
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-9, NO. 6, NOVEMBER 1983

[22] Z. Manna and P. Wolper, "Synthesis of communicating processes
from temporal logic specifications," in Proc. Workshop Logics of
Programs (Springer-Verlag Lecture Notes in Comput. Sci.), vol.
131, 1981.

[23] S. Owicki and L. Lamport, "Proving liveness properties of con-
current programs," ACM Trans. Programming Languages Syst.,
vol. 4, pp. 455-495, July 1982.

[24] A. Pnueli, "The temporal semantics of concurrent programs," in
Semantics of Concurrent Computation (Springer Lecture Notes
in Comput. Sci.), vol. 70, June 1979, pp. 1-20.

[25] -, "On the temporal analysis of fairness," in Proc. 7th Annu.
Symp. POPL, Jan. 1980, pp. 163-173.

[261 K. Ramamritham and R. M. Keller, "Specifying and proving
properties of sentinel processes," in Proc. 5th Int. Conf Software
Eng., Mar. 1981, pp. 374-382.

[27] -, "On synchronization and its specification," in Springer
Lecture Notes in Comput. Sci., vol. 111, June 1981.

[281 K. Ramamritham, "Specification and synthesis of synchronizers,"
Ph.D. dissertation, Univ. Utah, Aug. 1981.

[29] H. A. Schmid, "On the efficient implementation of conditional
critical regions and the construction of monitors," Act Infor-
matica, vol. 6, pp. 227-249, 1976.

[30] R. L. Schwartz and P. M. Melliar-Smith, "Temporal logic specifi-
cations of distributed systems," inProc. 2ndlnt. Conf Distributed
Syst., Apr. 1981.

[31] A. C. Shaw, "Software specification languages based on regular
expressions," in Proc. Software Tools Workshop, May 1979, pp.
1-39.

Krithivasan Ramamritham received the B.Tech
A degree in electrical engineering and the M.Tech

degree in computer science from the Indian
Institute of Technology, Madras, India, in 1976
and 1978, respectively, and the Ph.D. degree in
computer science from the University of Utah,
Salt Lake City, in 1981.
Currently, he is an Assistant Professor in the

Department of Computer and Information
Science, University of Massachusetts, Amherst.
His research interests include software engi-

neering, operating systems and distributed computing.
Dr. Ramamritham is a member of the Association for Computing

Machinery and the IEEE Computer Society.

Robert M. Keller received the B.S. and M.S.E.E.
degrees from Washington University, St. Louis,
MO, and the Ph.D. degree from the University
of California, Berkeley.
Currently, he is a Professor of Computer

Science at the University of Utah, Salt Lake
City. From 1970-1976 he was an Assistant
Professor of Electrical Engineering at Princeton
University. His current research interests deal
with numerous topics relating to multiprocessor
implementations of functional languages, par-

ticularly using reduction and data-flow computation models.

Distributed Software System Design Representation
Using Modified Petri Nets

STEPHEN S. YAU, FELLOW, IEEE, AND MEHMET U. CAGLAYAN, MEMBER, IEEE

Abstract-A model for representing and analyzing the design of a
distributed software system is presented. The model is based on a mod-
ified form of Petri net, and enables one to represent both the structure
and the behavior of a distributed software system at a desired level of
design. Behavioral properties of the design representation can be veri-
fied by translating the modified Petri net into an equivalent ordinary
Petri net and then analyzing that resulting Petri net. The model empha-
sizes the unified representation of control and data flows, partially
ordered software components, hierarchical component structure, ab-
stract data types, data objects, local control, and distributed system
state. At any design level, the distributed software system is viewed as
a collection of software components. Software components are exter-
nally described in terms of their input and output control states, abstract
data types, data objects, and a set of control and data transfer specifica-
tions. They are interconnected through the shared control states and
through the shared data objects. A system component can be viewed
internally as a collection of subcomponents, local control states, local
abstract data types, and local data objects.

Manuscript received November 6, 1981; revised March 21, 1983. This
work was supported by the U.S. Army Research Office under Contract
DAA-C29-80-K-0092.

S. S. Yau is with the Department of Electrical Engineering and Com-
puter Science, Northwestern University, Evanston, IL 60201.
M. U. Caglayan was with the Department of Electrical Engineering

and Computer Science, Northwestern University, Evanston, IL 60201.
He is now with the University of Petroleum and Minerals, Dhahran,
Saudi Arabia.

Index Tenns-Control flow and data flow, design analysis, distributed
software system, modified Petri net, software design representation.

I. INTRODUCTION

WlrE CONSIDER that a distributed computer system has
Wa number of processing nodes connected by a message-

based communication network. In addition to the physical
distribution of hardware, conceptual distribution of both data
and control is an essential characteristic of the system. To em-
phasize decentralized control, processing nodes will be highly
autonomous in their availability, type of service they provide,
their concern for protection of resources, and their reliability.
The effects of actual choice of processing and communication
hardware and system topology on design issues are not con-
sidered here.
The design of distributed software systems continues to be a

challenging area of software engineering. A number of infor-
mal and formal design methods, which are primarily concerned
with sequential software systems, have been proposed [1] - [5].
These methods do not directly address the design problems
associated with parallel and distributed systems. Although

