
 THE 6TH ASIAN COMPUTAITIONAL FLUID DYNAMICS CONFERENCE
 TAIWAN, OCTOBER 24~OCTOBER 27, 2005

Paper number n n-1

Towards Petri nets application in parallel program debugging

D. I. Kharitonov 1, G. V. Tarasov 2

1. Institute for Automation and Control Processes, 5 Radio st., Vladivostok, Russia, 690041
(demiurg@iacp.dvo.ru)

2. Institute for Automation and Control Processes, 5 Radio st., Vladivostok, Russia, 690041
(george@dvo.ru)

Abstract

In spite of variety of existing tools and approaches, debugging remains the most difficult and laborious
stage of parallel software development process. This article investigates application of Petri net theory
in parallel programs debugging process. It is shown, that in terms of Petri nets can be represented such
valuable aspects of debugging process as visual model of parallel program, debugging language and
actions. Moreover in terms of Petri nets we can reason about correctness of parallel program
modification with debug information.

Keyword: parallel programming, parallel program debugging, debugging techniques, Petri nets

1. Introduction

Parallel programming gives us an opportunity for solving those problems, that couldn't be
solved in sequential programming due to resource restrictions on memory volume or on solving time.
However, when instead of sequential programming we use parallel one, we come across on a set of
problems, which was more or less successfully solved in sequential programming. In this set we can
distinguish such problems as scalability of parallel programs, reusing of source text, and problems of
correctness and debugging of parallel programs.

The problem of parallel programs debugging have an especial actuality, because time
consumption of parallel programs debugging at the present time often exceed such expenses for initial
parallel program source writing. The base of this problem is non-deterministic behaviour of parallel
program execution, which makes cyclic repetition of erroneous situation very difficult and even more
difficult investigation of error reason.

In the basis of modern debugging tools, most powerful of which is TotalView, lays down an
idea of source program modification with addition of debugging information and code. This relatively
small additional part of program deliver to debugging system necessary information for monitoring
program state and realizing usual set of service functions, by means of which programmer can control
execution of program and analyze its current state. Those service functions are stop and resume
sequential process execution, setup breakpoints and examination of process memory and stack.
Historically, all above-mentioned functions control execution of one single process, and could de
expanded on user defined process group. In this sense parallel program debug tool differs from
sequential programs debuggers by extended functionality of process group definition for debugging
actions. This functionality directly linked with description language of parallel program state. At the
present time most of debuggers for this purpose use the same language that was used for initial coding.
Therefore using OpenMP standard we can use "teams" like groups of processes, and when using MPI
standard - communicators define there own groups of processes. But using OpenMP standard
programmers are free from routine and sophisticated work on interprocess communications, and this
result in quite easy debugging stage of programming comparable with than one in sequential
programming. On the contrary, when using MPI standard, parallel program correctness is directly
depend on correctness of programmer written interprocess communication procedures, and increased
complexity of parallel program debugging does not compensate by some simplification of process
grouping with communicator help.

In this paper we propose new approach to debugging of parallel MPI-programs with help of
Petri nets - formal language of parallel and distributed system specification. Using Petri nets we will

D.I. Kharitonov, G.V. Tarasov

 n-26th Asian Computational Fluid Dynamics Conference, Taiwan, 2005.

gain natural language for parallel program state specification and new powerful way for implicit
definition of sequential process subsets by means of Petri nets markings and steps for the sake of
parallel program debugging (Work is carried out at financial support of Presidium of the Russian
Academy of Sciences – program №17 and the Russian Foundation of Basic Research – grant №04-07-
00287).

2. Petri net model of communicating sequential processes

Petri nets and the most of extensions of this language [2, 3] are usually grounded on the algebra-
plural approach to creation of descriptions. The descriptions received at this approach, strongly differ
from usual programming languages text representation. In addition standard for the most of
programming languages possibilities of usage of data type definition with a lot of values (for example,
real, float, integer and other) complicate application of Petri nets for the exact programs specification.

 For simplification of the program description authors have developed the extension of the Petri
nets, called Petri nets for programming (PNP). Its purpose is to model structure of parallel program
with a lot of values set, described in terms of imperative programming language. There are two kinds
of model in PNP: plain Petri net and hierarchical Petri net.

