

it is natural to ask that the approximation J, at x+p satisfy the equation
J,p = Flx+p) - F(x) ,
and among the possible choices be the one closest to J. To define an

appropriate measure of distance, let D be the current diagonal scaling matrix

and define the matrix norm

n
ral_ =
A D i

where aj,ag,...,a, are the columns of A. It is now easy to verify that the

solution of the problem
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min{nE-JuD: Jp = F(x+p)-F(x)} ,

o
<

is given

There are many properties of this formula that justify its use in algorithms
or systems of nonlinear equatioms, but a discussion of these properties is

£
beyond the scope of this work.

Q- 2 s

c =1
«J oCcdll IE

N

Scale invariance is a desirable feature of an optimization algorithm.
Algorithms for systems of nonlinear equations and nonlinear least squares
problems are scale invariant if, given problems related .by the change of scale

'§<x) =_TF<DVX)
X

where « is a positive scalar and Dy is a diagonal matrix with positive

entries, the approximations x and x generated by the algorithms satisfy
x =D, x

Scale invariance is a natural requirement that can have a significant
effect on the implementation and performance of an algorithm. To the user
scale invariance means, in particular, that he can work with either problem

and obtain equivalent results.

The core subroutines in MINPACK-1 are scale invariant provided that the

initial choice of the scaling matrix satisfies

(1) DO = aDVDO b

where D, and Do are the initial scaling matrices of the respective problems

defined by F and x, and by F and ;o° If the user of the core subroutines has
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requested internal scaling (MODE = 1), then the internal scaling matrix is -set
to

dlag[ualujuazu,;ii,uanu1 ,
where a; 1is the i-th column of the initial Jacobian approximation, and (1)
holds. If the wuser has stipulated external scaling (MODE = 2), then the

initial scaling matrix is specified by the contents of the array DIAG, and

There are certain cases in which scale invariance may be lost, as when
the Jacobian matrix at the starting point has a column of zeroes and internal
scaling 1is requested. In this case D, would have a zero element and be

singular, but this possibility is not catered to in the current
implementation. Instead, the zero element is arbitrarily set to 1, preserving

ice, however, these

cr

3 a S smermant mimn T
ty but giving up scale invariance. In prac

cases seldom arise and scale invariance is usually maintained.

Our experience is that internal scaling is generally preferable for
nonlinear least squares problems and external scaling for systems of nonlinear
equations. This experience is reflected in the setﬁings built into the easy-
to-use drivers; MODE = 1 is specified in the drivers for nonlinear least
squares problems and MODE = 2 for systems of nonlinear equations. In the
latter case, D, is set to the identity matrix, a choice that generally works
out well in practice; if this choice is not appropriate, recourse to the core

subroutine would be indicated.

It is important to note that scale invariance does not relieve the user
of choosing an appropriate formulation of the problem or a reasonable starting
point. In particular, note that an appropriate formulation may 1involve a
scaling of the equations or a nonlinear transformation of the variables and
that the performance of the MINPACK-1 algorithms can be affected by these
transformations. For example, the algorithm for systems of nonlinear
equations usually generates different approximations for problems defined by

functions F and F, where

F(x) = DEF(X) s
X, = x_,
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and D is a diagonal matrix with positive entries. The main reason for this

ho
(944

T
T
®
"
fo

At 3
nac Xg 1§ a

is that the algorithm usually deci

if

and it is entirely possible that
IF(x )1 > IFGOT .

The user should thus scale his equations (i.e., choose DE) so that the

expected errors in the residuals are of about the same order of magnitude.

2.6 Subroutine FCN: Calculation of the Function and Jacobian Matrix

The MINPACK-1 algorithms require that the user provide a subroutine with
name of his choosing, say FCN, to calculate the residuals of the function
F: R® > R®, where m = n for systems of nonlinear equations and m > n for
nonlinear least squares problems. Some of the algorithms also require that

FCN calculate the Jacobian matrix of the mapping F.

It is important that the calculation of the function and Jacobian matrix
be as accurate as possible. It is also important that the coding of FCN be as
efficient as possible, since the timing of the algorithm 1is strongly
influenced by the time spent in FCN. In particular, when the residuals f;
have common subexpressions it is usually worthwhile to orgaﬁize the computa-
tion so that these subexpressions need be evaluated only once. For example,

1f the residuals are of the form
fi(X) = g(x) + hi(X) , 1 <i<m

with g(x) common to all of them, then the coding of FCN is best expressed in

the following form.