0098-5589/83/1100-0733$01.00 © 1983 IEEE

733

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-9, NO. 6, NOVEMBER 1983

some have facilities for the representation of concurrency,
synchronization, and process relations, a general approach to
the design of parallel, and distributed software systems is
lacking.
Models which are suitable for representing distributed com-

puter systems can be divided into a number of groups. The
first group includes distributed programming languages re-
cently developed for expressing direct communication, rather
than communication and synchronization through shared vari-
ables, between program modules and processes. The two most
important members of this class are distributed processes [6]
and communicating sequential processes [7]. These languages
are basically extensions of previously known programming
languages with an expanded set of language constructs to han-
dle new features like communication, nondeterminism, and
unification of concepts like monitors [8] , processes, and classes
[9]. Another group includes three formal models that reflect
the characteristics of distributed processing systems. These
are actor systems [10], calculus of communicating systems
[111, and networks of parallel processes [12]. A very good
comparative evaluation of these models can be found in [131.
The third group consists of classical graph theoretic models,
among which Petri nets [14] - [17] appear to be the most fully
developed. Most of the recent work done on Petri nets and re-
lated models can be found in [18], and surveys of Petri nets in
[19], [20].
Most of the above models of parallel and distributed systems

are formal, computation oriented models which do not address
the design issues directly. For the purpose of software design,
several high level design methods have been proposed [211 -
[27]. The method used in [23] is based on attributed gram-
mars. SARA design methodology [25] is based on UCLA
graphs. COSY [26] is a design specification language based on
path expressions and later extended to specify distributed
systems [27].
In this paper, we will present a design representation and

analysis technique for parallel and distributed software sys-
tems. The representation technique is not a design method; it
is only a means for representing, and thus documenting, the
design of a distributed software system. The representation is
based on a modified form of Petri net, and enables us to graph-
ically represent the structure and dynamic behavior of a dis-
tributed software system. Both the control and data flows are
included in a single graph representation ofthe design. Partially
ordered software components, hierarchical component struc-
ture, abstract data types and data objects, local control, and
distributed system state are emphasized. Software components
are externally described in terms of their input and output
control states, associated data types and data objects, and a
set of control and data transfer specifications. Interconnec-
tion of software components is defined through shared control
states and through shared data objects. A system component
can be viewed internally as a collection of partially ordered
subcomponents, local control states, local data types, and local
data objects. The design representation in the form of a modi-
fied Petri net can be transformed into an equivalent Petri net
for the purpose of analyzing the design for concurrency re-
lated properties such as mutual exclusion and deadlock-freeness.

II. MODIFIED PETRI NETS AND DESIGN REPRESENTATION

Petri nets are abstract, formal models of information and
control flow in systems exhibiting concurrency and asynchro-
nous behavior [20] . They are very simple and natural in struc-
ture, yet quite powerful in modeling and analyzing such systems.
Informally, a Petri net, sometimes called a marked Petri net,
consists of a Petri net graph, an initial marking, and fixed sim-
ulation rules. A Petri net graph is a collection of two types of
nodes, called transitions and places, connected by directed
arcs. Places are represented by circles and transitions by bars.
Places can hold tokens, which are represented by small dots.
The number of tokens in a place is called the marking of that
place. The marking of the net is the collection of all place
markings. Thus, the initial marking is the initial distribution
of tokens to places. Simulation rules define how new mark-
ings can be obtained from a current marking. A transition
whose input places hold tokens "fires" by removing tokens
from its input places and adding tokens to its output places;
this results in a new marking of the net. An example of a
Petri net is shown in Fig. 1.

Several subclasses and extensions of ordinary Petri nets [20]
have been studied either to increase the modeling power or
modeling convenience, or to facilitate the solution of analysis
problems. Generalized Petri nets [20] are Petri nets with mul-
tiple arcs between a place and a transition. They are equivalent
in modeling power to ordinary Petri nets. A fundamental ex-
tension to Petri nets is the incorporation of inhibitor arcs into
the Petri net. An inhibitor arc allows a transition to fire if its
associated input place has a marking of zero tokens. It is
shown in [28] that Petri nets with inhibitor arcs are equivalent
in modeling power to Turing machines. Other extensions such
as coordination nets [29] and timed-nets [30] are also equiva-
lent to Turing machines. Several subclasses have been proposed
in order to facilitate the analysis of Petri nets. State machines
are Petri nets in which transitions can have only one input
place and one output place. Decision-free nets, also known as
marked graphs, are Petri nets in which each place can have
only one input transition and one output transition [31].
Other subclasses include free-choice nets, conflict-free nets,
persistant nets, simple Petri nets, and restricted Petri nets [20] .

Petri nets can be used to model both the static and dynamic
properties of systems. Static properties of systems are repre-
sented by the graphical part of a Petri net. Dynamic proper-
ties of a system can be determined from the Petri net graph,
the initial marking, and the simulation rules.
There are many potential advantages of modeling a dynamic

system using Petri nets: the ability to produce a precise, graph-
ical representation, the existence of analysis tools for deter-
mining and verifying the dynamic behavior of systems from
their structure, and the capability of designing systems using
top-down and/or bottom-up approaches. The capabilities of
representing local control and concurrent, conflicting, non-
deterministic, and asynchronous events, are the most useful
properties of Petri nets for modeling a system. A Petri net
defines a partial ordering of event occurrences and no assump-
tions are made regarding the flow, measurement, and direction
of time.

734

YAU AND CAGLAYAN: DISTRIBUTED SOFTWARE SYSTEM DESIGN

Potential
Concurrency

Fig. 1. An example of a Petri net.

Petri net models are especially suitable for describing the
control flow aspects of a system. Data flow is generally ignored
and data-dependent control flow is represented as a part of the
nondeterministic behavior of the modeled system. Although
this aspect of modeling control flow can only be attributed to
the "low-level" nature of Petri nets, it is obvious that there is
a need for "higher level" models which will directly relate to
the issues in software design.
There have been modifications to Petri nets which relate to

our objective in modeling distributed software systems. Eval-
uation nets [32], macro E-nets [33], and pro-nets [34] pro-

posed different modifications to the transition firing rules and
attempted to represent data flow by associating attributes with
tokens. The data flow language EDDA [35] uses a modified
Petri net for requirements analysis and system specification.
In Valette's model [36], control flow is represented by a Petri
net and the data flow, data operations, and memory locations
by a separate data graph. By associating a set of data graph
predicates with each Petri net transition, the operations of the
data graph are controlled by the Petri net.