Plain Petri net are specified by its own structure and a set of special inscriptions, attached to
each element of the net. Structure of plain Petri net, as well as in common Petri nets, consists of a set
of places, transitions and arcs. Places are used to specify a state of model and are represented by
circles on pictures. Inscriptions described tokens can be attached to any place. Transitions are used to
specify events possible in model and represented by rectangles on pictures. Excitation predicate can be
attached to transition to specify whether transition can be fired or not. Transition can be fired only if
value of predicate equals true. Inscriptions called substitutions are attached to arcs ingoing to
transition. This type of inscription gives ingoing tokens names that are used in predicates and
expressions. Expression is a type of inscription that attached to arc outgoing from transition. Based on
ingoing tokens expression calculate new values of tokens. In addition to predicate inscriptions
transition can contain inscriptions, described rules of access point participation. To ensure
independency of inscription language from notation rules interpretator is used. It provides functioning
of constructions of imperative programming languages in models described in PNP.

Fig. 1. Plain Petri net

Fig. 2. Hierarchical Petri net (function call and body)

Hierarchical PNP is defined as composition of a number of PNP; each of them is represented as

rectangle on a picture. Composition operation is described by two nets and two access points defined
in each net. Access points are represented by little squares on net rectangle. Access points are linked
with lines. Rules of nets fusion guarantee that transitions with same marks can be fired only
simultaneously. Example of model of function call and function body is displayed on Fig. 2. Results of
composition of function call with its body are displayed on Fig. 3.

Towards Petri nets application in parallel program debugging

 n-3
6th Asian Computational Fluid Dynamics Conference, Taiwan, 2005.

Fig. 3. Result of composition

Using PNP we can define method of parallel program model construction as following. Parallel

program control flow transforms to the Petri net structure, parallel program processes with its own
data transform into tokens. The control flow of the received model is handled by data, the description
of operations above which remains in terms of the source programming language [4].

The models of the parallel program received by the given method possess graphics
representation which can be used at debugging.

3. Debugging language in terms of Petri nets

Debugging of programs is a laborious process which for long time of the development has got
own terminology which we name language of debugging. During debugging the developer uses such
terms, as obtaining of a debug code, start of the program on debugging, a stop and resume of
execution, execution of the program on steps, setting a breakpoints and research state of the program.
In Petri nets researcher performs actually similar operations.

The evident tool of investigation of properties of the modeled program is simulation which
allows displaying program functioning in dynamics. Simulation possesses many concepts similar to
debugging. So, start of the program on execution, corresponds to start of simulation from initial
marking. Initial marking in this case models a point of start of the program.

Each following step of simulation is an execution of some set of transitions and moving of
tokens from ingoing places to outgoing ones. The given action is similar to step-by-step execution of
the debugged program. In the theory of Petri nets distinguish interleaving and non-interleaving
semantics of transition fired. Interleaving semantics defines firing of each separate transition for once.
Non-interleaving operation allows to define firing step of several transitions. In conformity with
debugging of parallel programs it can mean, that step firing is similar to detailed execution of each
separate command of process. Non-interleaving operation can mean group execution of one or more
operations in several processes of the program. Alternation and classification of the given possibilities
gives the flexible tool for definition of a set of operations in the parallel program which the developer
plans to perform for one step of execution. Also it is necessary to note, that if transition models
function call, that, as well as real debuggers, it is possible to do step-by-step execution of each
operation of function, and possible to treat transition firing as execution of one complex action. It is
possible to interrupt execution of simulation if some marking is reached. In this case marking of a
Petri net corresponds to concept of a breakpoint of traditional debugging tools.

Reachability of some marking corresponds to reachability of some state in the program.
Representing the marking on the Petri net graph allows to present evidently a current state of each
process separately and the program entirely. The data values, described in tokens, allows to receive the
additional information on the possible reasons of an error.

4. Debugging technique in terms of Petri nets

The main purpose of debugging is detection program errors, search and correction of the
reasons of their occurrence, testing of the corrected code. For this purpose the developer performs
multiple execution of the program with the same data and conditions of execution. Using the
mechanism of breakpoints and step-by-step execution, the developer reaches a place of occurrence of
an error.

D.I. Kharitonov, G.V. Tarasov

 n-46th Asian Computational Fluid Dynamics Conference, Taiwan, 2005.

Usage PNP in this case allows visualizing process of execution of the program, producing more
information for user on a current state of the parallel program.

