SKaMPI. The Special Karlsruher
MPI-Benchmark
User Manual®

— updated and revised version for SKaMPI 4.x by Werner Augustin

R. H. Reussner
Universitat Karlsruhe
Department of Informatics
Germany
reussner@ira.uka.de

October 6, 2004

!This document originally appeared as Interner Bericht (Technical Report) 99/02
at the Department of Informatics, Universitat Karlsruhe, Germany

Abstract

SKaMPIis the Special Karlsruher MPI-Benchmark. SKaMPI measures the per-
formance of MPI [7][3] implementations, and of course of the underlying hard-
ware. It performs various measurements of several MPI functions. SKaMPTI's
primary goal is giving support to software developers. The knowledge of MPI
function’s performance has several benefits: The software developer knows the
right way of implementing a program for a given machine, without (or with
shortening) the tedious time costly tuning, which usually has to take place.
The developer has not to wait until the code is written, performance issues can
also be considered during the design stage. Developing for performance even
can take place, also if the considered target machine is not accessible.

MPI performance knowledge is especially important, when developing portable
parallel programs. So the code can be developed for all considered target plat-
forms in an optimal manner. So we achieve performance portability, which
means that code runs without time consuming tuning after recompilation on a
new platform.

Contents

1 Running SKaMPI 2
1.1 Imtroduction. 2
1.2 Installation 3

1.2.1 Getting SKaMPI 3
1.2.2 Compiling SKaMPI 3
1.3 Running SKaMPI. 4
1.3.1 Changes to SKaMPI4.1 5
1.3.2 Changesto SKaMPI4.0 5
1.3.3 The different parameter files 5
1.4 Generatingareport 6
1.5 The measurements: a short overview 7
1.5.1 Measurement of point-to-point operations 7
1.5.2 Measurements with the master worker scheme 8
1.5.3 Measurements of collective operations 8
1.5.4 Measurement of local operations 11

2 Customizing and trouble-shooting 12

2.1 Configuring the SKaMPI parameter file 12
2.1.1 Thesections 12
2.1.2 Example and default values 15
2.1.3 The grammar of the different sections 15
2.1.4 The MEASUREMENTS section 16
2.1.5 Exampleofanentry 19
2.1.6 A note to the preference of the parameters Max Steps,

Time Suite and Standard error, Time Measurement . . 20
2.1.7 Grammar of the MEASUREMENTS section 21
2.1.8 User-defined datatypes in SKaMPI 22
2.1.9 Virtual Topologies 29

2.2 Configuring the report generator 30
2.2.1 Comparisonso 30
2.2.2 Additional tex-modules 31
2.2.3 More detailed graphs 0L 31
224 Givenmodulefiles oL oL 32
2.2.5 Extra text for suiteso 32

2.3 When SKaMPIcrashes. 32

3 Measurements in detail 35

3.1 But what ismeasured? oL Lo 35

311 Example. 35

3.1.2 Point-to-point pattern 39

3.1.3 Master-worker patterno 40

3.14 Barrier measured collective pattern 40

3.1.5 Synchronous measured collective pattern 41
3.1.6 Synchronous measured collective pattern using virtual topolo-

gles . .o 42

3.1.7 Simple pattern 42

3.2 Theoutputfile oL 42

ii

Acknowledgements

This technical report mainly offsprings from my diploma thesis [5]. I would
like to express my gratitude to my advisers P. Sanders and L. Prechelt. Espe-
cially the algorithm for automatic parameter refinement is based on ideas of P.
Sanders. I would like to thank for many fruitful discussions.

Chapter 1

Running SKaMPI

1.1 Introduction

SKaMPI is the Special Karlsruher MPI-Benchmark. SKaMPI measures the per-
formance of MPI implementations, and of course of the underlying hardware. It
performs various measurements of several MPI (Ver. 1.1) functions. The results
are stored in a text file, from which a report can be generated automatically.

SKaMPTs primary goal is giving support to software developers. Software
developers are faced with severals problems when designing and implementing
code for parallel environments. First of all the code has to show the best per-
formance. This implies that a program’s performance has to be measured and
tuned during numerous sessions. Further on, cost intensive software develop-
ment is more profitable, when the product can be used on several platforms,
i.e., is portable without a new tuning for each machine. The message passing
interface (MPI) [7][3] is a standard for a library to program message passing ma-
chines. MPI has been created by the MPI-forum, a group of researchers from
academia and industry. MPI is a big step forward towards portable software
for parallel platforms, since programmers no can rely on one interface standard,
instead of several vendor-dependent interfaces. Instead of principal excluding
efficient ways of implementing the MPI standard on certain machines, the MPI
standard comprises several similar functions. So MPI offers many alternatives
when designing and implementing a parallel algorithm. These alternatives offer
a great potential for optimization.

This potential is twofold: First, the knowledge of several MPI function’s
performance allows the software developer the right way of implementing a
program for a given machine, without (or with shortening) the tedious tuning.
Even better, the developer has not to wait until the code is written, performance
issues can also be considered during the design stage. In fact, developing for
performance even can take place, also if the considered target machine is not
accessible, or a workstation is used for development, which also can lower cost
of development.

Second, if the programmer knows the MPI function’s performance on sev-
eral machines, the programs can be developed for performance for all considered
target platforms. So we can speak of a performance portability, instead of com-
pile portability. Compile portability means that a parallel program, developed

1.2. INSTALLATION 3

and tuned on platform A, is recompiled on platform B, and has to be tuned for
platform B. So this in not what we really understand under portability. Unlike
compile portability, performance portability means that a program is developed
with MPI function’s performance on all targeted platforms in mind, so that you
really just have to recompile.

The SKaMPI project [6] tries to support these goal of performance and
performance portability through two issues: First we offer a user configurable
benchmark suite and a report generator, downloadable from the web. So each
user can measure the performance of accessible machines in terms of MPI, gen-
erate a report, and can draw its own conclusions from this. Second, we pro-
vide a public result database, where we store SKaMPTs results from many
machines, if permitted. So, please, email a copy of your result file to us (that
is: reussner@ira.uka.de). So you can support performance portability and
design for performance, because for these concepts we need the data of many
machines.

1.2 Installation

1.2.1 Getting SKaMPI

The easiest way to obtain the SKaMPI packet is to download it from the
SKaMPI homepage: http://liinwww.ira.uka.de/ skampi/ The SKaMPI-
file you find there is a gnu-zipped tar-file. Thus you can unpack it with tar
-xvzf skampi4.tar.gzl.

However, this will create the whole directory-tree of SKaMPI

./skampi4
./skampi4/report_generator

In the SKaMPI directory are the source files you need for compiling SKaMPL
In the directory skampi/report_generator you will find the report generator
and its driver files.

1.2.2 Compiling SKaMPI

The benchmark program itself consists of one source-file (skosfile.c?), so
that you can compile it with just one compiler call.> This compiler call de-
pends on your machine. On an IBM SP under AIX call mpcc -1m -o skosfile
skosfile. However, note that the math-library (-1m) is necessary for linking.
You should not request any optimizations by the compiler. Some of SKaMPTI's
function calls do not have many parameters. The compiler would load the pa-
rameter into registers. This would give an unrealistic touch to our data, since
this would not happen in realistic “real” applications. Also SKaMPI contains
empty dummy functions, just created to measure the overhead of a function
call. These function should also no be optimized away.

LIf your version of tar has no option z, you can call gnu-unzip first (gunzip skampi.tar.gz
and then tar (tar -xvf skampi4.tar)

2skampi-in-onesourcefile

3During development we use several modules, which are merged together to skosfile.c.
This eases distribution, versioning, and compiling on the target platforms. If you are inter-
ested in reusing the code, please send an email to obtain the modules, which probably eases
understanding of the code.

4 CHAPTER 1. RUNNING SKAMPI

1.3 Running SKaMPI

Unfortunately starting an MPI program is as dependent on your system as
compiling. Usually you can start MPI programs with the mpirun-command,
but there is no standard for its parameters. Using mpich you start the bench-
mark with mpirun -np 16 skosfile with 16 processes. Note: Some systems
like the IBM SP have a different command for starting parallel programs (poe)
than mpirun. In case of trouble, please ask your local system administrator.
SKaMPI needs to be started with two or more processes. How many you use,
depends on what you want to measure.* Some operating environments request
further information on the program to start, such as memory or time require-
ments. The memory needed by SKaMPI is specified with the @QMEMORY
keyword in the parameter file (.skampi). (Please see section 2.1 for further
information about the parameter file.) As rule of the thumb you should give a
megabyte extra, for internal buffers, etc. The time that SKaMPI needs to mea-
sure depends on the accuracy you request, and the number of measurements you
asked SKaMPI to perform.5 To mention a typical value: SKaMPI runs with all
measurements and an accuracy of 3 percent less than half an hour on an IBM
SP using 16 nodes using an 8 MB message buffer.

SKaMPI stores its results in a text file. The name of this text file is skampi.out
by default. To change that edit the @OUTFILE line in the parameter file (see
2.1.1). If other processes run during measuring, they may disturb SKaMPL
So you might find it useful running SKaMPI more than once. For every run
SKaMPI creates a new output file skampi.out.1, skampi.out.2 and so on.
Note that the results of the actual run are always stored in skampi.out.

The other file SKaMPI creates is a log file (skampi.log)®. It is used by the
recovery-mechanism. But you may also have a look into it. Several warnings
and comments are stored in it.

Before starting the Benchmark we urgently recommend to fill out the
@MACHINE, @NODE and @NETWORK parts of the parameter file . skampi
in a detailed manner.

@QCOMMENT Section for comments. You may enter any text you want.
(Well, text without other section names, of course!)

@MACHINE The text in this section describes the machine, you run
SKaMPI on. You can add any other relevant details of a mea-
surement here. Note that there are also special sections for the
network (GNETWORK) and the nodes (@NODE). SKaMPI assumes
that the first line of the @M ACHINE-section contains just the
name of the machine.

@NODE In this section you may describe the type of nodes you use. If
there are several types, please describe them all, e.g., in terms

4Well, you may ask, what is measured. For a quick overview please have a look in the
example report skarep.example.ps or in the section 1.5. A more detailed technical description
you will find in section 3.1.

5You can change them in the @STANDARDERROR- and @MEASUREMENTS-section respectively.
You also can give a time limit for measurements through the sections @TIMESUITEDEFAULT and
@TIMEMEASDEFAULT. (For further information please see Section 2.1.4.)

1ts name can be changed in the @LOGFILE line of the parameter file.

1.3. RUNNING SKAMPI 5

of processor type, clock rate, caches and memory (types, orga-
nization, size), operating system, etc.

@NETWORK Here you may type in, which network you use. Often
there are several versions of a communication network for one
machine (for example the IBM SP).

QUSER Here is your place. The first line of this section is used by
the report-generator (dorep4.pl) and should contain only your
name.

The report generator requires these data to create a report of the results.