In this paper, we will modify Petri nets for the representation
of control flow and data flow in distributed software systems.
Our modified Petri net consists of a set of control state vari-
ables, a set of abstract data types, a set of data objects, and a

set of software components which are connected to each other
through the control state variables and through the data ob-
jects. The control state variables correspond to the places of
a Petri net. Software components correspond to the nonprimi-
tive transitions of a Petri net, where a nonprimitive transition
has a Petri net subgraph as its inner structure and does not
fire instantaneously [37]. The execution of a software com-

ponent can be regarded as the firing of a nonprimitive transi-
tion. The nonprimitive transition firing rule, which is fixed in
ordinary Petri nets, is generalized in modified Petri nets by
associating with each software component a control transfer
specification, which gives the control flow through that com-

ponent. Each component has associated with it a data transfer
specification which represents the data flow through that com-

ponent. An example of a modified Petri net is shown in Fig. 2.
Initially, the system is in the total control state such that

P1 = enabled and P2 = P3 = Pll = disabled, where pi,
i1, *- - , 11 are the control state variables; and the compo-
nent C1 starts to be executed. After the execution of Cl is
completed, components C2 and C4 will start to be executed
in parallel and they will add some information to the data ob-
jects DI and D2, respectively. The execution of C3 is synchro-
nized with the termination of both C2 and C4. C3 will use the
information in data objects D1 and D2 and will add informa-
tion to D3 during its execution. Components Cs and C6 will
be executed after C3 has completed its execution. Note that
C5 and C6 share the information in D3. After the execution
of Cs (or C6) terminates, either C2 (or C4) is restarted or the
control state set represented by Plo = enabled (or Pl = en-
abled), independent of the condition of all other control state
variables is reached. The system completes its execution if
both Plo and Pi, are enabled. If either C5 or C6 decides to
enable Plo or Pll, respectively, then the system may be as-
sumed to deadlock. In the following sections, the concepts of
control state, component, control and data transfer specifica-
tions, and component interconnections will be explained in
detail.

System States and Control States

The total state of a distributed software system is defmed as
the combination of the total control state of the system and
the total state of the data objects in the system. The total
control state of the system is the collection of the individual
control states of the system. In Fig. 2, after C3 completes its
execution, but before Cs or C6 begins theirs, the total control
state is P6 = P7 = P8 = p9 = enabled, and all remaining p's dis-
abled. The total state of the data objects is the collection of
states of the individual data objects, i.e., D1, D2, D3 in Fig. 2.
The current state of a data object is the current value associated
with that data object.

Let S = {sil - 1, **- ,n}be the set of control state variables
of a distributed software system, where each si E S is enabled
or disabled. Whether si is enabled or disabled is determined by
the marking function

M: S+{O, 1, 2,--- }

735

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-9, NO. 6, NOVEMBER 1983

Po (Pii

Fig. 2. An example of a modified Petri net.

where si E S is enabled if M(si) 0 and disabled if M(si) = 0.
The value of M(s1) is the control state value associated with
si, i.e., the marking of a Petri net place. Control state values
other than 0 or 1 will be considered to be the result of an

inconsistent or faulty design. A control state variable si, for
which M(si) = ki, is graphically represented by a small circle
containing ki tokens. For a distributed software system with n

control state variables, the total control state at a jth time in-
stance is the n-tuple m1 = < khl, kj2, * * , kin>, where M(si)
kii, si E S, i = 1,** n. The total control state space is the
set of n-tuples {mi, = O, 1, * }. It should be noted that m1

is equivalent to the marking of all Petri net places and the set

{mj, j = 0,1, * } is the reachability set of the Petri net, i.e.,
the set of markings reachable from the initial marking. There
is a set of flnal control state variables F, which is a subset of
the power set of S. If all si E F are enabled, execution of the
system is considered to be complete. There is also an initial
marking function Mo, which determines the initial total con-

trol state mo, such that

MO: S -* {O, 1 }.

A total control state is distributed by its very nature since a

control state variable cannot determine the total control state
alone. Emphasis is placed on the representation and manipu-
lation of the distributed control states since we are interested
in the distributed components of the system and the locality
of the control states rather than the total system state. This
is due to the fact that information on the total state of a large
distributed software system is typically incomplete. The system
control states will basically be used for tracking the control
flow.

Abstract Data Types and Data Objects

Let T be the set of system-wide abstract data types and D
the set of system-wide data objects. A data object is a triple
< dn tn, v >, where dn ED is a data object name, tn E T is
a data type name, and v is the current value of the data object,
which is of data type tn. The abstract data types and the data
objects are graphically represented by small squares in our
modified Petri net.
An abstract data type is a collection of values and operations.

The operations of an abstract data type will subsequently be
defined in terms of the components of our model. The specifl-
cation of abstract data types will be carried out using tech-
niques similar to Guttag's algebraic approach [381, [39]. Al-
though the algebraic specification approach has its problems,
it is a well developed formal specification technique and is
close to the set theoretic nature of our design representation
due to its abstract algebra foundation.
An algebraic specification of an abstract data type consists

of a syntactic specification, a semantic specification, and a
restriction specification [39]. The syntactic specification
identifies type names, domain and range value sets, operation
names, and type checking information. The semantic specifi-
cation is an axiomatic definition of the meaning of operations.
The restriction specification basically identifies limitations
placed on values and operations, like error conditions. Seman-
tic and restriction specifications include the control states
under which the execution of an operation is started and com-
pleted. Some of the operations in a data type can be designated
as atomic or indivisable operations, which, when executed,
will either be carried out to their completion, or will be aborted

736

YAU AND CAGLAYAN: DISTRIBUTED SOFTWARE SYSTEM DESIGN

Input Control State Variables

Data Types

Ti
t -1 ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I I

Component Ci

IV
Data Objects

Output Control State Variables

i (Pi,exQein, Tie, Dif aFte,Gs)

Fig. 3. The external view of a software component.

leaving the state of the data objects associated with them
unchanged.
A system-wide set of abstract data types is partially known

by each component. This set contains elementary data types
like integer, real, Boolean, character, string, etc., with well
known value and operation sets, plus user defined abstract
data types.