Besides advantages of visual representation, simulation of model of the program allows to save
sequence of transitions firing and sequence of accessible states. This information represents history of
program execution till the given moment and allows to receive the additional information for the
analysis of the reasons of error. For highlighting of the certain elements in Petri nets there is a concept
of a marks which can be used at saving history of firing transitions. Allocation of marks in real
programs is possible in two variants. Ether it is performed by the user manually, or is automatically
performed by various libraries for monitoring parallel program state. In Petri nets both cases are
possible. It is possible to setup a mark according to own reasons in the given conditions of debugging,
and it is possible to realize automated setup of marks according to some criteria which the program
possesses. Representation by transitions of some special function calls can be one of criteria. For
example, in MPI-program this criterion can be a function call of interaction. In general, it is necessary
to note, that presence of representation of the program in the form of model allows to build as much as
complex algorithms of automatic arrangement of a marks according to the user criteria.

Based on event tracing, the debugger can handle execution of the program, achieving identical
program behavior. Presence of the given possibility simplifies debugging in conditions of
non-determined execution environment, when behavior of the program is varied in parallel program
restarts.

5. Correctness of debugging process

For debug process to be correct it is necessary to show, that the program modified by adding
debug information does not change its visible behavior. Or in other words that debug version of
program is equivalent by behavior to release version of program.

At first we should note that parallel program, written with MPI standard is a set of
communicating sequential processes [1]. And sequential process can be described in terms of plain
PNP. Therefore parallel program can be represented as hierarchical PNP net, composed from
sequential processes nets and nets, which describe functions used in program. As for the executing
program we can model it by adding PNP net that model executing environment, to hierarchical PNP
net.

Sender:
MPI_Initialize MPI_FinalizeMPI_Send

Receiver:
MPI_Initialize MPI_FinalizeMPI_Recv

MPI-Model:

Fig. 4. Example of parallel MPI-program

The part of events that occur in parallel program is in one or another way visible, that is appears
in interaction with physical devices or with other processes and other part of events is invisible. Only
visible events are important for the user of the program. That is if two programs will display identical
visible behaviour, for the user they will be undistinctable or just identical. In terms of Petri nets it
means, that for matching parallel programs presented by Petri nets bisimulation equivalence criteria
can be used.

Towards Petri nets application in parallel program debugging

 n-5
6th Asian Computational Fluid Dynamics Conference, Taiwan, 2005.

In order to debug parallel program translator, compiler or another tools add debug information
to parallel program. This debug information adds new events to initial net visible only for debugger.
So we can speak of this event as invisible in other contexts except debugging.

Sender:
MPI_Initialize MPI_Finalize

DebugInfo
(MPI_Initialize)

MPI_Send

DebugInfo
(Start_Send)

DebugInfo
(Stop_Send)

DebugInfo
(MPI_Finalize)

Receiver:
MPI_Initialize MPI_Finalize

DebugInfo
(MPI_Initialize)

MPI_Recv

DebugInfo
(Start_Recv)

DebugInfo
(Stop_Recv)

DebugInfo
(MPI_Finalize)

Debugger model: MPI model:

Fig. 5. Example of parallel MPI-program debugging

It seems quite obvious, that adding to the state-machine Petri net invisible events that are not

changing sequences of initial events, does not change visible behavior of the net. The fact is less
obvious, that if all the transitions added in compositional of a Petri net are not visible, and do not
change sequence of initial events than visible behavior of the modified net does not change. This fact
follows from construction algorithm of reachability tree for comparing Petri nets on bisimulation
equivalence.

Therefore we can say that a criterion of correctness for debug process is that the code added to
the program is not visible and does not change sequence initial events. So we can see that debugging
process can be presented in Petri nets and that Petri nets give an opportunity to formally proved
correctness of debug tools. Using obtained criteria informally we can say, that for correct debugging it
is necessary, that the added code did not change the variables of the parallel program and did not use
interacting functions, visible in the source program.

References (Example)

[1] Hoare C.A.R., “Communicating Sequential Processes”, Series in Computer Science. Prentice-Hall

International, (1985).
[2] Best E., Devillers R., Koutny M., “Petri Net Algebra”, Springer-Verlag, (2001).
[3] Jensen K., “Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use. Volume 1, Basic

Concepts”, Monographs in Theoretical Computer Science, 2nd edition, Springer-Verlag, (1997).
[4] Golenkov E.A., Sokolov A.S., Tarasov G.V., Kharitonov D.I., “Experimental version of parallel programs

translator from Petri nets to C++”, Proc. of the Parallel and Computational Technologies, Novosibirsk,
Russia, (2001), pp 226-331.