1.3.1 Changes to SKaMPI 4.1

SKaMPI 4.1 introduces support for virtual topologies as described in section
2.1.9. Measurements with the collective, synchronous measured collective and
master-worker pattern can use grid, torus and arbitrary user-defined topolo-
gies. An example parameter file (.skampi-vt16) is provided. Details of the
underlying work can be found in [9)].

A couple of new measurements (primarily for measuring virtual topologies)
were added: Col _Sendrecv replace, Col Isend Irecv Waitall,Ring Sendrecv,
MPI_Cart_create-nodes and MPI_Graph create-nodes.

And finally the report generator was extended to support colored diagrams
and PDF output.

1.3.2 Changes to SKaMPI 4.0

The most important change from version 3 to version 4 is the addition of a
second measurement method for collective operations — called synchronous
measured collective measurement — which is much more accurate (details in
3.1.5). To distinguish between the two measurement methods a new naming
scheme was introduced (see section 1.5.3). To prevent users from unintentionally
using parameter files with the old naming convention SKaMPI looks for a new
QVERSION parameter. Though everything works fine if a line @QVERSION 4.0
is introduced, users are strongly encouraged to also adjust the measurement
names (you only have to add the ending -BM to the measurements of collective
operations) or use one of the provided parameter files.

1.3.3 The different parameter files

During start SKaMPI reads a parameter file . skampi. Currently SKaMPI ships
with four different configuration files. They use the new measurement method
for collective operations described in the previous section, so their results can’t
be compared without further thought with results obtained with previous ver-
sions of SKaMPI.

.skampi The standard configuration file. It contains the same suites of mea-
surements like the well-known .skampi of SKaMPTI 2. This file does not
contain any user defined datatypes. MPI_Int will be used for all measure-
ments. When starting SKaMPI without any renaming any file, this file
will be used.

6 CHAPTER 1. RUNNING SKAMPI

.skampi-dt-short This is a short configuration file to measure the performance
of user defined datatypes. The basetype is MPI_Int and the various con-
structors are used and compared.

.skampi-dt-long This is a long configuration file to measure the performance
of user defined datatypes. Additionally to the measurement suites of the
.skampi-dt-short this file also contains measurements with a more com-
plex basetype. Use this configuration file to compare flat and deep MPI
user defined types.

.skampi-all-collectives This parameter file includes all collective operations
measured with both measurement methods. It can be used to analyze the
differences between them.

.skampi-vt16 This parameter file shows the use of the virtual topology features
introduced in SKaMPI 4.1 (details in 2.1.9). Unlike the other parameter
files it is meant to be only an example specialized on 16 processes. It has
some measurements of Alltoall and collective Sendrecv_replace with neigh-
bours in regular grid or torus topologies. Additionally different broadcast
and reduce operations are measured with different optimized and ’anti’-
optimized topologies.

1.4 Generating a report

Since we run SKaMPI, we would like to know its results. Lets assume that
the results are stored in skampi.out, which is the default. Then we just call
dorep4.pl to create a postscript report named skampi.out.ps.

Just call dorep4.pl other name if your output file is not named skampi.out
but “other name”. In this case, the result will be stored in other name.ps.

A note to dorep4.pl: As you may have seen by the file extension, the
report generator is a perl-5-script. There are several reasons for using
perl, perhaps the most important is, that we do not have to worry
about compiling (since perl is interpreted). But there is still a little
point to look at: dorep4.pl has to find the perl-binary. Therefore its
first line contains my path to the perl-interpreter (f!/usr/bin/perl
-w). At some systems the path differs from this one.” So adaption
may be required.

dorep4.pl needs several programs to work.

Program my Version Purpose
perl version 5.003 interpreting and execution
gnuplot version 3.5, patchlevel 3.50.1.17, Generating eps-graphics
27 Aug 93
latex Version 3.14159 (C version 6.1) Text formatting
dvips dvips(k) 5.86 Converting .dvi-files into
.ps-files.

"The real perl-freak knows: there is a solution for this problem, a magic line, which forces
the shell to search for perl. But it does not work when using the C-shell. (So we forget it.)

1.5. THE MEASUREMENTS: A SHORT OVERVIEW 7

Information on configuring the report generator is given in Section 2.2. Note:
The report generator relies on filled entries @MACHINE and QUSER as described
in section 1.3.

1.5 The measurements: a short overview

This section is a short guide through all measurements, that are performed by
the standard-suite. This suite is given in the default SKaMPI parameter file.
Changing the parameters is shown in Section 2.1.

1.5.1 Measurement of point-to-point operations

In a ping-pong test one node sends a message to another, which returns it. For
measuring point-to-point communications we use different MPI operations. All
point-to-point measurements are varied over the message length. The names
from the different measurements are derived from the names of the used MPI
operations, so for example MPI_Send-MPI Irecv uses MPI_Send for sending and
MPI Irecv for receiving. Non-blocking operations are followed by a MPI_Wait
to make sure, that the whole time for transfering the data is measured. The
bandwith stated in the report is the overall bandwith, i.e. the sum of the
incoming and outgoing bandwith.

MPI_Send-MPI_Recv
MPI_Send-MPI_ Iprobe_Recv

This measurement waits busily calling MPI_Iprobe before using MPI_Recv to
receive the message.

MPI_Send-MPI _ Irecv
MPI_Send-MPI_Recv_with_Any_Tag

Similar to MPI_Send-MPI Recv, the only difference of this measurement is the
use of MPT_ANY_TAG in the receive function.

MPI_Ssend-MPI_Recv
MPI_Isend-MPI_Recv
MPI_Issend-MPI_Recv
MPI _Bsend-MPI Recv
MPI_Sendrecv
MPI_Sendrecv_replace
P2p_dummy

Dummy operation used to determine the overhead of the point-to-point mea-
surement pattern.

8 CHAPTER 1. RUNNING SKAMPI

1.5.2 Measurements with the master worker scheme

The following measurements belong to the master worker scheme. The master
dispatches concurrent subtasks to several workers. These workers send a reply
for every received subtask. The measurements tests the network throughput
and its handling of simultaneous communications. They can be varied over the
number of subtasks (chunks), the length of the sent messages or the number of
workers (expressed in the endings chunks, length and nodes). The bandwidth
stated in the report is the total bandwidth of the master process.

MPI_Waitsome-{chunks|length|nodes}

These measurements use MPI_Waitsome to coordinate the incoming worker mes-
sages. This function guarantees a fair coordination of the workers.

MPI_Waitany-length

This measurement uses MPI_Waitany to coordinate the incoming worker mes-
sages. A fair coordination of the workers is not guaranteed, race conditions are
possible (i.e. some workers might wait longer for terminating their communica-
tion because others were preferred).

MPI_Recv_Any_Source-length

In this measurement the master process receives the messages of the workers us-
ing MPI _Recv with MPI_ANY_SOURCE as source. No special coordination functions
are used.

MPI_{Send|Ssend |Isend | Bsend }-length

In these measurements the master process uses MPI_Send (respectively MPI_Ssend,
MPI_Isend or MPI Bsend) for sending and MPI Recv with an explicit source for
receiving messages.

mw_dummy

Dummy operation used to determine the overhead of the master-worker mea-
surement pattern.

1.5.3 Measurements of collective operations

The following measurements concern collective MPI operations. These opera-
tions synchronize processes i.e., MPI Barrier or transmit data between them
(other operations than MPI Barrier). The time until completion on all nodes
is measured. In all cases the result is the bandwidth at one node.

Version 4 introduced a new and more exact measurement method. To dis-
tinguish between these two methods the endings -BM and -SM (barrier mea-
surement and synchronous measurement) were introduced (details of the actual
measurement methods can be found in section 3.1.4 and 3.1.5). Measurements
of collective operations with previous versions of SKaMPI correspond to the -BM
measurements. Furthermore the following measurements can exist in four differ-
ent flavours: nodes, nodes-short, nodes-long and length. The nodes-short

1.5. THE MEASUREMENTS: A SHORT OVERVIEW 9

and nodes-long measurements vary over the number of nodes and use short (256
bytes) and long (64 kbytes = 65536 bytes) message lengths, though these values
are arbitrary and can be changed in the SKaMPI configuration file .skampi.
The measurements with only nodes in their name also use 256 bytes message
length (where applicable). Fnally, the length measurement varies over the mes-
sage length, using all nodes. Measurements without further explanation use the
corresponding MPI operation as it is defined in the MPI standard [4].

MPI_Bcast-{nodes-short|nodes-long|length}-{BM|SM}
MPI_Bcast_Send_Recv-{nodes-short|nodes-long|length}-{BM|SM}
MPI_Bcast_Send _Recv2-{nodes-short|nodes-long|length}-{BM|SM}

The last two are alternative implementations of MPI _Bcast using MPI_Send and
MPI Recv resp. MPI Isend, MPI Waitall and MPI Recv to send messages. A
comparison between these operations and the regular MPT Bcast can show the
level or lack of optimization of the latter.

MPI_Barrier-{BM |SM}

MPI_Reduce-{nodes|length}-{BM|SM}
MPI_Scan-{nodes|length}-{BM|SM}
MPI_Alltoall-{nodes-short|nodes-long|length}-{BM|SM}
MPI_Alltoall Isend Irecv-{nodes-short|nodes-long|length}-{BM|SM}

This is an alternative implementation of MPI_Alltoall using MPI_Isend and
MPI Irecv to send and receive the messages.

MPI_Gather-{nodes-short|nodes-long|length}-{BM|SM}
MPI_Gather_SR-{nodes-short|nodes-long|length}-{BM|SM}

This is an alternative implementation of MPT_Gather using MPI_Send and MPI Recv.

MPI_Gather ISWA-{nodes-short|nodes-long|length}-{BM|SM}

Yet another implementation of MPI_Gather, this time using MPI_Isend and
MPI Waitall. It can be very interesting to compare these last three different
implementation of the same operation.

MPI _Scatter-{nodes-short|nodes-long|length}-{BM|SM}
MPI_Allreduce-{nodes|length}-{BM|SM}
MPI_Reduce_Bcast-{nodes|length}-{BM|SM}

This is an alternative implementation of MPI_Allreduce using MPI_Reduce and
MPI Bcast.

10 CHAPTER 1. RUNNING SKAMPI

MPI_Reduce scatter-{nodes|length}-{BM|SM}
MPI_Allgather-{nodes-short|nodes-long|length}-{BM|SM}
MPI_Scatterv-{nodes-short|nodes-long|length}-{BM|SM}
MPI_Gatherv-{nodes-short|nodes-long|length}-{BM|SM}
MPI_Allgatherv-{nodes-short|nodes-long|length}-{BM|SM}
MPI_Alltoallv-{nodes-short|nodes-long|length}-{BM|SM}
MPI_Alltoallv_Isend Irecv-{nodes-short|nodes-long|length}-{BM|SM}

Similar to the case with MPT_A11toall this is an alternative implementation of
MPI_Alltoallv using MPI_Isend and MPI_Irecv to send and receive the mes-
sages.