Software Components (External View)

A software component C1 E C, or simply a component,
corresponds to a nonprimitive transition of a Petri net and
is represented by the 6-tuple

Ci = (Pi, Qi, Ti, Di, Fi, G1)

where Pi and Qi are the set of input control state variables and
the set of output control state variables, respectively; both are

nonempty subsets of S. Ti and Di are the set of abstract data
types and the set of data objects of the component; these are

subsets of T and D, respectively. Fi and Gi are the control
transfer specification and the data transfer specification of the
component, respectively.
A software component is shown in Fig. 3. Graphically, a

software component is represented as a rectangle. With respect
to a component, the connection of the control state variables
are represented by directed solid lines, the connection of data
types by solid lines, and the connection of the data objects by
directed dotted lines. The set of input control state variables
is used to start the execution of the component. During its
execution, the component changes the values of its output
control state variables. This continues until the execution of
the component terminates. The sets of input and output con-

trol state variables need not be mutually exclusive. Control state
variables common to both of these sets may be used to model
the ready (or busy) state of the component and/or to model
recursion. The sets Ti and D, contain the abstract data types
and data objects external to the component. These sets may
be shared with the other system components.
Two transfer specifications, F, and Gi, completely identify

all the control and data flows through a system component

Ci. The control transfer specification F1 is the pair WO)
F(I,)t). Ff() is the input control transfer specification which
provides the input control states which initiate the execution
of Ci and also describes how the input control state variables
change immediately after the execution of C1 begins. FY)t is

the output control transfer specification which provides the
sequence of output control states which will exist during
the execution of Ci. Each F$(i is an expression over the input
control state variables with the operators "*", '+", "++", and

"0". Application of these operators to the input control state
variables are defined in Table I. A parenthesized integer that
follows a control state variable defines the priority assignment
for that variable. It is assumed that a component Ci will start
to be executed if the expression for F(1) evaluates to "en-
abled." Note that because the order of application of the
operators can affect the outcome of F(') the expression for
F(1) should be parenthesized in order to explicitly indicate the
in

order of application of these operators. Operators "*", "+",

"++", and "13 " are graphically represented by the symbol
being placed between the arcs, or groups of arcs, that connect
the input control state variables to the component. Priority
assignments are shown similarly.
The output control specification F(f) specifies the sequence

of output control states which will exist during Ci's execution.
F(l) can be given in either a data-independent, data-depen-
out

dent, or mixed form. F')' is data-independent if it is an ex-
dent, ~~~~out

pression of the output control state variables of Ci together
with the operators "*", "+", "W", and ";". Application of
these operators to the output control state variables is defined
in Table II. Similar to F() it is necessary to parenthesize the
expression of F(') in order to indicate the order of application
of the operators.
F(ot is data-dependent if it is given in the general formn

F(iM F (i) ;F (i) ...F(iout out I out2' outn

where F.utJ is the specification of the jth change to the output
control state variables of Ci. Each F(i) is a'data-dependent

737

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-9, NO. 6, NOVEMBER 1983

TABLE I
INPUT CONTROL TRANSFER SPECIFICATION OPERATORS

States of input Results Values of input control
control state generated state variables after
variables before by the execution
execution operator

Pl P2 p1* P2 P1 P2
D D D

D E D

E D D -- -

E E E M(p1) -1 M(p2) -1

+ p2
D D D -- --

D E E M(p2
E D E M(p)-1 --

E E E M(p) -1 M(p) -

p1 2t 2

D D D -- --

D E E __ (p2)

E D E M(p1)-1 --

TABLE II
OUTPUT CONTROL TRANSFER SPECIFICATION OPERATORS

Values of output control
state variables

Operator P1 P2

Pi * P2 M(P1)+ 1 M(p2)+ 1

M(po- + 1 +1

Pi +P2 or WY(P2
or M(p1)+ 1 M(p2)+ 1

M(p1) + 1

P1 P2
or - M(p2)+1

First Then

P1 ; 2
M(p) + 1 M(p2) + 1

values of data. objects and the values of these control state
variables are incremented by one. An example of a data-de-
pendent output control transfer specification is the following:

Fout= if cond then {q1, q2 }else {q3}

m(p1) - 1 -- where "cond" is a Boolean expression on some data objects.
E E E A similar modifilcation of output control state variables can

oror__ M(p2)2 1 be specified in a data-independent way by the expression
p1(i) ++ p2(j) Fout = (qi * q2) + q3.

D D D - __ Font can also be given in a mixed form which is as a combi-
nation of data-independent and data-dependent specifications.

D E E - -1DE(p2) This can be done by specifying some Foutiof the general form
E D E M(p)- -- data-dependent Fout specification in the data-independent

form. Fout is generally data-dependent at the lower levels of a
-if i > j design representation, and is data-independent at the higher

E E E 14(p1)- 1 -- levels. Thus, data-dependent specifications are postponed to
if j > i M(p)-P 1 lower levels of design.

_,14(p2) -When a long (or infinite) and. repeating sequence of the same
p ED subexpression exists in the expression for Fout, such a sequence

D D D -- -- can be represented in a shorter notation by wnting the number

D- E E M(p) - 1 of times a subexpression is repeated ("*" if infinitely many) as
2 a superscript of that subexpression. As an example, Fotut=

E Dl E 4(p)E1DE M(pl)- 1 - @1(P +P2); (P1 +P2); (Pt +P2) can be written as Fout
E E D __ __ (Pi + P2), and Fout(pI +p2); ; (P +P2) as Fout

D : Disabled (M(p.) - 0) (Pt + p2)*. Note that the superscript is not a new operation;
1 it is introduced for notational convenience only. Simple ex-

E : Enables (N(p2 > O) amples of graphical representations of Fin and Fout are shown

-- : No change in the value in. Fig. 4. {-It seems that complicated expressions of both Fin
and Fout cannot clearly be represented in the graphical form.

