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Abstract

We describe Fourier pseudospectral time-domain simulations, carried out in order to study light in-
teracting with a metallic nanoscale object. The difficulty of using Fourier methods to accurately predict
the electromagnetic scattering in such dielectric configuration arises from the discontinuity in the dielectric
function along the surface of the metallic object. Standard Fourier methods lead to oscillatory behavior
in approximating solutions that are nonsmooth or that have steep gradients. By applying the Gegenbauer
reconstruction technique as a postprocessing method to the Fourier pseudospectral solution, we successfully
reduce the oscillations after postprocessing.

Our computational results, including comparison with finite-difference time-domain simulations, demon-
strate the efficiency and accuracy of the method.
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1 Introduction

Metallic nanostructures, such as metal nanoparticles and nanoholes in thin metal films, are of considerable
interest because of the possibility of creating surface plasmon excitations when interacting with light [2], [22].
Surface plasmons are collective electronic excitations that effectively concentrate and confine light energy
[4]. The manipulation of surface plasmons could lead to novel nanoscale optoelectronic devices.

Numerical simulations help us to understand and predict the basic physics of such nanophotonics problems
and also provide cost-effective tools for prototyping design of potential devices. Among general computational
techniques employed in such simulations, Fourier methods have been naturally considered for problems with
periodic features, such as planar waveguides and photonic crystal structures for integrated photonic devices.
Computational implementations and their error estimates have been analyzed in the literature [8], [25]. In
this paper we show how such Fourier methods can be applied to light interacting with metal nanostructures
that do not possess periodic features. Our focus is on mathematical reconstruction techniques for Fourier
pseudospectral simulation data, using Fourier-Padé and Gegenbauer approximations [15], [20], [23], [25],
[26].

As a first step, we study light interacting with a small metallic cylinder or nanowire of diameter of 50 nm
and infinite length in a vacuum. Before presenting detailed mathematical formulae, we give a brief overview
of the mechanism behind surface plasmon excitation in such a system. Imagine the circular cross section
of the nanowire to be in the x—y plane with its long axis parallel to the z—axis. Incident light traveling
along z axis with y—polorization is then capable of inducing dipolar (and higher order) charge oscillations
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near the metal surfaces. These charge oscillations are associated with collective excitations of electrons
near the metal surfaces and can lead to electromagnetic surface waves that are highly localized (evanescent)
near surfaces, i.e. surface plasmons. A complex—valued dielectric constant is used to discribe the metallic
response to radiation. More detailed analysis shows that this dielectric constant must have a negative real
part for surface plasmons to be reasonably excited. Absorption of radiation by the metal can also occur
which involves introducing an imaginary part to the dielectric constant. In addition to being highly localized,
the field intensities of surface plasmon excitations can be extremely large near the metal surfaces.

There are many approaches for solving the relevant Maxwell’s wave equations. In this paper we are
concerned with time-domain methods that involve grids in space and time. The advantages of such methods
include conceptual simplicity and the ability to model a variety of complex system architectures. The most
popular time-domain approach is the finite—difference time-domain (FDTD) method [30], [29]. It involves
low—order finite differencing to accomplish both spatial and time derivatives. In order to describe surface
plasmon behavior accurately, however, very fine grids in both space and time are required. An alternative to
FDTD that can lead to better accuracy with larger grid spacings would be to evaluate the spatial derivatives
with Fourier methods. Such pseudospectral time-domain (PSTD) methods have been proposed and studied
in the context of non—plasmonic systems [20], [26]. However the abrupt, sharp changes in magnitudes of the
electromagnetic fields near the metal surfaces due to surface plasmons is problematic for PSTD methods. In
particular, nonphysical oscillations called Gibbs oscillations can occur that contaminate the solution over a
wide range of coordinate space. However, the finite Fourier data contains enough information about the orig-
inal solution that one can reexpress the data as a Padé or Gegenbauer finite expansion and can thus reduce
the oscillations. In both cases, the reconstructions require obtaining the coefficients for the reconstructed
approximations in terms of the Fourier coefficients. Implementations with Fourier—Padé reconstructions in
[25] have successfully reduced the oscillations for Fourier pseudospectral solutions of nonlinear partial dif-
ferential equations such as Burgers’ and Boussinesq equations. The Gegenbauer reconstructions have been
applied to medical projection data computed by Fourier methods [23]. Here we apply the Gegenbauer recon-
struction to Fourier pseudospectral time-domain simulations [20] of Maxwell’s equations. The computational
results show that the Gegenbauer reconstructions successfully reduce the noise in the Fourier pseudospectral
simulations.