MPI_Reduce_Scatterv-{nodes|length}-{BM|SM}

This operation performs a data reduction operation on all participating pro-
cesses with MPT_Reduce and then distributes the result partially to all partic-
ipating nodes with MPI _Scatterv. Every node receives a different part of the
result-array. This kind of result distribution to all participating nodes is similar
to the one of MPI_Reduce_scatter, so it is interesting to compare this operation
to MPI_Reduce_scatter, which distributes the result to all nodes in one call.

MPI_Comm split-nodes-{BM|SM}
MPI_Comm_dup-nodes-{BM|SM}
MPI_Cart_create-nodes-SM
MPI_Graph_create-nodes-SM
{col|syncol}_dummy

Dummy operation used to determine the overhead of the barrier (col) respec-
tively synchronous (syncol) measured collective pattern.

Col_Sendrecv_replace

Collective exchange of data using MPI_sendrecv_replace. Uses measurement
specific parameters x_distance and y_distance to specify the communication
counterpart. Measurement specific parameters use the keyword Parameters
explained in section 2.1.4.

Col_Isend_Irecv_Waitall

Collective exchange of data using MPI_Isend and MPI_Irecv followed by MPI _Waitall.
Uses measurement specific parameters x_distance and y_distance to specify

the communication counterpart. Measurement specific parameters use the key-
word Parameters explained in section 2.1.4.

1.5. THE MEASUREMENTS: A SHORT OVERVIEW 11

Ring_Sendrecv

Sequence of MPI Send and MPI Recv operations used to pass a message from
one process to the next in a ring pattern. Every process p sends its message to
process p+distance. This measurement can be used to check if the underlying
MPI implementation actually optimizes process assignment in virtual topolo-
gies. Using distance=5 on a machine with 4-way SMP nodes would cross node
boundaries for every transmission and would be significantly slower than using
a optimized virtual topology which has to cross these boundaries only one in 4
times. The use of measurement specific parameters like distance is explained
in section 2.1.4.

1.5.4 Measurement of local operations

The following measurements are local, i.e. that they involve only one process,
without any need for communication. They do not have any parameters and
their names correspond to the MPI operations used. Usually they should be
very fast, fast enough to be irrelevant for a user programm. But because they
are used very often, it makes sense to check this claim.

MPI_Wtime

The most often used function in the SKaMPI benchmark programm. The du-
ration of MPI_Wtime (together with the result of MPI_Wtick) obviously give
a lower bound of the accuracy of all the time measurements performed in the
whole program.

MPI_Comm rank

MPI_Comm size

MPI_Iprobe

Only the case with no waiting message i.e. the unsuccessfull MPI Probe is mea-
sured because it is the common case.

MPI _attach

Sequence of MPI Buffer_attach and MPI Buffer detach. The size of the at-
tached buffer is MPT_BSEND_OVERHEAD (the official MPI buffered send overhead)
plus a couple of bytes needed for some MPI implementations.

simple_dummy

Dummy operation used to determine the overhead of the simple measurement
pattern.

Chapter 2

Customizing SKaMPI and
trouble-shooting

This is a more detailed chapter containing information about customizing the
measurements to your personal needs. Further on we introduce the recovery-
mechanism of SKaMPI, and what’s to do, when it fails.

But before that, let’s make clear some terms.

Single measurement: A single call of a (MPI) routine to be measured in a
pattern (see section 3.1 for patterns). (E.g., MPI_Send-MPI Recv at 1 MB
message length.)

Measurement: A measurement is the determination of a value on a (set of)
parameter(s). The result of a measurement is built of several single mea-
surements. In this benchmark the number of single measurements neces-
sary for one measurement is determined by the accuracy wanted (and an
upper and lower bound).

Suite of measurements: Measurements varied over their parameter. In the
report generated by the report generator every subsection represents a
suite of measurements. (E.g., MPI_Send-MPI Recv from 0..16 MB message
length.)

Run: A run of the benchmark is the execution of all selected suites. (Selection
is done in the parameter file.) Usually for each run a report is generated.

2.1 Configuring the SKaMPI parameter file

2.1.1 The sections

The parameter file is a ASCII-text file describing the settings to control SKaMPL
The parameter file should be accessible in the directory, where SKaMPI is
started. Its name is always .skampi. Thus, do not rename it. Here you can see
how to adapt the parameter file to your personal needs.

The parameter file is divided into sections. Each section sets one parameter

12

2.1. CONFIGURING THE SKAMPI PARAMETER FILE 13

(which may be a list). If one section is omitted, the default value for this pa-
rameter will be assumed. A name of a section always starts with an “@”. A
section reaches to the start of another section (or end of file). The order of the
sections is irrelevant, but it may be considered practical, to use the “QMEA-
SUREMENTS” -section as the last one. So you can see all the other (usually
shorter) sections at the beginning of the parameter file. In all sections ending
with ”..DEFAULT” you can fill in a default value for this parameter, e.g., the
value given in STANDARDERRORDEFAULT is used for the standard error defined in
every suite, when the standard error of the suite is set do Default _Value.

We urgently recommend to fill out the @MACHINE, NODE and @NETWORK sec-
tions in a detailed manner.

Q@COMMENT Section for comments. You may enter any text you want. (Well, text
without other section names, of course!)

@MACHINE The text in this section describes the machine, you run SKaMPI on.
You can add any other relevant details of a measurement here. Note that
there are also special sections for the network (eNETWORK) and the nodes
(eNODE). SKaMPT assumes that the first line of the @M ACHINE-section
contains just the name of the machine.

@NODE In this section you may describe the type of nodes you use. If there are
several types, please describe them all.

@NETWORK Here you may type in, which interconnection network you use. Often
there are several versions of a communication network for one machine
(for example the IBM SP).

QUSER Here is your place. The first line of this section is used by the report-
generator (dorep4.pl) and should only contain your name.

@MEMORY This section is just an integer. It describes the amount of memory in
kilobyte, which should be reserved for message buffers on each node, e.g.
@MEMORY 8192 means 8 megabyte message buffers.

@VERSION This section is just a float. It denotes the version, this configura-
tion file was written for. Because the names of some measurements were
changed (details in 1.3.2), SKaMPI version 4.0 stops with a warning when
used with an old configuration file.

@OUTFILE The name of the output file. This name should also be entered in
the first line (e.g. @OUTFILE skampi.out). Note that there is a blank
between QOUTFILE and the filename!

QLOGFILE The name of the log file. This name should also be entered in the
first line (e.g. @LOGFILE skampi.log). Note that there is a blank between
@QLOGFILE and the filename!

@MAXSTEPSDEFAULT This section is also just an integer. It describes the number
of measurements to be performed in the parameter-range. This value is
the default value for Max_Steps.

@MAXREPDEFAULT This integer describes the maximal number of measurements
repetitions can be performed. It’s is the default value for Max Repetition.

14 CHAPTER 2. CUSTOMIZING AND TROUBLE-SHOOTING

Q@MINREPDEFAULT This integer describes the minimal number of repetitions a
measurement can be performed. It’s the default value for Min Repetition.

@MULTIPLEOF Any argument a measurement is called with has to be a multiple
of this integer value. For example ”8” might be quite useful to avoid
memory alignment effect on 64-bit machines. This integer is the default
value for Multiple of.

Q@CACHEWARMUP Starting with version 3, SKaMPT usually does not warm up the
cache before measuring. (Note that older versions of SKaMPI did.) The
reason for not warming the cache is, that user programs usually also do not
warm up the cache before sending data. However, if you want to warm up
the cache (both, data- and instruction cache), you can use @CACHEWARMUP
number, where number is an positive integer number, giving the number
of single measurements performed, before the time is measured.

NAMEOFRUN The name of the run describes the measurements performed in a run.
The common .skampi-file, packaged with SKaMPI contains measurments
of the so called StandardSuite.

Q@TIMESUITEDEFAULT This float sets the default value of the parameter Time_Suite.
Q@TIMEMEASDEFAULT Float default value of the parameter Time Measurement.
@CUTQUANTILEDEFAULT Float default value of the parameter Cut_Quantile.

@STANDARDERRORDEFAULT Here you can enter a float, noting the max allowed
standard-error for a measurement. The measurements are repeated un-
til this accuracy is reached (unless the max. number of repetitions is
reached.) @STANDARDERRORDEFAULT 0.05 means that a standard-error of
five percent is allowed.

@ABSOLUTE Please enter just a yes or a no in this section. If “yes”, SKaMPI will
try to correct the measured data, that is subtracting the overhead. This
option should only be activated, if it is clear that there is low (or better no)
other load on the machine. (Otherwise you can get negative performing-
times, because the measurement of the overhead can be disturbed by the
other load.) E.g. @ABSOLUTE yes.

@POSTPROC Please enter just a yes or a no in this section. You can do several
runs of SKaMPI. Each successful run will build a new output file (e.q.
skampi.out, skampi.out.1, skampi.out.2, ...) If “yes”, SKaMPI will
perform the post-processing. That is merging all output files together.
Note if SKaMPI is restarted after an abort, no new output file will be
created. In this case SKaMPI appends the results to the output file of
the previous run. If you do not want SKaMPI to perform this kind of
post-processing (6POSTPROC no).

@BLOCKS, @BLOCKSIZE, @VECTORSTRIDE, @BASETYPEn are used when creating
user defined datatypes. They are explained in section 2.1.8.

@TOPOLOGYn defines a virtual topology (explained in 2.1.9).

2.1. CONFIGURING THE SKAMPI PARAMETER FILE 15

@MEASUREMENTS This section describes all measurements to be performed by
SKaMPI. Since it has its own grammar, there is an extra section devoted
for it (2.1.4) in the documentation.

2.1.2 Example and default values

First we show the filled text sections. Please use them to describe your machine
in detail. Note that the report generator needs this data, to correctly produce
a report.

QCOMMENT My machines at home

OMACHINE Pentium - 386 Linux Power Workstation Cluster
GNODE Pentium S 133 Mhz, i386-33Mhz

Q@NETWORK (slow) Ethernet, Western Digital Network adapter
QUSER Ralf Reussner

The following examples initializes all sections with their default values. So here
you can see, which values will be assumed by SKaMPI, if a section is omitted.

@MEMORY 4096

QVERSION 4.0

QOUTFILE skampi.out

QLOGFILE skampi.log

@MAXSTEPSDEFAULT 16

@MAXREPDEFAULT 20

@MINREPDEFAULT 4

GMULTIPLEOFDEFAULT 4

Q@STANDARDERRORDEFAULT 0.05

QTIMEMEASDEFAULT 0.0

QTIMESUITEDEFAULT 0.0

@BLOCKS 10

@BLOCKSIZE 7

QVECTORSTRIDE 11

Q@COMMENT

To use TIMEMEASDEFAULT and TIMESUITEDEFAULT please
replace the 0.0 with your required values and change
the "Invalid_Value" in each measurement to "Default_Value".
Q@CUTQUANTILEDEFAULT 0.25

QCACHEWARMUP 0

@NAMEOFRUN StandardSuite

@ABSOLUTE no

@POSTPROC yes

@MEASUREMENTS

The empty sections (like QCOMMENT, or @V ACHINE, etc.) are initialized
empty. You may enter free text in them (text without section names). An
exception is the MEASUREMENTS-Section (see section 2.1.4).