M(p 3 The value of control state variable p ou
which is the number of tokens in P i The data transfer specification Gi of a component Ci allows

Ci to manipulate the values of the data objects associated with
it. Let RDi and WDi be the sets of input and output data ob-

function, jects of Ci, respectively, where RDi and WDi are not necessarily

F(i)v (D1): Qi-< Qii + disjoint. The data transfer specification can be given as a set
of functions Gi= {gi;, = 1,--, k }, where wdi =g1i (RD,),

where Qii C Qi, and and wdi CE WDi. The operations that can be used in each gi1
M(qk) +-M(qk) + 1 are those allowed by the abstract data types. The operations

can be combined to compose sequential components (pro-
for all qk E Qi1. That is, a subset Qii of the set of output cesses) using the ordinary language constructs for sequential,
control state variables is selected according to the current decision, and loop structures. Nondeterministic constructs are

738

YAU AND CAGLAYAN: DISTRIBUTED SOFTWARE SYSTEM DESIGN

I

I I+ I AI
Fig. 4. The graphical representation of the operators in input and out-

put control transfer specifications.

represented by guarded commands [40] and the independent
parallel operations by a set of operations.

Interconne&tion ofComponents
To complete the system structure, an interconnection of

system components can be defined from two points of view.
First, components are interconnected through their control
states variables. This is called control interconnection. Second,
they are interconnected through data objects if they share
them. This is called data interconnection.
The interconnection relation R is a binary relation on the

Cartesian product of the components:

RCCXC.

The actual interconnection of system components is made
through system control state variables, or through the system
data objects by selecting Pi's and Q1's, or Di's and Di's such
that if (CQ,C1)R, then Qi n P/ or Di nD That
is, if q E Qi and q E Pi, then components C1 and C' are con-

nected through the control state variable q, or if dmn EDi
and dmn ED1, then components Ci and C' are connected
through the shared data object dmn,. Thus, the control and
data interconnection relations can be defined as follows:

RI iii{(Ci, qk, C)Iqk E Qi nfP}
and

R2, i = {(Ci, dmn, Cj) Idmn E Di n D,}.
Now, R = (R 1, R2), where R 1 = union over R1, ii and R2 =

union over R2, i1;i = 1, 2, and= 1, 2,---.

System Structure

With respect to all the previous definitions, a distributed
software system can be completely represented by the 7-tuple

SYSTEM= (S, T,D, C, R,M, F)

where

S: set of control state variables
T: set of abstract data types
D: set of data objects
C: set of components
R: interconnection relation

Mo: initial marking function (or initial marking mOi)
F: final control state variables (F C powerset of S).

With respect to ordinary Petri nets, S corresponds to the set
of places, C to the set of nonprimitive transitions, R to the set
of arcs, and Mo to the initial marking function. The dynamic
behavior of the system is controlled by the initial control
state, the initial data state, and the individual transfer functions
of the system components.
The 7-tuple SYSTEM determines the global system structure

and dynamic behavior from the point of view of a global ob-
server. However, such a global system view can only be possi-
ble at the design phase, as opposed to the operational phase.
Although complete or partial information on the system's
structure and behavior can be gathered either by a central
component or by any component in a distributed manner,

such information usually reflects the status of the system con-

siderably before the current time. This is due to the delay in
data communication. Such a view of system models is com-
mensurate with large-scale distributed systems in which the
exact current status of the system is no longer required to be
known, and, in fact, may not be feasibly determined. An
example system representation is shown in Fig. 2. The 7-tuple
system representation will basically be used to represent the
internal structure of components rather than the global system
view.

Component Internal Structure

Central to the modeling of distributed software systems is
the concept of a component. Components will externally be
known by their external specifications. Internally, they will
be regarded as subsystems with their own structure and dy-
namic behavior. Using the top-down design approach, the
designer determines the internal structure and dynamic be-
havior of a component from its external specifications; and
using the bottom-up approach, the designer determines the ex-

ternal specification of a component from its internal structure
and dynamic behavior. Externally, a component starts execu-

tion as soon as a selected set of input control state variables is
enabled. Then, the output control state variables and data
objects of the component are modified as specified, and the
execution of the component is completed.
The basic idea for the development of the component con-

cept is to be able to leave the degree of concurrency to be
provided at a level of system description undefined. Although
the existence of concurrency can be determined by evaluating
the input and output control specifications, the degree of

Q*Q

739

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-9, NO. 6, NOVEMBER 1983

Input Control State Variables

1¼t

Output Control State Variables

Fig. 5. The internal view of a software component.

concurrency can only be determined through the knowledge
of the internal structure of the component. Similarly, from a

design point of view, the degree of concurrency for a given
design level can be decided when the component is designed,
and that component's design can be used to design higher
level components without requiring the knowledge of its
internal structure.
For large-scale distributed software systems, a system speci-

flcation at a certain level may result in complex descriptions
of components. Therefore, components can be thought of
as subsystems. Internally, a system component Ci, which is
shown in Fig. 5, can be completely characterized as the
subsystem

(Pi U Qi ULSi, Ti U LTi Di U LDi, {Cil, ,Cin
R j, Moij Fi)

where Pi, Qi, Ti, and Di are as defined before. LSi is the set
of local control state variables, LTi is the set of local abstract
data types, LDi is the set of local data objects, {Ci1, * * *, Cin }

is the set of subcomponents of Ci, Ri is the interconnection
relation, MOi is similar to MO, and Fi is similar to F. The
number of subcomponents in Ci, number of local control state
variables, number of data types and objects, interconnection
relation, and subcomponent transfer functions will be deter-
mined by a proper functional decomposition of the control
and data transfer specifications of Ci.

III. EXAMPLES

Now, we would like to use some examples in order to illus-
trate our design representation technique. Some common
operations are graphically shown in Fig. 6. These are typically
used in producing more detailed operations and are self-
explanatory.