T = g(x)
For i = 1,2,...,m
fi(X) =T + hi(X) .

As another example, assume that the residuals are of the form
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e~

£.(x) = (aijcos(xj) + BijSin(Xj)) ,

1 -
4

J
where the aij
evaluates the f; efficiently.

and Bii are given constants. The following program segment

For 1 = 1,2,...,m

fi(x) =0
For j = 1,2,...,n

Y = cos(xj)

o = sin(x.)
]

For 1 = 1,2,...,m

fi(X) = fi(X) + Ya.,. + 0B.. .
1] 1]

If the user is providing the Jacobian matrix of the mapping F, then it is
important that its calculation also be as efficient as possible. In
particular, when the elements of the Jacobian matrix have common sub-
expressions, it is usually worthwhile to organize the computation so that

these subexpressions need be evaluated only once. For example, if
£,(x) = g(x) + h;(x) , 1 <i<m,

then the rows of the Jacobian matrix are
Vfi(x) = Vg(x) + Vhi(x) , 1<i<m,

and the subexpression Vg(x) is thus common to all the rows of the Jacobian

matrix.

As another example, assume that

fi(X) = (aijcos(xj) + Bijsin(xj)J ,

e~ o

j=1

where the aij and Bij are given constants. In this case,

Bfi(x)

9x .

= - a..sin(x.) + B..cos(x.) ,
j 1] ] 1] J



For j = 1,2,...,n

v
1

j
o = sin(x;)
)
For 1 = 1,2,...,m
dfi(x)
= =0Q + YB .
9x i3 3

The previous example illustrates further the possibility of common sub-
expressions between the function and the Jacobian matrix. For the nonlinear
call to FCN

loasct cauares 2l 3
least squares algorithms a

to evaluate the Jacobian matrix at x is always preceded by a call to evaluate

the function at x. This is not the case for the nonlinear equations

algorithms

To specifically illustrate this possibility of sharing information

between function and Jacobian matrix, assume that

£.(x) = g(x)% + hy(x) 1<i<m.
Then the rows of the Jacobian matrix are

Vfi(x) = Zg(x)Vg(x) + Vhi(x) , 1<i<m,
and the coding of FCN is best done as follows.

If FUNCTION EVALUATION then
T = g(x)
Save T in COMMON
For i = 1,2,...,m
£,(x) = 12 4 h; (x)
If JACOBIAN EVALUATION then
v = Vg(x)
For 1 = 1,2,...;m

Vfi(x) = 2Tv + Vhi(x) .
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2.7 Constraints

Systems of nonlinear equations and nonlinear least squares problems often

lmpose constraints on the solution. For example, on physical grounds it is
sometimes necessary that the scolution vector have positive components.
At present there are no algorithms in MINPACK that formally admit

constraints, but in some cases they can be effectively achieved with ad hoc
strategies. In this section we describe two strategies for restricting the

solution approximations to a region D of RT.

The user has control over the initial approximation x It may happen,

o°
however, that x is in D but the algorithm computes a correction p such that
x+p 1s not in D. If this correction is permitted, the algorithm may never
recover; that 1is, the approximations may now converge to an unacceptable

solution outside of D.

The simplest strategy to restrict the corrections is to impose a penalty
on the function if the algorithm attempts to step outside of D. For example,

let ¥ be any number such that

Ifi(xo)l <wuy, 1 <i<m,
and in FCN define

fi(x)=u, 1_<_i_§m

whenever x does not belong to D. If FCN is coded in this way, a correction p
for which x+p lies outside of D will not decrease the residuals and is
therefore not acceptable. It follows that this penalty on FCN forces all the

approximations x to lie in D.’

Note that this strategy restricts all the corrections, and as a conse-
quence may lead to very slow convergence if the solution is near the boundary
of D. It usually suffices to only restrict the initial correction, and users

of the core subroutines can do this in several ways.

Recall from Section 2.2 that the initial correction p, satisfies a bound

of the form
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where D 1s a diagonal scaling matrix and 4  is a step bound. The contents of

R e Rl 1 Rl o
Lile pdald4adnicicer 1L

. ODE = 1 then no is internallv set

D, are governed b s internall y s

while if MODE = 2 then D_ is specified by the user through the array DIAG.

[o]

The step bound A  is determined from the parameter FACTOR. By definitiomn

A = FACTOR-ID x Il ,
o] o 0

unless xg is the zero vector, in which case

It is clear from this definition that smaller values of FACTOR lead to smaller
steps. For a sufficiently small value of FACTOR (usually 0.0l suffices), an
improved point x +p, will be found that belongs to D.