2.1.3 The grammar of the different sections

The grammar used for the above sections is shown below. Only nonterminals
appear.

16 CHAPTER 2. CUSTOMIZING AND TROUBLE-SHOOTING

SECTION :: TEXT_SECTION SECTION
| INT_SECTION SECTION

| FLOAT_SECTION SECTION

| YESNO_SECTION SECTION

| MEASUREMENTS_SECTION SECTION
[

<epsilon>

TEXT_SECTION ::= Q@COMMENT text
| @MACHINE text
| @NETWORK text
| QNODE text
| QUSER text

| QOUTFILE text

| QLOGFILE text

| @NAMEOFRUN text

| @BASETYPE1 text

| @BASETYPE10 text
| @QTOPOLOGY1 text

| @TOPOLOGY10 text

INT_SECTION ::

@QMEMORY int

| @MAXSTEPSDEFAULT int
| @MAXREPDEFAULT int
| @MINREPDEFAULT int
| @MULTIPLEOFDEFAULT int
| @CACHEWARMUP int
| @BLOCKS int

| @BLOCKSIZE int

| @QVECTORSTRIDE int
FLOAT_SECTION ::= @STANDARDERRORDEFAULT float
| @TIMEMEASDEFAULT float

| QTIMESUITEDEFAULT float
| @QCUTQUANTILE float
| QVERSION float

YESNO_SECTION ::= @ABSOLUTE
| @POSTPROC

Production rules for the nonterminal MEASUREMENTS_SECTION are found in sec-
tion 2.1.7. The nonterminals int and float are the usual C data types and
text is plain ASCII text without quotes. More than one line of text is possible.

2.1.4 The MEASUREMENTS section

The MEASUREMENTS section is a list in which every entry describes a suite
of measurements (i.e., measurements varied over their parameter range). An
entry starts with the name of the measurement. This name should be usable as
filename. It is followed by a fixed record, describing specific properties of this
suite. An example is given in section 2.1.5. This record is explained below.

Type Each measurement must have a type assigned. This type (an simple in-

2.1. CONFIGURING THE SKAMPI PARAMETER FILE 17

teger) describes the MPI-function and the pattern which should be mea-
sured. A couple of tables in section 3.1 (page 35) shows which number is
assigned to which MPI-function.

Basetype Number The number of the basetype. As described in the user de-
fined datatypes section (sec. 2.1.8), several basetypes can be defined.
(6BASETYPE<number>). With the Basetype Number = <number> you
can select the basetype for this measurement among the previously de-
fined basetypes by its number.

Send Datatype Number The number of the type constructor the create the
datatype, which will be used for at the sender of communication oper-
ations. The possible constructors are described in section 2.1.8.

Receive Datatype Number The number of the type constructor the create the
datatype, which will be used for at the receiver of communication opera-
tions. The possible constructors are described in section 2.1.8.

Variation Here you can enter the variable to be used to vary over (e.g., the
message length, or the number of nodes). The variables contained by a
pattern you can see in Table 2.1.

Scale This parameter describes the scale of the x- and y-axis (linear or loga-
rithmic) and it determines how to find the arguments for this suite (fixed
or dynamic). Possible values are:

Fixed linear The arguments begin at Start_Argument and end at End_Argument.
The distance is Stepwidth. Both scales are linear. The variables
Max_Steps, Min Distance and Max Distance have no meaning.

Fixed_log The arguments are powers of the parameter stepwidth. (stepwidth',
stepwidth?, stepwidth® ... until End_Argument has been reached.)
Both axis are logarithmic. The variables Max_Steps, Min Distance
and Max Distance have no meaning.

Dynamic linear The arguments begin at Start_Argument and end at
End Argument. The distance is Stepwidth. After doing the mea-
surements this way, the number Max_Steps of measurements is filled
up with automatically placed measurements. These measurements
are never nearer than Min Distance.

Both axes are linear.

Dynamic_log The arguments are powers of the parameter stepwidth.
(stepwidth!, stepwidth?, stepwidth® ... until End_Argument has been
reached.) After having done measurements this way, the number
Max_Steps of measurements is filled up with automatically placed
measurements. These measurements are never nearer than Min_Distance.
Both axis are logarithmic.

Max Repetition Here you can enter the maximal number of measurement rep-
etitions. If you do not want to change this value in every entry, you just
write Default Value instead of the number, and the value given in the
@MAXREPDEFAULT section is used.

18 CHAPTER 2. CUSTOMIZING AND TROUBLE-SHOOTING

Min Repetition Here you can enter the minimal number of repetitions per-
formed for a measurement. If you do not want to change this value in
every entry, you just write Default_Value instead of the number, and the
value given in the @MINREPDEFAULT section is used.

Multiple_of Any argument a measurement is called with has to be a multiple
of this integer value. For example ”8” might be quite useful to avoid
memory alignment effects on 64-bit machines, or 4 for 32-bit systems.
This integer’s default value is set in the section @MULTIPLEQOF.

Time Suite The value given here sets the time limit for one suite of measure-
ments in minutes. A suite of measurements is a set of measurements, con-
taining measurements varied over some parameters (compare to definition
at the beginning of this chapter). This means that no new measurements
are started, when the time consumed by the already executed measure-
ments of this suite exceeds this limit time!. This limit has no influence
on other suites. So exceeding this limit time means that only this suite
stops measuring. It does not mean, that the whole benchmark is aborted.
Information regarding the preference of this parameter and Max_Steps is
given in subsection 2.1.6. If you do not want to change this value in every
entry, you just write Default_Value instead the number, and the value
given in the @TIMESUITEDEFAULT section is used. If you do not want to
give any time limit at all, please enter Invalid Time instead of a value.

Time Measurement This value gives the time limit for one measurement in min-
utes. (A measurement is the repetition of several single measurements.
Compare to definition at the beginning of this chapter). This means that
no new single measurements is started, when the time consumed by the
already executed single measurements of this measurement exceeds this
limit time?. Information regarding the preference of this parameter and
Standard_error is given in subsection 2.1.6. If you do not want to change
this value in every entry, you just write Default_Value instead of the
number, and the value given in the @TIMESUITEDEFAULT section is used.
If you do not want to give any time limit at all, please enter Invalid Time
instead of a value.

Node_Times This boolean value can be set to yes or no. In case of yes SKaMPI
measures besides the result also the execution times of the measured rou-
tine on all nodes®. This may be useful to see whether overlapping com-
munication and computation can take place, or to measure effects of con-
tention. In the patterns Simple and Master-Worker this feature will be
ignored, since in the simple pattern only one process is involved, and in
the Master-Worker pattern the workers work until they receive the stop
signal. So it is not interesting to measure, when the workers stop.

I This means that the time of all measurements can be larger than the limit, because the
last measurement will not be aborted when exceeding the limit time.

2This means that the time of all single measurements can be larger than the limit, because
the last single measurement will not be aborted when exceeding the limit time.

3The result is the time the routine to measure needs on the measuring root node. The
benchmark assures that the routine to measure has finished on all other nodes, when finished
on the root node. So the execution times on the individual nodes is usually lower.

2.1. CONFIGURING THE SKAMPI PARAMETER FILE 19

The times are given in microseconds in the output file. Note that the node
times are only given for the last single measurement of a measurement.
This means that node times do not represent a mean value of the execution
times of several results as the measurement’s result does. So is is possible
that the result differs from the node time of process 0.

Cut_Quantile This value defines the upper and lower quantile of single mea-
surements’ results, which are disregarded, when computing the result of a
measurement. If you do not want to throw any results away, use 0.0. If
you assume that the upper an lower quartile of your results are outliers,
use 0.25. If you do not want to change this value in every entry, you
just write Default_Value instead the number, and the value given in the
@CUTQUANTILEDEFAULT section is used.

Start_Argument If the Variation is linear, this number will be used as starting
argument. (In case of logarithmic scale it has no meaning, since measure-
ments always are started by 1.)

End _Argument This is the maximal argument, which is never exceeded in this
measurement. If you vary over the message length it will depend on the
amount of memory you entered in the @MEMORY section. If you vary over
the number of nodes, it will depend on the number of nodes, SKaMPI
started with. To make it easier to determine these values, you can just
enter Max Value here, and SKaMPI computes the actual values during
run-time.

Max Steps explained under Variation.
Min Distance explained under Variation.
Max Distance explained under Variation.

Standard_error Measurements are repeated until its standard error has dropped
below of this value here. (But the number of repetitions is never less than
Min Repetition and never larger than Max Repetition. The standard
error is a metric for the reliability of a the data, whereas the standard
deviation is a metric for dispersion.

Parameters Measurement specific paramaters. Sequence of space separated list
of parameter and value pairs, e.g.
Parameters = "x_ distance=0 y_distance=1".

Virtual Topology Number The number of the virtual topology used for this
measurement, as defined with the global @TOPOLOGYnumber command in
the header of the configuration file. The use of virtual topologies is ex-
plained in section 2.1.9.

2.1.5 Example of an entry

MPI_Send-MPI_Recv
{
Type = 1;

20 CHAPTER 2. CUSTOMIZING AND TROUBLE-SHOOTING

Pattern Variables to vary over
Point-to-Point Length, Nodes
Master-Worker Length, Nodes, Chunks
Barrier Measured Collective Length, Nodes
Synchronous Measured Collective Length, Nodes

Simple none

Table 2.1: Which pattern can be varied with which variables?

Basetype_Number = 1;
Send_Datatype_Number = 4;
Receive_Datatype_Number = 4;
Variation = Length;

Scale = Dynamic_log;
Max_Repetition = Default_Value;
Min_Repetition = Default_Value;
Multiple_of = Default_Value;
Time_Measurement = Invalid_Value;
Time_Suite = Invalid_Value;
Node_Times = No;

Cut_Quantile = Default_Value;
Default_Chunks = 0;
Default_Message_length = 256;
Start_Argument = 1;
End_Argument = Max_Value;
Stepwidth = 128;

Max_Steps = 30;

Min_Distance = 128;
Max_Distance = 512;
Standard_error = Default_Value;

2.1.6 A note to the preference of the parameters Max_Steps,
Time_Suite and Standard error, Time Measurement

The termination of a measurement is controlled by four parameters: Standard_error,
Max Repetition, Min Repetition, and Time Measurement. The termination

of a suite of measurements is controlled by the two parameters Max_Steps and
Time Suite. Conflicts between these parameters are resolved in the following
way.

Termination of a measurement

If Time Measurement is set to Invalid Value than (a) the number of sin-
gle measurements is always between Min Repetition and Max Repetition,
(b) if the the standard error of the single measurement’s results fall below
Standard_error the measurement is finished. (If the single measurements are
repeated Max Repetition time, than the measurement is also finished, indepen-
dent of the value for the standard error.)

2.1. CONFIGURING THE SKAMPI PARAMETER FILE 21

If Time Measurement is set to any other value as Invalid Value (that is a
float or Default_Value), then no further single measurement will be started,
when the sum of the execution times of the already executed single measure-
ments exceeds the value of Time Measurement. The values of Standard error,
and Min Repetition will not be considered in this case. But in any case, there
will not be more measurements started than Max_Repetitions?. If you want to
use only Time Measurement to control the termination, so choose a high value
for Max Steps.