Fig. 7 illustrates the first two levels of the design representa-
tion for a simple producer-consumer system. One producer
communicates through a shared buffer with one consumer.
The producer can place information into a buffer if it is empty
and the consumer can get information from the buffer if it is
full. If the buffer is full, the producer waits until the buffer is
emptied by the consumer and is informed by the consumer
that it has done so. If the buffer is empty, the producer places
information into the buffer; and if the consumer is waiting for
the buffer to be filled, it informs the consumer that it has
done so. The design shown in Fig. 7 is further decomposed
into subcomponents; one of these subcomponents is illustrated
in Fig. 8.
The data objects shared by the consumer and producer com-

ponents are BUF, a buffer with capacity one, and the Boolean
variables WP and WC used to represent the waiting states of
the producer and the consumer. Note that the wait state of
the producer (or the consumer) is represented by the data and
control states of the producer (or consumer). The producer
and consumer can manipulate these data objects only exter-

740

YAU AND CAGLAYAN: DISTRIBUTED SOFTWARE SYSTEM DESIGN

Start

T~~~~~

Parallel

exception ® L.- - SYNCHStr

Stopr
(a) (b) (c)

Branch on C

0~~~~~~~~~~~
(d) (e)

Fig. 6. The graphical representation of some common operations. (a) An operation.with interrupt and exception conditions.
(b) A 'join" operation. (c) A "fork" operation. (d) A conditional branch. (e) Possible double execution of component C3.

Fig. 7. The graphical representation of the first two design levels of a

producer-consumer system.

741

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-9, NO. 6, NOVEMBER 1983

P4

p9 P5
Fig. 8. A detailed design representation for the component "Putbuf."

nally, and only by the operations allowed by the types ofthese
data objects. Types may be assumed as buffer for BUF and
integer for WP and WC.

IV. DESIGN ANALYSIS

A given modified Petri net design representation can be ana-
lyzed by transforming the control flow aspects of the design
representation into an equivalent Petri net and then analyzing
that resultant Petri net. Given a modified Petri net as the
representation of a distributed software system design, some
of the analysis problems that we are interested in are the
safety of the control states, the mutually exclusive execution
of some software components, the proper termination of
software components, and the deadlock-freeness of the com-
ponents or the whole system.
A control state is said to be safe if its marking can only have

a value of 0 or 1 during the course of the execution of the
system. A system is safe if all of its control states are safe.
Two or more software components are mutually exclusive if
their execution durations do not overlap. A set of compo-
nents may be required to be mutually exclusive if they update
a shared data object in parallel. A modified Petri net compo-
nent terminates properly if no local control state variable of
the component remains enabled after the execution of the
component is terminated. Deadlock-freeness (liveness) of a
system that is represented by a modified Petri net must be
categorized in terms of the levels of deadlock-freeness. An
elementary component is deadlock-free at level 0 if it can
never be executed during the execution of the system. Such
an elementary component is called dead. Other levels can be

defined in a way similar to the way the liveness of a Petri
net transition is defined in [20], [31]. The deadlock-freeness
of the system can then be determined in terms ofthe deadlock-
freeness of a single component at a certain level, or of a set of
components, or of a set of components at different levels of
deadlock-freeness. The same concept applies to the deadlock-
freeness of a component if a component has a number of
subcomponents.

Petri net representations of components with different input
and output control transfer specifications are shown in Figs. 9
and 10, respectively. When a component is transformed into
its Petri net representation, some number of redundant Petri
net places and transitions may be generated. In addition, some
of the transitions are timed-transitions [30], and inhibitor arcs
may also exist in the equivalent Petri net representation.
There are two basic techniques for the analysis of Petri nets.

One is the analysis using the reachability graph (also called a
reachability tree), and the other is the analysis by linear alge-
bra. Advantages and disadvantages of both techniques with
respect to their capabilities to solve the Petri net problems are
reviewed in [20]. The reachability graph is a finite, compact
representation of the reachability set and the transition firings
of a Petri net. The reachability set is the set of all markings
that are reachable from an initial marking. A marking ml is
reachable from a marking m2 if ml can be obtained from m2
by firing a flnite number of transitions. An algorithm to con-
struct the reachability graph of a Petri net is given in [20].
The linear algebraic techniques use two matrices to represent
a Petri net graph and a vector for the initial marking. Then,
the net can be analyzed by solving matrix equations that in-

742

-- - -I
I
I
I
I

.--*LBtTFJ
--- -L.x.

I
I
I
I

L.,

YAU AND CAGLAYAN: DISTRIBUTED SOFTWARE SYSTEM DESIGN

Iiodified Petri
net representation

P1 P2

rn

P1 P2

p1 P2

PI P2

2 I

P1 P2
O

s j

Petri* net
representation

P1 P2

r ~CE

P1 p2

Fig. 9. Petri net representation of simple input control transfer specifications in modified Petri nets.

volve these matrices [20]. Since the matrix representation
cannot represent self-loops in a Petri net, the analysis by the
reachability graph technique is preferred.
The property of a modified Petri net first to be analyzed

must-be the safety of all control states. Since a control state
is either enabled or disabled, it is sufficient to represent a con-
trol state si by the marking M(si) = 1. Then the markings for
which M(s1) > 1, i.e., a control state being enabled more than
once simultaneously, are not meaningful and can be consid-

ered as design errors which must be detected during the anal-
ysis. If the Petri net that is being analyzed is an unbounded
net (i.e., some place can have an infinite marking), analysis
by the reachability graphs cannot in general answer the dead-
lock-freeness question. Some other analysis problems are also
suspected to be undecidable in this case. Timed-transitions,
inhibitor arcs, and redundant places and transitions in the re-

sultant Petri net complicate the generation and analysis of
the reachability graph.

743

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-9, NO. 6, NOVEMBER 1983

Petri net
representation

C

C

F 4,

C

q1

C-

ql q2

Fig. 10. Petri net representation of simple output control transfer
specifications in modified Petri nets.

Currently we are developing some tools for performing the
transformation of the design representations into Petri nets
and for analyzing these resulting Petri nets. Using this tech-
nique, we are limited to performing control flow analysis of
the type described previously. Thus, direct analysis of the
modified Petri nets both from control and data flow points of
view is also being studied.

V. DISCUSSION

A model for representing and analyzing the design of a dis-
tributed software system has been presented. The model is
based on a modified form of Petri nets and enables one to
represent both the structure and the behavior of a distributed
software system. A representation in the form of a modified
Petri net can be transformed into an ordinary Petri net which
can be analyzed in order to verify certain behavioral properties.