Be aware that the step restriction is on D p, and not on p, directly. A
small element of D, which can be set by internal scaling when MODE = 1, may
lead to a large component in the correction p,- In many cases it 1is not

necessary to control p, directly, but if this is desired then MODE = 2 must be

used.

When MODE = 2, the contents of D, are specified by the user, and this
allows direct control of p,. If, for example, it is desired to restrict the
components of p, to small relative corrections of the corresponding components

of x4 (assumed nonzero), then this can be done by setting

g 1 1 1
b, = diaglre—Ts T2 -0 TET)
: 1 2

n

where §i is the i-th componment of x,, and by choosing FACTOR appropriately.

To justify this choice, note that p, satisfies
I I = .
lDopol_i A = FACTOR D x I,

and that the choice of D, guarantees that
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i
ID x I = n2 .
0" o
Thus, if Py is the i-th component of p,, then
1
lo;1 < n™*FACTOR®[E. | ,

which justifies the choice of D,.

2.8 Error Bounds

A problem of general interest is the determination of error bounds on the
components of a solution vector. It is beyond the scope of this work to
discuss this topic in de
tation of bounds on the sensitivity of the parameters, and of the covariance
matrix. The discussion is in terms of the nonlinear least squares problem,

but some of the results also apply to systems of nonlinear equations.

Let F: R" » R™ define a nonlinear least squares problem (m > n), and let
x* be a solution. Given € > 0, the problem is to determine sensitivity

(upper) bounds 9y3095+++,0_ such that, for each i, the condition

Ix.-x¥| <o. | with x. = x¥ for j # i ,
171 — 1 J J
implies that

IF(x)0 < (1 + e)IF(x*) I

Of particular interest are values of 0; which are large relative to lxil,
since then the residual norm IF(x)l is insensitive to changes in the i-th
parameter and may therefore indicate a possible deficiency in the formulation

of the problem.

A first order estimate of the sensitivity bounds 0; shows that

R IF(x*) I
(1) % Tt N\TFaEeT)
1

where F'(x*) 1s the Jacobian matrix of F at x* and e; is the i-th column of
the identity matrix. Note that if "F'(x*)'ei“ is small relative to IF(x*)I,

then the residual norm is insensitive to changes in the i-th parameter.
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If x is an approximation to the solution x* and J 1

F'(x*), then the bounds (1) can usually be replaced by

5 = i [IEGOTY
1 \"Jeiu /

The MINPACK-1 nonlinear least squares programs (except.LMULrl) return enough

-~
N
N

information to compute the sensitivity bounds (2). On a normal exit, these

programs return F(x) and part of the QR decomposition of J; namely, an upper

=i~ N

triangular matrix R and a permutation matrix P such that

(3) JP = QR

for some matrix Q with orthogonal columns. The vector F(x) is returned in the
array FVEC and the matrix R is returned in the upper triangular part of the

array FJAC. The permutation matrix P is defined by the contents of the

integer array IPVT; 1if
IPVT = (p(1),p(2),...,p(n)) ,

then the j-th column of P is the p(j)-th column of the identity matrix.

The norms of the columns of the Jacobian matrix can be computed by noting

that (3) implies that

Jep(j) = QREj ’
and hence,

Il A = IRe. |l
Jep(J) ReJ

The following loop uses this relationship to store "Jezﬂ in the 2-th position
of an array FJNORM; with this information it 1is then easy to compute the

sensitivity bounds (2).

DO 10 J = 1, N
L = IPVT(J)
FIJNORM(L) = ENORM(J,FJAC(1,J))
10 CONTINUE
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This loop assumes that ENORM and FJNORM have been declared to the precision of

the computation.

1tivity bounds for the individual parameters, it is

[

etermine a bound for the sensitivity of the residual

In addition to sen
d

(W)
(13

sometimes desirable to

norm- to changes in some linear combination of the parameters. Given € > 0 and

a vector v with #vi = 1, the problem is to determine a bound 0 such that
IF(x*+ov)li < (1 + e)lIF(x*)I

A first order estimate of 0 is now

if IF'(x*)evll is small relative to IF(x*)ll, then ¢ is large and the residual
norm is insensitive to changes in the linear combination of the parameters

specified by v.

For example, if the level set
{x: IFGON < (1 + e)IF(x*) I}

is as in Figure 3, then the residual norm, although sensitive to changes in Xy

and x5, is relatively insensitive to changes along v = (1,1).