Termination of a suite of measurements

If Time Suite is set to Invalid Value then the number of measurements in this
suite equals always to Max_Steps.

If Time Suite is set to any other value as Invalid Value (that is a float or
Default_Value), then no further measurement will be started, when the sum
of the execution times of the already executed measurements exceeds the value
of Time_Suite.

2.1.7 Grammar of the MEASUREMENTS section

The grammar used for the measurement section is shown below. Terminals are
set in “”, nonterminals not.

MEASUREMENTS_SECTION ::=
file_name_str
¢¢{;;
¢¢“Type =’ TYPE_RANGE®‘;’’
‘‘Variation =’’VARIATION_STYLE‘‘;’’
‘‘Scale =’?SCALE_STYLE‘¢;’’
¢ ‘Max_Repetition =’’INT_OR_DEFAULT*¢;’’
‘‘Min_Repetition =’’INT_OR_DEFAULT*¢;’’
‘‘Multiple_of =’ INT_OR_DEFAULT®‘;’’
¢ ‘Time_Measurement =’’ FLOAT_OR_DEFAULT_OR_INVALID‘¢;’’
‘‘Time_Suite =’’ FLOAT_OR_DEFAULT_OR_INVALID®*¢;’’
¢‘Cut_Quantile =’’FLOAT_OR_DEFAULT‘*¢;’’
‘‘Default_Chunks =’’INT_OR_FLOAT‘‘;’’
‘‘Default_Message_length =’’INT_OR_FLOAT‘¢;’’
‘‘Start_Argument =’’int‘¢;’’
¢ ‘End_Argument =’’INT_QR_MAX‘‘;’’
¢‘Stepwidth =’’int‘‘;”?’
‘‘Max_Steps =’’int‘¢;?’

¢‘Min_Distance =’’int‘*¢;?’
‘‘Max_Distance =’’int‘*¢;?’
‘‘Standard_error =’’FLOAT_OR_DEFAULT®¢;’’
¢l};;
VARIATION_STYLE ::= “Length”
| ¢“‘Nodes’’
| ¢‘Chunks’’

4This is because SKaMPI uses these values for internal buffer allocation.

22 CHAPTER 2. CUSTOMIZING AND TROUBLE-SHOOTING

SCALE_STYLE ::= ‘‘Fixed_linear’’
| ‘‘Fixed_log’’
| ¢‘Dynamic_linear’’
| ¢‘Dynamic_log’’

INT_OR_DEFAULT ::= int
| ¢“‘Default_Value’’

INT_OR_FLOAT ::= int
| float
MAX_OR_DEFAULT ::= int

| ¢‘Max_Value’’

FLOAT_OR_DEFAULT ::= float
| ‘‘Default_Value’’

FLOAT_OR_DEFAULT_OR_INVALID ::= float
| ¢‘Default_Value’’
| ¢‘Invalid_Value’’

file name_str is what your operating system allows as a file name. In the
grammar above file name_str stands for the name of the measurement. In the
report generator dorep4.pl there will be some files created temporarily, which
contain this string in their names.
As above, the nonterminals int and float are what you would expect as C-
Programmer.

Hint for editing the @MEASUREMENTS section: if you want to skip some mea-
surements, just write @COMMENT before the measurements you intend to skip,
and @MEASUREMENTS behind them.

2.1.8 User-defined datatypes in SKaMPI
Basetypes

A basetype is a type which is used to define other types (such as structs or
vectors). A basetype can be given in two ways:

e as a string, denoting a predefined MPI datatype. Currently MPI_CHAR,
MPI_BYTE, MPI_INT, MPI_LONG, MPI_DOUBLE, and MPI_LONG_DOUBLE are al-
lowed.

e or as a comma-separated list of triples (see below.)

Each triple describes an element of the basetype. The first entry of a triple gives
the length of the element in bytes. The second element gives the displacement of
this element in bytes, i.e. the address where the element starts relative to the be-
ginning of the basetype. The unit of this offset is extent of the given predefined

2.1. CONFIGURING THE SKAMPI PARAMETER FILE 23

type (the last element). The last element of the triple is the name of a MPI pre-
defined datatype like MPT_DOUBLE. For example, (1,0,MPI BYTE), (2,1,MPI_INT)
denotes a basetype constructed out of one MPI_BTYE at the beginning (offset 0)
and two MPI_INT at offset one (so behind the one MPI_BYTE).

Currently up to 10 basetypes can be specified in the SKaMPI parameter file
with the commands @BASETYPE1 ... @BASETYPE10.
Using basetypes to construct other types

SKaMPI defines several ‘type constructors’ to define nested types out of a user-
defined basetype. These constructors are selected by a number. Since working
with user-defined types requires a certain acquaintance with the appropriate
MPT functions, we describe the different constructors in documenting their code.

The definitions use the constants params.blocks, params.blocksize, and
params.vectorstride. They can be set as sections in the parameter file, i.e.,
@BLOCKS, @BLOCKSIZE, and @VECTORSTRIDE. If not explicitely set there, the de-
fault values are used (@BLOCKS 10, @BLOCKSIZE 7, @VECTORSTRIDE 11). Note
that the vectorstride must be larger than the blocksize and blocksize must be
larger that three when using the special type constructor (number 70).
Number 1

Simply MPI BYTE.

Number 2
Simply MPI_CHAR.

Number 3
Simply MPI_FLOAT.

Number 4
Simply MPI_DOUBLE.

Number 5
Simply MPI_INT.

Number 20

A user-defined basetype, selected by the Send Basetype Number respectively
Receive Basetype Number in the parameter file.

Number 30

MPI_Type_contiguous(params.blocks * params.blocksize,_basetype[bt_number],d);

Number 31

MPI_Type_vector (params.blocks,params.blocksize,params.vectorstride,
_basetype[bt_number],d) ;

24 CHAPTER 2. CUSTOMIZING AND TROUBLE-SHOOTING

Number 32

MPI_Type_create_hvector (params.blocks,params.blocksize,params.vectorstride*
_basetype_size[bt_number],
_basetype[bt_number] ,d);

Number 33

blen[0] = params.blocksize;
disp[0] = 0;

k =1;

for (i=1; i<params.blocks; i++)
{

blen[i] = params.blocksize-k;
disp[i] = disp[i-1]+blen[i-1]+1;
k = 1-k;
}
blen[params.blocks-1] += params.blocks/2;

MPI_Type_indexed(params.blocks,blen,disp,_basetype[bt_number],d);

Number 34

/* requires MPI 2 */
for (i=0; i<params.blocks; i++)
{
disp[i] = params.blocksizexi+i;
}
MPI_Type_create_indexed_block(params.blocks,params.blocksize,disp,
_basetype[bt_number],d);

Number 35

blen[0] = params.blocksize;

offset[0] = 0;

k =1;

for (i=1; i<params.blocks; i++)

{
blen[i] = params.blocksize-k;
offset[i] = offset[i-1]+blen[i-1]+1;
k = 1-k;

}

for (i=0; i<params.blocks; i++)

{
offset[i] *= _basetype_size[bt_number];

}

blen[params.blocks-1] += params.blocks/2;

MPI_Type_create_hindexed (params.blocks,blen,offset,_basetype[bt_number],d);

2.1. CONFIGURING THE SKAMPI PARAMETER FILE 25

Number 36

blen[0] = params.blocksize;

offset[0] 0;

typel[0] = _basetype[bt_number];

k =1;

for (i=1; i<params.blocks; i++)

{
blen[i] = params.blocksize-k;
offset[i] = offset[i-1]+blen[i-1]+1;
typel[i] = _basetypel[bt_number];
k = 1-k;

}

for (i=0; i<params.blocks; i++)

{

offset[i] *= _basetype_size[bt_number];
}
blen[params.blocks-1] += params.blocks/2;

MPI_Type_create_struct(params.blocks,blen,offset,type,d);

Number 37

/* requires MPI 2, especially subarrays */
for (i=0; i<params.blocks; i++)

{
blen[i] = SUBARRAYOFFSET+params.blocksize+SUBARRAYOFFSET;
sublen[i] = params.blocksize;
disp[i] = SUBARRAYQFFSET;

}

MPI_Type_create_subarray(params.blocks,blen,sublen,disp,MPI_ORDER_C,
_basetype[bt_number] ,d) ;

Number 50

MPI_Type_vector (params.blocks,len*params.blocksize,len*params.vectorstride,
_basetype[bt_number], d);

Number 51

MPI_Type_vector(len,params.blocks*params.blocksize,
params.blocks*params.vectorstride,
_basetype [bt_number] ,d) ;

Number 52

MPI_Type_vector (len*params.blocks,params.blocksize,params.vectorstride,
_basetype [bt_number] ,d) ;

#ifdef MPI_2

MPI_Type_get_extent(*d, &lb, &myextent);

#else /* and that is still the default */

26 CHAPTER 2. CUSTOMIZING AND TROUBLE-SHOOTING

MPI_Type_extent (*d, &myextent);

#endif

Number 53

blen[0] = params.blocksize;
offset[0] = 0;

typel0] = _basetypel[bt_number];
k=1;

for (i=1; i<lenxparams.blocks; i++)
{

blen[i] = params.blocksize-k;
offset[i] = offset[i-1]+blen[i-1]+1;
typel[i] = _basetype[bt_number];

k = 1-k;
}
for (i=0; i<lenx*params.blocks; i++)
{
offset[i] *= _basetype_size[bt_number];
}

blen[i-1] += i/2;
MPI_Type_create_struct(len*params.blocks,blen,offset,type,d);

Number 54

blen[0] = params.blocksize;
offset[0] = 0;

typel0] = _basetypel[bt_number];
k =1;

for (i=1; i<len; i++)

{

blen[i] = params.blocks*params.blocksize-k;
offset[i] = offset[i-1]+blen[i-1]+1;
typel[i] = _basetype[bt_number];

k = 1-k;
}
for (i=0; i<len; i++)
{
offset[i] *= _basetype_size[bt_number];
}

blen[i-1] += i/2;
MPI_Type_create_struct(len,blen,offset,type,d);
Number 55

blen[0] = params.blocksize;

offset[0] 0;
typel0] = _basetype[bt_number];
k =1;

for (i=1; i<params.blocks; i++)

2.1. CONFIGURING THE SKAMPI PARAMETER FILE 27

blen[i] =
offset[i]
typeli] =
k = 1-k;

len*params.blocksize-k;
= offset[i-1]+blen[i-1]+1;
_basetype [bt_number] ;

}
for (i=0; i<params.blocks; i++)
{
offset[i] *= _basetype_size[bt_number];
}
blen[i-1] += i/2;
MPI_Type_create_struct(params.blocks,blen,offset,type,d);

Number 56

MPI_Type_vector(params.blocksize,len,len+params.vectorstride,
_basetype[bt_number] ,&bvectorl) ;

D16 (typecounter++;)