Several modifications to ordinary Petri nets have been carried
out in order to obtain the modified Petri net model. Petri net
places, which are renamed as control state variables, are exclu-
sively used to describe the control information in a design
representation. Transitions are treated as executable units of

software and are called software components. The simple
transition firing rule of Petri nets is generalized to input and
output control transfer specifications. Modifications to the
transition firing rule are sufficiently general so that both a large
number of conditions under which a software component can

start to be executed and the mechanism by which a software
component interacts with its control environment can be
specified in a compact form. Data objects which are connected
to software components by directed arcs, and data types
which are also connected to software components are added
to a Petri net so that data aspects of a design representation
can be described. A data transfer specification is associated
with a software component to describe how a component
modifies its data environment.
For the purpose of design analysis, structural and behavioral

properties of a design representation given in the form of a

modified Petri net are identified. The modifled Petri net is
first transformed into an equivalent ordinary Petri net, then
that resulting Petri net is analysed in order to verify behavioral
properties such as safeness, deadlock-freeness, mutual exclu-
sion, and proper termination. Although certain analysis prob-
lems for Petri nets are known to be undecidable, the limitation
of boundedness enforced through the transformation process

results in the removal of any undecidable problems. Still, the
exponential complexity of boundedness and liveness problems
makes the analysis quite difficult.
More work needs to be done to determine whether the input

and output control transfer specifications in their current form
can completely specify all possible forms of the execution of
components and all possible forms of output control state set
modifications. For large-scale distributed software systems,
some design experimentation is necessary to determine the
type and amount of detail a final design level must include for
the purpose of separating the design and programming issues.
The modified Petri nets are currently unable to represent the
performance and reliability constraints as part of the design
representation. Also, the software is assumed to have a static
structure. Therefore, there is a need to extend modified Petri
nets so that additional constraints and the dynamic structure of
distributed software systems can be represented during the
design process. Such an extension of the representation tech-
nique will require the development of extensive analysis tech-
niques for validating the performance and reliability constraints.
Finally, the representation technique must be integrated into
an overall design methodology. The methodology must address
the critical issue of system partitioning and it must be com-

patible with the representation scheme.

ACKNOWLEDGMENT

The authors would like to express their thanks to S. Shatz
of Northwestern University for many helpful discussions.

REFERENCES
[1] D. L. Parnas, "On the criteria to be used in decomposing systems

into modules," Commun. Ass. Comput. Mach., voL 15, no. 12,
pp. 1053-1058, 1972.

[2] 0. J. Dahi E. W. Dijkstra, and C. A. R. Hoare, Structured Pro-
gramming. New York: Academic, 1972.

Modified Petri
net representation

744

YAU AND CAGLAYAN: DISTRIBUTED SOFTWARE SYSTEM DESIGN

[3] W. P. Stevens, G. F. Myers, and L. C. Constantine, "Structured
design," IBM Syst. J., voL 13, no. 2, pp. 115-139, 1974.

[4] E. Yourdon and L. L. Constantin, Structured Design. New
York: Yourdon, Inc., 1975.

[5] M. A. Jackson, Principles of Program Design. London: Aca-
demic, 1975.

[6] P. Brinch-Hansen, "Distributed processes: A concurrent program-
ming concept," Commun. Ass. Comput. Mach., voL 21, no. 11,
pp. 934-941, Nov. 1978.

[7] C. A. R. Hoare, "Communicating sequential processes," Commun.
Ass. Comput. Mach., voL 21, no. 8, pp. 666-677, Aug. 1978.

[8] - "Monitors: An operating system structuring concept," Com-
mun. Ass. Comput. Mach., voL 17, no. 10, pp. 549-557, Oct.
1974.

[9] 0. J. DahL B. Myhrhaug, and K. Nygaard, Simula 67-Common
Base Language. Oslo: Norwegian Comput. Cen., May 1968.

[10] C. Hewitt and R. Atkinson, "Parallelism and synchronization in
actor systems," in Proc. 4th ACM Symp. Principles of Program-
ming Languages, Jan. 1977, pp. 267-280.

[11] R. Milner, A Calculus of Communicating Systems (Lecture Notes
in Comput. Sci), voL 92. New York: Springer-Verlag, 1980.

[12] G. Kahn, "The semantics of a simple language for parallel pro-
gramming," in Proc. IFIP Congr. 74, Aug. 1974, pp. 471-475.

[13] D. B. MacQueen, "Models for distributed computing," IRIA
Tech. Rep. 351, Apr. 1979.

[14] C. A. Petri "Kommunikation mit Automaten " Ph.D. disserta-
tion (in German); trans. by C. F. Greene, Suppi 1 to RADC-TR-
65-337, voL 1, Rome Air Develop. Cen., Griffiss AFB, NY, 1965.

[15] A. W. Holt et at, "Final report of the information system theory
project," RADC-TR-68-305, Rome Air Develop. Cen., Griffiss
AFB, NY, Sept. 1968.

[16] A. W. Holt, and F. Commoner, "Evenits and conditions," inRec.
Project MAC Conf. on Concurrent Syst. and Parallel Comput.,
1970, pp. 3-52.

[17] J. B. Dennis, "Modular asynchronous control structures for a
high performance processor," in Rec. Project MAC Conf on Con-
current Syst. and Parallel Comput., 1970, pp. 55-80.

[18] W. Brauer, Net Theory and Applications (Lecture Notes in Com-
put. Sci), voL 84. New York: Springer-Verlag, 1980.

[19] J. L. Peterson, "Petri nets," ACM Comput. Surveys, voL 9, pp.
223-252, Sept. 1977.

[20] -, Petri Net Theory and the Modeling of Systems. Englewood
Cliffs, NJ: Prentice-HalL 1981.

[21] S. S. Yau, C. C. Yang, and S. M. Shatz, "An approach to distrib-
uted computing system software design," IEEE Trans. Software
Eng., voL SE-7, pp. 427-436, July 1981.