If the residual norm is relatively insensitive to changes in some linear
combination of the parameters, then the Jacobian matrix at the solution is
nearly rank-deficient, and in these cases it may be worthwhile to attempt to
determine a set of linearly independent parameters. In some statistical

applications, the covariance matrix
(3Ty1

is used for this purpose.
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Figure 3

Subroutine COVAR, which appears at the end of this section, will compute
the covariance matrix. The computation of the covariance matrix from the QR

factorization of J depends on the relationship
(4) (3T3)71 = pRTR)7 1T |

which 1is an easy consequence of (3). Subroutine COVAR overwrites R with the

upper triangular part of (RTR)_l and then computes the covariance mafrix

from (&4).

Note that for proper execution of COVAR the QR factorization of J must

have used column pivoting. This guarantees that for the resulting R

(5) le. | > r..1, k<i<i],
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thereby allowing a reasonable determination of the numerical rank of J. Most
of the MINPACK-1 nonlinear least squares subroutines return the correct

— T

Rl and IMSTR, however, satisfies
TP = Ry

but R; does not usually satisfy (5). To obtain the correct factorization,

note that the QR factorization with column pivoting of Ry satisfies
RiPy = QoRy

where R, satisfies (5), and therefore
J(P1P,) = (QQ)R,

is the desired factorization of J. The program segment below uses the

MINPACK-1 subroutine QRFAC to compute R, from R;.

DO 30 J =1, N
JPl = J + 1
IF (N .LT. JP1) GO TO 20
DO 10 I = JP1, N
FJAC(I,J) = ZERO
10 CONTINUE
20 CONTINUE
30 CONTINUE
CALL QRFAC(N,N,FJAC,LDFJAC,.TRUE.,IPVT2,N,WAl,WA2,WA3)
DO 40 J = 1, N
FJAC(J,J) = WAL(J)
L = IPVT2(J)
IPVT2(J) = IPVTI(L)
40 CONTINUE

Note that QRFAC sets the contents of the array IPVT2 to define the permutation
matrix P,, and the final loop in the program segment overwrites IPVT2 to

define the permutation matrix PIPZ’
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SUBROUTINE COVAR(N,R,LDR,IPVT,TOL,WA)
INTEGER N, LDR

INTEGER IPVT(N)

DOUBLE PRECISION TOL

DOUBLE PRECISION R(LDR,N),WA(N)

asts o atests

GIVEN AN M BY N MATRIX THE DRO
“a il o4 N IR YT AN EY Py yesw 4 I\NU
I

IX A
THE COVARIANCE MATRIX CORRESPOND
T
INVERSE (A *A)

THIS SUBROUTINE COMPLETES THE SOLUTION OF THE PROBLEM

IF IT IS PROVIDED WITH THE NECESSARY INFORMATION FROM THE

QR FACTORIZATION, WITH COLUMN PIVOTING, OF A. THAT IS, IF
A*P = Q*R, WHERE P IS A PERMUTATION MATRIX, Q HAS ORTHOGONAL
COLUMNS, AND R IS AN UPPER TRIANGULAR~MATRIX WITH DIAGONAL

ELEMENTS OF NONINCREASING MAGNITUDE, THEN COVAR EXPECTS
THE FULL UPPER TRIANGLE OF R AND THE PERMUTATION MATRIX P.

THE COVARIANCE MATRIX IS THEN COMPUTED AS

T T
P*INVERSE (R *R)*P

IF A IS NEARLY RANK DEFICIENT, IT MAY BE DESIRABLE TO COMPUTE
THE COVARIANCE MATRIX CORRESPONDING TO THE LINEARLY INDEPENDENT
COLUMNS OF A. TO DEFINE THE NUMERICAL RANK OF A, COVAR USES
THE TOLERANCE TOL. IF L IS THE LARGEST INTEGER SUCH THAT
ABS(R(L,L)) .GT. TOL*ABS(R(1,1)) ,
THEN COVAR COMPUTES THE COVARIANCE MATRIX CORRESPONDING TO
THE FIRST L COLUMNS OF R. FOR K GREATER THAN L, COLUMN
AND ROW IPVT(K) OF THE COVARIANCE MATRIX ARE SET TO ZERO.
THE SUBROUTINE STATEMENT IS
SUBROUTINE COVAR(N,R,LDR,IPVT,TOL,WA)
WHERE
N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE ORDER OF R.
R IS AN N BY N ARRAY. ON INPUT THE FULL UPPER TRIANGLE MUST
CONTAIN THE FULL UPPER TRIANGLE OF THE MATRIX R. ON OUTPUT
R CONTAINS' THE SQUARE SYMMETRIC COVARIANCE MATRIX.