MPI_Type_commit (&bvectorl); /* superfluous(?), but why not */

MPI_Type_vector(params.blocks,1,2,bvectorl,d);

Number 57

MPI_Type_vector(len,params.blocksize,params.vectorstride,
_basetype [bt_number] ,&bvector?2);

D16 (typecounter++;)

MPI_Type_commit (&bvector2); /* superfluous(?), but why not */

MPI_Type_vector (params.blocks,1,2,bvector2,d);

Number 58

MPI_Type_vector(params.blocks,params.blocksize,params.vectorstride,
_basetype [bt_number] ,&bvector3) ;

D16 (typecounter++;)

MPI_Type_commit (&bvector3); /* superfluous(?), but why not */

MPI_Type_vector(len,1,2,bvector3,d);

Number 61

MPI_Type_vector (params.blocksize,1,2,_basetype[bt_number] ,&bvector) ;
MPI_Type_commit (&bvector) ;
MPI_Type_vector(params.blocks,1,2,bvector,d);

Number 62
for (i=0; i<params.blocksize; i++)
{
blen[i] = 1;
disp[i] = 2 * i;
}

MPI_Type_indexed(params.blocksize,blen,disp,

28 CHAPTER 2. CUSTOMIZING AND TROUBLE-SHOOTING

_basetype[bt_number] ,&bindex) ;
MPI_Type_commit (&bindex) ;
MPI_Type_vector (params.blocks,1,2,bindex,d);
D16 (typecounter++;) MPI_Type_commit(d);

Number 63

MPI_Type_vector (params.blocksize,1,2,_basetype[bt_number] ,&bvector);
MPI_Type_commit (&bvector) ;
for (i=0; i<params.blocks; i++)
{
blen[i] = 1;
disp[i] = 2*i;
}
MPI_Type_indexed(params.blocks,blen,disp,bvector,d);
D16 (typecounter++;) MPI_Type_commit(d);
isconstr = TRUE;

Number 64
for (i=0; i<params.blocksize; i++)
{
blen[i] = 1;
disp[i] = 2%i;
}

MPI_Type_indexed(params.blocksize,blen,disp,_basetype[bt_number],&bindex) ;
MPI_Type_commit (&bindex) ;

for (i=0; i<params.blocks; i++)
{
blen[i]
disp[i]
}
MPI_Type_indexed(params.blocks,blen,disp,bindex,d);
D16 (typecounter++;) MPI_Type_commit(d);

1
2%1;

Number 70

/* Special types (assume here that BLOCKSIZE>=3) */

MPI_Type_vector (params.blocks,1,params.blocksize,_basetype[bt_number],&compl) ;
D16 (typecounter++;)MPI_Type_commit (&compl) ;
for (i=0; i<params.blocks; i++) {
blen[i] = 1;
disp[i] = i*params.blocksize;
}
MPI_Type_indexed(params.blocks,blen,disp,_basetype[bt_number],&comp2) ;
D16 (typecounter++;)MPI_Type_commit (&comp2) ;
for (i=0; i<params.blocks; i++) {
blen[i] = params.blocksize-2;

2.1. CONFIGURING THE SKAMPI PARAMETER FILE 29

offset[i] = i*params.blocksize*_basetype_size[bt_number];
typeli] = _basetype[bt_number];
}
#if MPI_2
MPI_Type_create_struct(params.blocks,blen,offset,type,&comp3);
#else
MPI_Type_struct(params.blocks,blen,offset,type,&comp3) ;
#endif
D16 (typecounter++;)MPI_Type_commit (&comp3) ;
blen[0] = 1; offset[0] = 0; typel0] = compi;
blen[1] = 1; offset[1] = _basetype_size[bt_number]; typel[l] = comp2;
blen[2] = 1; offset[2] = 2*_basetype_size[bt_number]; typel[2] = comp3;
#ifdef MPI_2
MPI_Type_create_struct(3,blen,offset,type,d);
#else
MPI_Type_struct(3,blen,offset,type,d);
#endif

2.1.9 Virtual Topologies

A virtual topology in MPI is an optional attribute of a (intra)communicator. It’s
a graph specifying the ’ideal’ arrangement of processes and communication links
a user application (or a part of it) would like to have. Often this arrangement is a
regular n-dimensional grid or torus. MPI provides functions for specifying these
graphs and access function to use these topologies in a more straightforward way
(i.e. to send a message to a neighbour in a specific dimension). Additionally the
MPI implementation tries to find a mapping between this graph and the physical
topology of the underlying hardware so that the communication performance is
improved. Details of the whole concept and its integration in MPI can be found
in chapter 6 of [7].
SKaMPI supports three different types of virtual topologies:

cartesian topologies are defined with the following syntax:

QTOPOLOGY5 Cartesian <NOREORDER> number_of_dims periodic periodic ...

where the n-th periodic flag specifies whether the mesh is periodic in the
n-th dimension or not and the optional keyword NOREORDER prevents re-
ordering of process ranks. For example “@TOPOLOGY3 Cartesian 2 yes yes”
defines a 2-dim torus while “TOPOLOGY2 Cartesian NOREORDER 3 no no no”
defines a 3-dim grid without reordering of process ranks.

arbitrary topologies are specified like this:
@TOPOLOGY1 Graph <NOREORDER> [PE_O0] [PE_1] ... [PE_p-1]

where [PE_n] is the list of all neighbours of processing element n and the
optional keyword NOREORDER prevents reorderings of process ranks. If for
example PE 5 is connected to PEs 3, 6 and 7, the corresponding [PE_5] list
would be [3 6 7]. Please note that the MPI standard explicitly requires
a symmetric graph, i.e. for every edge from i to j there has to be a
correspondent edge from j to i.

30 CHAPTER 2. CUSTOMIZING AND TROUBLE-SHOOTING

rank permutations have the following syntax:
QTOPOLOGY6 Reorder perm(0) perm(1) ... perm(p-1)

where perm(n) denotes the rank of PE n in a newly created communicator.

2.2 Configuring the report generator

The report generater dorep4.pl usually comes along with a standard configu-
ration file (.dorep). So it needs no further configuration. But if you want to
create specialized reports and to fully exploit the generator you can make use of
its various parameters and features. This section only provides a brief overview.
More detailed information can be found on the following URL in the internet:

http://liinwww.ira.uka.de/ skampi/dorep4.html

dorep inspects which measurements are performed and processes their re-
sults. So if you add or omit measurements, they will automatically appear in
(or respectively disappear from) the report.

2.2.1 Comparisons

What the generator does not know is, which measurements you want to com-
pare®. To manipulate the “Comparisons” section in skarep.ps you can edit the
.dorep file. This file has a simple structure. Every line describes one compari-
son. The first part of the line is the name of the comparison. This name may be
a normal string, but it must not contain any ”:”, because that is its delimiter.
After the “:” follows a list with names of suites of measurements.

Name of the comparison: suitel, suite2, suite3

W

Note that the lists are separated by “”. But where to get the names of the
suites from? For that you may have a look in the parameter file .skampi.

As explained in the section 2.1.1 each suite of measurements has its own
name (usually the name of the MPI function measured). It may happen, that
one MPI function is used in two (or more) patterns, so you have to add a prefix,
describing the pattern®.

Table 2.2 shows the patterns prefixes. For example you want to compare the
first two suites in .skampi:

1. We want to name our comparison: Comp. MPI_Send-MPI Recv and MPI_Iprobe
(followed by MPI Recv).

2. In .skampi you find the name MPI_Send-MPI Recv. This is the name of
one suite we want to see in our comparison.
The other suite is called MPI_Send-MPI Iprobe Recv.

5Here a comparison is a plot of two or more function graphs. The report generator also
creates a table with some results to compare.

6The problem of identifying the suite with a name, which may occur twice, does not exist
in .skampi. Here the corresponding pattern is stored with the name, so that it is always clear,
what suite is called.

2.2. CONFIGURING THE REPORT GENERATOR 31

Type numbers Pattern Prefix
1-9,29,34 Point-to-Point
10-16,30 Master-Worker
17-23,31,33,35-46,72,74,76,78 | Barrier Measured Collective
24-28,32 Simple
50-53 internal measurements
54-71,73,75,77,79 Synchronous Measured Collective

Table 2.2: The mapping of patterns to prefixes

3. Since both suites belong to the point-to-point pattern, table 2.2 tells us
we have to add the prefix p2p._.

4. The resulting line in .dorep is:
Comp. MPI_Send-MPI Recv and MPI_Iprobe (followed by MPI_ Recv):
p2p_MPI_Send-MPI Recv, p2p_MPI_Send-MPI_Iprobe Recv.
Note: this has to be written as one line.

For every comparison you have to ensure that the first suite’s parameter range
includes the parameter ranges of the other suites. dorep does not check the
meaning of a comparison.

2.2.2 Additional tex-modules

Besides the comparisons, there is another simple way to create more individual
reports. If you create a tex-module with the extension .tma (tex module ad-
ditional), this file will be included automatically in front of the “Comparison”
section. Here a “tex-module” is a file which contains tex-commands which can
occur between \begin{document} and \end{document}.

Example

\section{Comments}
My opinion of SKaMPI: delete it!
Oops'!

2.2.3 More detailed graphs

If you want a more detailed graph of a special parameter range, you may edit
the skampi.out in the following way.

/*@inp2p_MPI_Bsend-MPI_Recv.ski*/

#Description of the MPI_Bsend-MPI_Recv measurement:
#Pattern: Point-to-Point varied over the message length.
#The x scale is linear, automatical x wide adaption,
#range: 0 - 256, stepwidth: 16.000000.

#default values: 2 nodes.

#max. allowed standard error is 10.00 %

#Format: message length ()d) <space> time (microsec.)

32 CHAPTER 2. CUSTOMIZING AND TROUBLE-SHOOTING

(%f) (standard error) (%f) count (%d)
#arg result standard_error count
0 7004.000000 1.000000 2
16 7316.000000 3.000000 2
32 11538.000000 2716.566473 6
40 7498.500000 6.500000 2

Edit the range line. For example you may write range: 16 - 128 if you are
only interested in this part of the graph.

2.2.4 Given module files

Another possibility to customize the reports is the use of own module files. For
every suite suite-name the report generator creates a gnuplot-command file
named suite-name.gpl and a tex module file suite-name.tmd. If the dorep

skript finds such a file, it uses it instead of generating a new one’.

2.2.5 Extra text for suites

For every suite of the standard parameter file an extra text is printed as header.
This text is stored in a an ASCII-text file suite-name.dri®.

2.3 When SKaMPI crashes

Since the MPI-implementations are no trivial pieces of software”, we have to
assume that SKaMPI may crash while measuring. In this case all measured
suites are stored, only the actual one is lost.

In this case you can use the automatic recovery mechanism. Simply start
SKaMPI again. Please do not change the output or log file. SKaMPI tries
to find out which measurement caused the trouble. Then SKaMPI skips the
measurement and starts with the measurement behind. The erroneous mea-
surement will be called after all others. So if it crashes again, you will have
completed all other measurements. This mechanism will also work, if several
measurements crash.