[22] L. J. Mekly, and S. S. Yau, "Software design representation using
abstract process networks," IEEE Trans. Software Eng., vol. SE-
6, pp. 420-435, Sept. 1980.

[23] P. M. Lu, and S. S. Yau, "A methodoiogy for representing the
formal specification of distributed computing system software
design," in Proc. 1st Int. Conf Distributed Comput. Syst., Oct.
1979, pp. 212-221.

[24] S. S. Yau, and S. M. Shatz, "On communication in the design of
software components of distributed computer systems," in Proc.
3rd Int. Conf Distributed Comput. Syst., Oct. 1982, pp. 280-
287.

[25] I. M. Campos, and G. Estrin, "Concurrent software system de-
sign," in Proc. 3rdlnt. Conf. Software Eng., May 1978, pp. 230-
242.

[26] P. E. Lauer, P. R. Torrigiani, and M. W. Shields, "COSY-A sys-
tem specification language based on paths and processes," Acta
Informatica, voL 12, pp. 109-158, 1979.

[27] P. E. Lauer, M. W. Shields, and E. Best, "Design and analysis of
highiy parallel and distributed systems," in Abstract Software
Specifications (Lecture Notes in Comput. Sci), voL 86, D.
Bjorner, Ed. New York: Springer-Verlag, 1980, pp. 451-503.

[28] T. Agerwala, "An analysis of controlLng agents for asynchronous
processes," Dep. Comput. Sci., Johns Hopkins Univ., Rep. TR-
35, Aug. 1974.

[29] S. S. Patil "Coordination of asynchronous events," Ph.D. disser-
tation, TR-72, Project MAC, MIT, Rep. TR-72, June 1970.

[30] C. Ramchandani, "Analysis of asynchronous sytems by Petri
nets," PIhD. dissertation, Project MAC, MIT, Rep. TR-120,
1973.

[31] F. Commoner et al., "Marked directed graphs," J. Comput. Syst.
Sci, voL 5, pp. 511-523, Oct. 1971.

[32] G. J. Nutt, "Evaluation nets for computer system performance
analysis," in Proc. 1972 Fall Joint Comput. Conf., voL 41, pp.
279-236.

[33] J. D. Noe, and G. J. Nutt, "Macro E-nets for representation of
parallel systems," IEEE Trans Comput., voL C-22, pp. 718-727,
Aug. 1973.

[34] J. D. Noe, "Hierarchical modeling with pro-nets," in Proc. Nat.
Electron. Conf., voL 32, Oct. 1978, pp. 155-160.

[351 W. Trattnig and H. Kerner, "EDDA-A very high-level program-
ming and specification language in the style of SADT," in Proc.
Compsac 80, Oct. 1980, pp. 436-443.

[36] R. Valette, and M. Diaz, "Top-down formal specification and
verification of paraDel control systems," Digital Processes, voL 4,
pp. 181-199, 1978.

[37] C. A. Petri "Interpretations of net theory," GMD-ISF Rep. 75-
07, July 1975.

[38] J. V. Guttag and J. J. Horning, "The algebraic specification of
abstract data types," Acta Informatica, vol 10, pp. 27-52, 1978.

[39] J. Guttag, "Notes on type abstraction (version 2)," IEEE Trans.
Software Eng., voL SE-6, pp. 13-24, Jan. 1980.

[40] E. W. Dijkstra, "Guarded commands, nondeterminacy and formal
derivation of programs," Commun Ass. Comput. Mach., voL 18,
pp. 453-457, Aug. 1978.

Stephen S. Yau (S'60-M'61-SM'68-F'73) re-

ceived the B.S. degree from the National Tai-
wan University, Taipei, Taiwan, China, in 1958,
and the M.S. and Ph.D. degrees from the Univer-
sity of Illinois, Urbana, in 1959 and 1961, re-
spectively, all in electrical engineering.
He joined the faculty of the Department of

Electrical Engineering, Northwestern University,
Evanston, IL, in 1961, and is now Professor and
Chairman of the Department of Electrical Engi-
neering and Computer Science. He is currently

interested in reliability and maintainability of computing systems, soft-
ware engineering, and distributed computer systems. He has published
numerous technical papers in these and other areas.
Dr. Yau is a Fellow of the Franklin Institute from which he received

the Louis E. Levy Medal in 1963; he is also a Fellow of the American
Association for the Advancement of Science. He received the Golden
Plate Award of the American Academy of Achievement in 1964, and
the first Richard E. Merwin Award of IEEE Computer Society in 1981.
He was the President of the IEEE Computer Society in 1974-1975, the
Division V (Computer Society) Director of the IEEE in 1976-1977,
and the Chairman of the IEEE Technical Activities Board Development
Committees in 1979. He has been a Director of the American Federa-
tion of Information Processing Societies (AFIPS) from 1972 to 1982
and is now the Vice President of AFIPS. He is also now the Editor-in-
Chief of IEEE COMPUTER magazine. He was the Conference Chair-
man of the First Annual IEEE Computer Conference, Chicago, 1967,
and the General Chairman of the 1974 National Computer Conference,
Chicago; the General Chairman of the IEEE Computer Society's First
International Computer Software and Applications Conference, Chi-
cago, 1977 (COMPSAC '77), and the Chairman of National Computer
Conference Board in 1982-1983. He is also a member of Association
for Computing Machinery, Society for Industrial and Applied Mathe-
matics, American Society for Engineering Education, Sigma Xi Tau
Beta Pi and Eta Kappa Nu.

Mehmet U. Caglayan (S'76-M'82) was born in Ankara, Turkey, on July
21, 1951. He received the B.S. degree in electrical engineering and the
M.S. degree in computer science from the Middle East Technical Uni-
versity, Ankara, Turkey, in 1973 and 1975, respectively, and the Ph.D.
degree in computer science from Northwestern University, Evanston,
IL, 1982.
He is now an Assistant Professor at the University of Petroleum and

Minerals, Dhahran, Saudi Arabia.
Dr. Caglayan is a member of Turkish Society of Electrical Engineers

and the Association for Computing Machinery.

745