LDR IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN N
WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY R.

IPVT IS AN INTEGER INPUT ARRAY OF LENGTH N WHICH DEFINES THE

COVRO010
COVR0020
COVR0030
COVR0040
COVR0O050
COVRO060
COVR0070

rNuUDNNeN
VUVRUUVOUV

COVRO0090

rNURNINN
LVUVYINVLILUVVY

COVRO110

orNuUDN1I2N
LVUVRUVILILV

COVRO130
COVRO140
COVRO150
COVRO160
COVRO170
COVRO0180
COVRO1S0
COVR0200

COVRO210
COVR0220

SRV PANEPAPAV,

COVR0230
COVR0240
COVRO250
COVR0O260
COVRO270
COVRO0280
COVRO290
COVR0O300
COVRO310
COVRO0320
COVRO0330
COVRO340
COVRO0350
COVRO360
COVRO0370
COVR0380
COVR03S50
COVRO0400
COVR0410
COVR0420
COVRO0430
COVRO0440
COVRO0450
COVRO460
COVR0470
COVR0480
COVR0490
COVRO500
COVRO510
COVR0520
COVRO530
COVRO540
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PﬁRMUTATION MATRIX P SUCH THAT A**P = Q*R. COLUMN J OF P
IS COLUMN IPVT(J) OF THE IDENTITY MATRIX.

NNE

LNIN

TO

~

T
4

L IS
NUMER

A NONNE
ICAL RA!
WA IS A WORK ARRAY OF LENGTH N.

PROGRAMS CALLED

loc)

SU

=

AB

2]

FORTRAN-SUPPLIED ...
ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. AUGUST 1980.
BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE

leetoataatectenta e ctaal,
ITITITITITITINWW

INTEGER I,1I,J,JJ,K,KM1,L
LOGICAL SING

DOUBLE PRECISION ONE,TEMP,TOLR,ZERO
DATA ONE,ZERO /1.0D0,0.0D0/

FORM THE INVERSE OF R IN THE FULL UPPER TRIANGLE OF R.

TOLR = TOL*DABS(R(1,1))

L=20

DO 40 K =1, N
IF (DABS(R(K,K)) .LE. TOLR) GO TO 50
R(K,K) = ONE/R(X,K)

KMl =K -1
IF (KM1 .LT. 1) GO TO 30
DO 20 J =1, kM1

TEMP = R(K,K)*R(J,K)

R(J,K) = ZERO
DO10I=1,J
R(I,K) = R(I,K) - TEMP*R(I,J)
CONTINUE
CONTINUE
CONTINUE
L=K
CONTINUE
CONTINUE

FORM THE FULL UPPER TRIANGLE OF THE INVERSE OF (R TRANSPOSE)*R
IN THE FULL UPPER TRIANGLE OF R.

IF (L .LT. 1) GO TO 110
DO 100 K =1, L

KMl = K - 1
IF (KM1 .LT. 1) GO TO 80
DO 70 J = 1, KM1

TEMP = R(J,K)

DO60 I =1,J
R(I,J) = R(I,J) + TEMP*R(I,K)
CONTINUE
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COVR0390
COVR0600
COVR0610
COVR0620
COVR0630
COVR0640
COVR0650
COVRO0660
COVR0670
COVR0680
COVR0690
COVRO700
COVRO710

COVRO720

COVRO0730
COVRO740
COVRO0750
COVRO760
COVRO770
COVRO780
COVRO750
COVR0800
COVRO0810
COVR0O820
COVRO830
COVR0840
COVRO850
COVR0860
COVRO870
COVRO0880
COVR0890
COVR0900
COVROS10
COVRO0920
COVR0930
COVRO0S40
COVROS50
COVRO0960
COVRO970
COVR0S80
COVRO990
COVR1000
COVR1010
COVR1020
COVR1030
COVR1040
COVR1050

COVR1060
COVR1070
COVR1080
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CONTINUE
CONTINUE
TEMP = R(K,K)

DO 90 I =1, K

R(I,X) = TEMP*R(I,K)

CONTINUE

VAU PES N L2

CONTINUE

ONTINUE
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RM THE FULL LOWER TR
THE STRICT LOWER IR

130 J =1, N

JJ = IPVT(J)

SING = J .GT. L

DO 1201 =1, J
IF (SING) R(I,J) = ZERO
II = IPVI(I)
IF (ITI .GT. JJ) R(II,JJ)
IF (II .LT. JJ) R(JJ,II)

. CONTINUE

WA(JJ) = R(J,J)

CONTTNITE

IV L LiVVes

0

[w)

SYMMETRIZE THE COVARIANCE MATRIX

DO 150 J =1, N
DO 140 I=1,J
R(I,J) = R(J,D)
CONTINUE
R(J,J) = WA(D)
CONTINUE
RETURN

LAST CARD OF SUBROUTINE COVAR.