If this does not work, you can recover manually.

9

1. Find out which measurement caused the crash. In order to do this, look
into skampi.out, go to the end of file and backward-search the string
“/*Q@in” You will find the name of the last completed measurement after
that string.

#/*Q@inp2p_MPI_Send-MPI_Irecv.ski*/
#Description of the MPI_Send-MPI_Irecv measurement:

"To have a look at the temporarily created files use the -t switch to keep the report
generator from deleting them. But be careful: You have to delete these temporary files before
using dorep4.pl again, because, as explained above, the generator doesn’t overwrite them. A
small generated skript called kill temp can be used for that.

8dri means “dorep-information”.

9And (err) SKaMPI neither...

2.3. WHEN SKAMPI CRASHES 33

#Pattern: Point-to-Point varied over the message length.

So the name we look for is p2p MPI_Send-MPI _Irecv.

2. Edit .skampi. Here you replace @MEASUREMENT with @COMMENT (You switch
of all measurements).

3. Then find the entry of the crashed measurement. The crashed measure-
ment is the measurement behind the last completed measurement, you
know from above. Write @MEASUREMENTS after the crashed measurement
entry. In our case if MPI_Send-MPI_Irecv is the last completed measure-
ment, then MPI_Send-MPI Recv_with_Any Tag failed. Therefore we place
OMEASUREMENTS before the next entry (i.e., MPI_Ssend-MPI Recv).

MPI_Send-MPI_Recv_with_Any_Tag

{
Type = 4;
Variation = Length;
Scale = Dynamic_log;
Max_Repetition = Default_Value;
Min_Repetition = Default_Value;
Multiple_of = Default_Value;
Time_Measurement = Invalid_Value;
Time_Suite = Default_Value;
Node_Times = Yes;
Cut_Quantile = Default_Value;
Default_Chunks = 0;
Default_Message_length = 256;
Start_Argument = 0;
End_Argument = Max_Value;
Stepwidth = 1.414213562;
Max_Steps = Default_Value;
Min_Distance = 2;
Max_Distance = 512;
Standard_error = Default_Value;

}
OMEASUREMENTS
MPI_Ssend-MPI_Recv

{
Type = 5;
Variation = Length;

4. Delete the current logfile skampi.log.
5. Rename skampi.out to another file.

6. Start SKaMPI again with the same command.

34

CHAPTER 2. CUSTOMIZING AND TROUBLE-SHOOTING

7. When SKaMPI finished, you can append the new skampi.out file to the
old renamed one.

Chapter 3

Measurements in detail

In the last chapter of this manual the different measurements are treated in
detail. First we explain how to get the measured code for each measurement.
In the last section we will see the format of the oubtput file.

3.1 But what is measured?

So far we know how to measure, but what is actually measured? Since we
investigate parallel operations, we have to coordinate several processes. Mea-
surements, which have a similar coordination of its processes, are grouped to a
so called pattern. To get an impression of the working of these pattern and the
functions called, there is an example in the next section. The following sections
then introduce every single pattern.

3.1.1 Example

Lets ask, what is measured in type 167 First we have a look at table 3.1 (page
35) and see that the measurement type 16 belongs to the master-worker-pattern.
Table 3.3 (page 36) shows that it is initialized with the function mw_init Bsend.

Type numbers Pattern
1-9,29,34 Point-to-Point
10-16,30 Master-Worker
17-23,31,33,35-46,72,74,76,78 | Barrier Measured Collective
24-28,32 Simple
50-53 internal measurements
54-71,73,75,77,79 Synchronous Measured Collective

Table 3.1: The mapping of type numbers to patterns
The internal measurements are used to determine the overhead and the accu-
racy of measurements. The order of new measurements has somehow grown
historically, but any reordering would break a lot of things (results of old mea-
surements, old configuration files etc.)

35

CHAPTER 3. MEASUREMENTS IN DETAIL

MPI-function(s)

Initializer

36

Number
1

2

3

4

5

6

7

8

9

29

34

MPI_Send-MPI_Recv
MPI_Send-MPI_Recv_any_tag
MPI_Send-MPI_IRecv

MPI_Send-MPI_Iprobe_MPI_Recv

MPI_Ssend-MPI_Recv
MPI Isend-MPI_Recv
MPI_Bsend-MPI_Recv
MPI_Sendrecv
MPI_Sendrecv_replace
dummy Point-to-point
measurement

MPI Issend

p2p-init_Send_Recv
p2p-init_Send_Recv_AT
p2p-init_Send_Irecv
p2p-init_Send_Iprobe Recv
p2p-init_Ssend_Recv
p2p-init_Isend _Recv
p2p-init_Bsend_Recv
p2p_init_Sendrecv
p2p_init_Sendrecv_replace
p2p-nit_dummy

p2p-init_Tssend

Table 3.2: The mapping of type numbers to measured MPI-functions (point-to-
point pattern)

Number MPI-function(s) Initializer
10 MPI_Waitsome mw_init_Waitsome
11 MPI_Waitany mw_init_Waitany
12 MPI_Recv_Any_Source mw_init_Recv_AS
13 MPI_Send mw_init_Send
14 MPI_Ssend mw_init_Ssend
15 MPIIsend mw_init_Isend
16 MPI_Bsend mw_init_Bsend
30 dummy Master-Worker mw_init_dummy

measurement

Table 3.3: The mapping of type numbers to measured MPI-functions (master-
worker pattern)

Number MPI-function(s) Initializer
24 MPI_Wtime simple_init_Wtime
25 MPI_Comm _rank simple_init_Comm_rank
26 MPI_Comm_size simple_init_Comm _size
27 MPI Iprobe (not successful) simple_init_Iprobe
28 MPI attach simple_init_attach
32 dummy simple measurement simple_init_dummy

Table 3.4: The mapping of type numbers to measured MPI-functions (simple

pattern)

3.1. BUT WHAT IS MEASURED?

37

Number MPI-function(s) Initializer

17,47 MPI Bcast col_init_Bcast

18,49 MPI Barrier col_init_Barrier

19,54 MPI_Reduce col_init_Reduce

20,55 MPI_Alltoall col_init_Alltoall

21,56 MPI_Scan col_init_Scan

22,57 MPI_Comm split col_init_Comm_split

23,58 memcpy (ANSI-C) col_init_memcpy

31,59 dummy collective measurement col_init_dummy

33,48 MPI_Gather col_init_Gather

35,60 MPI_Scatter col_init_Scatter

36,61 MPI_Allreduce col_init_Allreduce

37,62 MPI Reduce followed by col_init_Reduce_Bcast
MPI Bcast

38,63 MPI_Reduce_scatter col_init_Reduce_scatter

39,64 MPI_Allgather col-init_Allgather

40,65 MPI Scatterv col_init_Scatterv

41,66 MPI_Gatherv col_init_Gatherv

42,67 MPI_Allgatherv col_init_Allgatherv

43,68 MPI_Alltoallv col_init_Alltoallv

44,69 MPI_Reduce followed by col_init_Reduce_Scatterv
MPI Scatterv

45,70 TImplementation of Gather with col_init_Gather_Send_Recv
MPI_Send and MPI_Recv

46,71 Implementation of Gather with col_init_Gather Isend_Waitall
MPI_Isend, MPI Irecv, and
MPI_Waitall

72,73 Implementation of Broadcast with col_init_Bcast_Send_Recv
MPI_Send and MPI Recv

74,75 Implementation of Alltoall with col_init_Alltoall_Isend_Irecv
MPI Isend and MPI Irecv

76,77 MPI_Comm _dup col init_Comm_dup

78,79 Implementation of Alltoallv with col-init_Alltoallv_Isend Irecv

MPI_Isend and MPI Irecv

Table 3.5: The mapping of type numbers to measured MPI-functions (collective

patterns)

38 CHAPTER 3. MEASUREMENTS IN DETAIL

Now we take our C source code protection suit (don’t forget the gloves) and
dive into the source code (i.e. this huge file called skosfile.c). We have a look at
the function mw_init _Bsend:

mw_init_Bsend (measurement_t *ms, data_t *data)

{
ms->pattern = MASTER_WORKER;
ms->data.mw_data.master_receive_ready = master_receive_ready_empty;
ms->data.mw_data.master_dispatch = master_dispatch_Bsend;

ms->server_init = mem_init_two_buffers_attach_mw;
ms->server_free = mem_release_detach;
ms->client_init = mem_init_two_buffers_attach_mw;
ms->client_free = mem_release_detach;

ms->data.mw_data.master_worker_stop = master_worker_stop_recv;
ms->data.mw_data.worker_receive = worker_receive_test;
ms->data.mw_data.worker_send = worker_send_test;
ms->data.mw_data.communicator = MPI_COMM_WORLD;
ms->data.mw_data.result = data;

ms->data.mw_data.chunks = DEF_CHUNKS_VALUE;
ms->data.mw_data.len = DEF_LEN_VALUE;
ms->data.mw_data.def_nodes = DEF_NODES_VALUE;

Because we have already read the description of the master worker pattern
on page 40 we know that the most important functions are master dispatch,
worker_send and worker_receive which are set to master_dispatch Bsend,
worker_send_test and worker_receive_test and which look like this:

int
master_dispatch_Bsend (int number_of_workers,
int work, int chunks, int len,
MPI_Comm communicator, MPI_Datatype data_type)

MPI_Status
status;

MPI_Recv (_skampi_buffer, len, data_type, (work % number_of_workers) + 1,
1, communicator, &status);
/* sending next chunk of work to this worker */
MPI_Bsend (_skampi_buffer, len, data_type,
(work % number_of_workers) + 1,
1, communicator);

D(fprintf (stderr, "master: sending job_no %d to worker %d\n",
work, (work % number_of_workers) + 1);)

return (1);

3.1. BUT WHAT IS MEASURED? 39

void
worker_send_test (int len, MPI_Comm communicator, MPI_Datatype data_type)

{
MPI_Ssend (_skampi_buffer, 0, data_type,
0, 1, communicator);

int
worker_receive_test (int len, MPI_Comm communicator, MPI_Datatype data_type)

{
MPI_Status status;

MPI_Recv (_skampi_buffer, len, data_type, O,
MPI_ANY_TAG, communicator, &status);

if (status.MPI_TAG == 0) /* STOP working */
return (FALSE);

return (TRUE);

And hopefully we now know exactly what’s going on.

3.1.2 Point-to-point pattern

The point-to-point pattern is an alternating sequence of server_op and client_op
called on the server respectively client. By default the node with the largest
latency is chosen as client, but it is also possible to select the one with the
smallest latency with a switch in the SKaMPI parameter file.

/* server node */

max_node := determine node with maximum latency
min_node := determine node with minimum latency

repeat
start_time := MPI_Wtime()
server_op()
end_time := MPI_Wtime()
until result exact enough

send stop signal

/* client node */
actions to answer the max/min_node determination

if client is max/min_node

40 CHAPTER 3. MEASUREMENTS IN DETAIL

repeat
client_op()
until stop signal received

3.1.3 Master-worker pattern

The Master-worker pattern corresponds to the typical master-worker scheme: a
master process divides a problem into several sub-problems (here called chunks)
and dispatches them to several worker processes (master_dispatch). The work-
ers initialize with master receive ready (perhaps a MPI Irecv if necessary)
and subsequently send results and receive new chunks of work with worker_send
and worker receive. When all work is done, the master sends a stop-signal
to the workers (master_worker_stop). This scheme is important in practice,
because it is the simplest method to do load balancing.