END
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IANGLE OF THE COVARIANCE MATRIX
IANGLE OF R AND IN WA.

R(I,J)
R(I,J)

IN R.
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2.9 Printing

No printing is done 1in any of the MINPACK-1 subroutines. However,
printing of certain parameters through FCN can be facilitated with the integer
parameter NPRINT that is available to users of the core subroutines. For
these subroutines, setting NPRINT positive results in special calls to FCN
with IFLAG = 0 at the beginning of the first iteration and every NPRINT

iterations thereafter and immediately prior to return. On these calls to FCN,

the parameters X and FVEC are available for printing; FJAC is additionally
available if using IMDER. ,

Often it suffices to print some simple measure of the iteration progress,
and the Euclidean norm of the residuals is usually a good choice. This norm
can be printed by inserting the following program segment into FCN.

IF (IFLAG .NE. 0) GO TO 10
FNORM = ENORM(LFVEC,FVEC)
WRITE (---,1000) FNORM
1000 FORMAT (---)
RETURN
10 CONTINUE

In this program segment it 1§ assumed that LFVEC = N for systems of nonlinear
equations and LFVEC = M for nonlinear least squares problems. It 1is also

assumed that the MINPACK-1 function ENORM is declared to the precision of the

computation.
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CHAPTER 3

Notes and References

This chapter provides notes relating the MINPACK-1 algorithms and
software to other work. The list of references appears at the end.
Powell's Hybrid Method
The MINPACK-1 version of Powell's [1970] hybrid method differs in many
-

respects from the original version. For example, the "special iterations"
used in the original algorithm proved to be inefficient and have been
replaced. The updating method used is due to Broyden'[l965]; the MINPACK-1
algofithm is a scaled version of the original. A comparison of an earlier
version of the MINPACK-1 algorithm with other algorithms for systems of non-

linear equations has been made by Hiebert [1980].

The Levenberg-Marquardt Algorithm

There are many versions of the algorithm proposed by Levenberg [1944] and
modified by Marquardt [1963]. An advantage of the MINPACK-1 version is that
it avoids the difficulties associated with choosing the Levenberg-Marquardt
parameter, and this allows a very strong global convergence result. The
MINPACK-1 algorithm is based on the work of Hebden [1973] and follows the
ideas of More [1977]. A comparison of an earlier version of the MINPACK-1
algorithm with other algorithms for nonlinear least squares problems has been

made by Hiebert [1979].

Derivative Checking

Subroutine CHKDER is new, but similar routines exist in the Numerical
Algorithms Group (NAG) library. An advantage of CHKDER is its generality; it
can be wused to check Jacobians, gradients, and Hessians (second deriva-
tives). To enable this generality, CHKDER presumes no specific parameter
sequence for the function evaluation program, returning control instead to the

user. This in turn makes necessary a second call to CHKDER for each check.
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MINPACK-1 Internal Subprograms

Subroutines DOGLEG and IMPAR are used to generate search directions in
the algorithms for systems of nonlinear equations and nonlinear least squares
problems, respectively. The algorithm used in DOGLEG 1is a fairly straight-
version of the algorithm described by Mor [1977]. The LMPAR algorithm is the
more complicated; in particular, it requires the solution of a sequence of

linear least squares p of special form. It is for this purpose that

subroutine QRSOLV is used.

The algorithm used in ENORM is a simplified version of Blua's [1978]
algorithm. An advantage of the MINPACK-1 version is that it does not require
machine constants; a disadvantage is that nondestructive underflows are

allowed.
The banded Jacobian option in FDJACl is based on the work of Curtis,

Powell, and Reid [1974].

QRFAC and RWUPDT are based on the corresponding algorithms in LINPACK

(Dongarra, Bunch, Moler, and Stewart [1979]).

The algorithm used in RIUPDT is based on the work of Gill, Golub, Murray,
and Saunders [1974].
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