/* master code */

for each worker
master_receive_ready /* set ready to receive e.g. MPI_Irecv */

chunk := 0
start_time := MPI_Wtime()

while chunk < all_chunks
master_dispatch()
chunk := chunk + 1

end_time := MPI_Wtime()

for each worker
master_worker_stop() /* send stop signal */

/* worker code */

repeat
worker_send() /* send ready signal to master */
worker_receive() /* get new work or stop signal */
until stop signal received

3.1.4 Barrier measured collective pattern

This is the original collective pattern used in previous versions of SKaMPL
Though usually all collective MPI operations use the same function calls and
parameters to perform a collective communication a distinction between the
root or server and the nodes or clients is made (routine to measure and
client routine). This simplifies the use of self-made alternative implemen-
tations of these collective operations.

finalize _server_routine and finalize_client_routine are used for admin-
istrative things like the release of resources or waiting for the end of an asyn-

3.1. BUT WHAT IS MEASURED? 41

chronous send. The latter is mainly done because of some race conditions be-
tween these send operations and the following busy waiting operations per-
formed in the new synchronous collective pattern described in the next section.

/* server code */

MPI_Barrier()
repeat
start_time := MPI_Wtime()
routine_to_measure()
finalize_server_routine()
MPI_Barrier ()
end_time := MPI_Wtime()
until result exact enough
send stop signal

/* client code */

MPI_Barrier ()

repeat
client_routine() /* counterpart of routine_to_measure */
finalize_client_routine()
MPI_Barrier()

until stop signal received

3.1.5 Synchronous measured collective pattern

The measurement method described in the last section lacks accuracy espe-
cially for fast operations with short message lengths. Therefore a much better
measurement method was developed. It uses synchronized clocks and avoids
any interference with the measured collective operation (details in ([2] or for a
shorter description in English [8]). Simplified it looks like this (the functions
implementing the collective operations are the same as in the previous pattern):

/* server code */

clock synchronization
repeat
start synchronous with other nodes
start_time := MPI_Wtime()
routine_to_measure()
end_time := MPI_Wtime()
finalize_server_routine()
wait till end of time slot
collect results, maximum is the result of single measurement
until result exact enough
send stop signal

/* client code */

42 CHAPTER 3. MEASUREMENTS IN DETAIL

clock synchronization
repeat
start synchronous with other nodes
start_time := MPI_Wtime()
client_routine() /* counterpart of routine_to_measure */
end_time := MPI_Wtime()
finalize_client_routine()
wait till end of time slot
send result to server
until stop signal received

Unfortunately this new measurement method is slower an takes about twice
as much time as the old one. Therefore and for keeping old measurements
comparable the new method has not completely replaced the old one, though it
should be used whenever possible.

3.1.6 Synchronous measured collective pattern using vir-
tual topologies

For implementation reasons the measurements of collective operations using a
virtual topology are using a separate pattern. The actual measurement method
is the same than the one explained in the previous section (3.1.5).

3.1.7 Simple pattern

Some routines of MPI seem to be so simple, that they are measured in a very
simple “pattern”. In this pattern we measure all operations with local effects.

/* root node */

repeat
start_time := MPI_Wtime()
routine_to_measure()
end_time := MPI_Wtime()
until result exact enough

3.2 The output file

The output file is a pure ASCII-text file. Its name is usually skampi.out by
default but can be changed in the @OUTFILE-section of the parameter file (see
section 2.1.1 for further information). Roughly speaking it has three sections:
the header, the data, and the trailer.

Header

The header stores all information characterizing the context of the measure-
ments stored in this file. These are the sections @MACHINE, @NODE, @NETWORK,
QUSER, and @ABSOLUTE which are filled with data from from the parameter file.
Additional sections are filled by the benchmark. A typical header can look like:

3.2. THE OUTPUT FILE 43

#@MACHINE IBM RS/6000 SP
#ONODE +thin node P2SC 120 MH=z
#ONETWORK High Performance Switch TB3
#QUSER Ralf Reussner
#O@SKAMPIVERSION 1.20

#QOSNAME AIX

#QOSRELEASE 2

#QOSVERSION 4

#QHOSTNAME pO071

#QARCHITECTURE 000089978100
#@ABSOLUTE yes

#@DATE Thu Oct 29 11:25:34 1998

Data

This section is a list of suites of measurements. Each suite starts with a “small”
list-header, describing this suite, follewed by a result-list For all patterns except
the simple-pattern the header looks like:

#/x0@incol_MPI_Bcast-nodes-short.skix*/

#Description of the MPI_Bcast-nodes-short measurement:

#Pattern: Collective varied over the number of nodes [number] (%%d).

#The x scale is linear, no automatic x wide adaption

#range: 2 - 64, stepwidth: 1.000000.

#default values: 64 nodes, message length 256 bytes, max. / act. time for suit
e disabled/0.31 min.

#max. allowed standard error is 3.00 %, cut quantile is 0.00 %

#Format: <args> number of nodes [number] (%)d) <results> time_cleaned [microse
c.] (%4f) standard_error_cleaned [%] (%f) count_cleaned [number] (%d) time_all
[microsec.] (%f) standard_error_all [%] (%f) count_all [number] (%d)

A typical header of the simple-pattern looks like:

#/*Q@insimple_MPI_Wtime.skix/

#Description of the MPI_Wtime measurement:

#Pattern: Simple.

#

#

#

#max. allowed standard error is 3.00 %

#Format: <args> <results> time_cleaned [microsec.] (%f) standard_error_cleane
d [%] (%f) count_cleaned [number] (%d) time_all [microsec.] (%f) standard_erro
r_all [%4] (%4f) count_all [number] (%d)

Note that the @in-command is used by the report generator, to identify the
measurements®. All other lines start with a f, so that gnuplot treats these lines
as comments.

The small header for suites of the simple-pattern look different, because this
pattern does not has information on scale, range and default values. (But both

Tand to create temporary files.

list-headers have the same length of eight lines.?)

Note the following line giving the typing information of the result list (the
result list is described in the next subsection).

#Format: <args> number_of_nodes [number] (%%d) <results> time_cleaned
[microsec.] (%f) standard_error_cleaned [%] (%f) count_cleaned
[number] (%d) time_all [microsec.] (%f)

standard_error_all [%] (%f) count_all [number] (%d)

These lines should be read as one continuous line. The basic idea is, that

the formats of the result-lists may differ. So it is important to describe each
list’s format.
The format-line starts with ”"#Format:”, followed by a tag (<args>), which
means, that a description of arguments follows. (In case of multi dimensional
measurements more than one argument belongs to one measurement.) Each
argument is described with its name (in our example number of nodes) than
its unit ([number]) and its format in C-Syntax given in round brackets (e.g.,
(%d)). Each so described argument corresponds to one column of the result-list.
The arguments describing list is followed by another list, the results describing
list. Each entry describes a column of the result list. An entry is formed by
the following data (similar to an entry of the argument list): name, unit, and
format.

After each list-header follows a result-list of measurements for each suite.
(This list may contain only one element.)

176.059111 3.034745 8 176.059111 3.034745 8
386.971049 14.221803 8 386.971049 14.221803 8
370.513008 14.726381 8 370.513008 14.726381 8
573.763306 26.948681 11 573.763306 26.948681 11
521.403970 10.311949 8 521.403970 10.311949 8
577.031024 9.031125 8 577.031024 9.031125 8
484.304333 24.567614 11 484.304333 24.567614 11
706.000973 35.550781 68 706.000973 35.550781 68
701.232959 25.582020 8 701.232959 25.582020 8
802.918861 33.229652 8 802.918861 33.229652 8
806.794216 37.361757 11 806.794216 37.361757 11
766.557961 21.876852 8 766.557961 21.876852 8
818.220084 37.641216 9 818.220084 37.641216 9
827.972894 36.904118 9 827.972894 36.904118 9
16 758.197092 36.257975 14 758.197092 36.257975 14
#eol

W 00 ~NO O WN

=
= O

e e o
g w N

To mark the end of this list, skampi prints an feol.

Trailer

The trailer is just the last line of the output file. If skampi finishes correctly, the
last line will contain the string “skampi finished.”. If this file was created by

2For implementors: This string is created in the function measurement_data_to_string in
module skampi_tools.

44

post processing, there will be additionally the stamp: -postprocessed.

45

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[9]

Marc-Oliver Straub. Integration virtueller Topologien in SKaMPI, Studi-
enarbeit, Universitit Karlsruhe, Fakultit fiir Informatik, Februar 2004.

W. Augustin. Neue Messverfahren fiir kollektive Operationen, Diplomar-
beit, Universitiat Karlsruhe, Fakultit fiir Informatik, Dezember 2001.

W. Gropp, E. Lusk. User’s Guide to mpich, a portable Implementation
of MPI, Technical Report ANL/MCS-TM-ANL-96/6, Argonne National
Laboratories, 1996

Message-Passing Interface Forum. MPI-2.0: Extensions to the Message-
Passing Interface, MPI Forum, June 1997. http://wuw.mpi-forum.org/
docs/docs.html.

R. Reussner. Portable Leistungsmessung des Message Passing Interfaces,
Diplomarbeit, Universitat Karlsruhe, Fakultit fiir Informatik, 1997

SKaMPI-Projekt. SKaMPI-Homepage. http://liinwww.ira.uka.de/
“skampi/.

M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and L. Dongarra. MPI —
The Complete Reference. 2nd. Ed., MIT Press, Cambridge, Massachusetts,
1998

Th. Worsch, R. Reussner and W. Augustin On Benchmarking Collective
Operations,

Recent advances in parallel virtual machine and message passing interface:
9th European PVM/MPI User’s Group Meeting Linz, Austria, Septem-
ber/October 2002

Marc-Oliver Straub. Integration virtueller Topologien in SKaMPI. Studi-
enarbeit, Fakultit fiir Informatik, Universitat Karlsruhe, 2004.

46

Index

.dorep, 30
.skampi, 4, 12

compile portability, 2
contention, 18

default values, 15
dynamic linear, 17
dynamic log, 17

fixed linear, 17
fixed log, 17

hompage, 3

measurement, 12

scale of, 17

single, 12

suite of

example, 19

time limit of a, 18

type of, 17
measurements

performed by SKaMPI, 7

suite of, 12
memory alignment problems, 18

node times, 18

parameter file, 4, 12
pattern, 35

performance portability, 2
portability, 2

report generator, 6
run, 12

scale of measurement, 17
single measurement, 12
skampi, 1, 2

goal, 2

homepage, 3

47

skosfile, 3
standard error, 19
suite of measurements, 12

time limit
of a measurement, 18
of a suite, 18

type of measurement, 17