This paper is organized as follows. Section 2 gives the formulation of Maxwell’s equations and the auxiliary
differential equation [17], [29] for the current term from the Drude model. Section 3 presents our numerical
discretizations in space and time and the setup of parameters for PSTD simulations. Section 4 introduces the
Gegenbauer polynomials and the postprocessing technique (i.e., the Gegenbauer reconstruction procedure)
in one dimension. Their convergence behaviors are demonstrated for a nonperiodic analytic function, some
discontinuous functions, and a piecewise analytic function. CPU times for simulations will be also discussed.
Section 5 presents the implementation in two dimensions. Section 6 demonstrates the reconstructed results of
the Fourier pseudospectral solutions from the nanoparticle scattering simulations. FDTD results computed
on very finer grids are also provided for comparison with reconstructed results. Section 7 discusses the
remaining issues concerning parameter optimizations for the reconstructions and computational automation
with an appropriate error estimate. Section 8 briefly summarizes our research.

2 Maxwell’s Equations for Metal Nanoparticles

We consider the electrodynamics of metal nanosystem such as those in [2], [4], [17], [18], [22] which are
composed of (non-magnetic) metals and dielectric materials. The frequency-domain Maxwell’s equations
for the electric and magnetic field vectors, £ and H, may then be taken to be [4]

V x H, (1)
iwpoH = V xE, (2)

—iweFE

where w is the temporal frequency and pg is the magnetic permeability. Each specific system is defined
by the spatial and frequency dependence of the dielectric constant e. Dielectric regions of space can often
be described by a positive, real and frequency—dependent dielectric constant. Metallic regions involve a
generally complex—valued frequency—dependent dielectric constant. Moreover, the real part of the metallic



dielectric constant can be negative, which is essential for surface plasmon behavior. This latter property can
lead to instability in naive time-domain formulations of equation (1).

To address the difficulties noted above, we implement a Drude model [4] of the metallic dielectric constant
within an auxiliary differential equation approach [29], as outlined in more detail in [17]. For metallic regions,
we first reexpress € = egep, as

€=€p[€co T (€p — €00)]» (3)

where €y the permittivity of free space, e is the infinite frequency value for the dielectric constant, and ¢,
will be specified later. Identifying the current density as

J = —ieo(ep — €x0) E, (4)
we rewrite equation (1) as
J —iwege,E =V x H. (5)
Inverse Fourier transforming (5) gives
OE(t
J(t)—{—eoeoo%:VxH(t). (6)

The following is the Drude model [4], [17], [29] for the optical properties of a free-electron metal:

w2

epzem_ﬁpifp’ (M)

where I}, is the Drude damping coefficient and wj, is the plasmon frequency. This leads to

8% J(t) aJ(t) L, O0E(t)
TR A T T ®
Reducing the order of the ordinary differential equation, we have
oJ(t
% + T, J(t) = eow) E(t). (9)

Equipped with equation (9) for the current term, we define the governing time-domain equations as

e%—f = VxH-/J, (10)
u%—i] = -VxE, (11)
% = aJ+pE, (12)
where the phenomenological parameters in free space are
€=¢€y, p=pg, =0, and =0 (13)
and in the metallic region are
€= €0€co;, M=o, a=-Ip, and f= eowg. (14)

The values for the coefficients e, I'p, and w, will be assigned by experimental measurement [17].
The electromagnetic field vectors and the current vector are generally written by decomposing each
component as follows:

E=(E;,E,E,), H=(H,,H,,H;), and J = (J,Jy,J>). (15)



Here we consider the transverse-electric mode in two dimensions:
E=(E;,E,,0), H=(0,0,H,), and J = (J;,Jy,0). (16)
Then the governing equations (10)-(11) are written as

OF OF _OF
o0 = Ayt By, TOF (17)

where the field vector is F' = [E,, Ey, H,, J,, Jy]T and the coefficient matrices are

0 0 0 00 00oo 0 0 0 0 0
0 0 -1 00 0 00 00 0 0 0 0 0
A=[0 -4 0 00[,B=|; 00 0O0|,andC=|0 0 0 0 0
0 0 0 00 0 00 00 Be 0 0 a O
0 0 0 00 0 00 00 0 B, 0 0 a

One can check the well-posedness of this formulation. Equation (12) contains no spatial derivatives and
hence it is indeed an ODE for J. After the undifferentiated terms in equation (17) are dropped, it becomes
a 3 x 3 Maxwell system. One can symmetrize it through the following change of variables [16]

G= (Ez;Ey: /J//eHZ)' (18)

Thus the system is symmetric hyperbolic and therefore strongly well-posed [7].
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Figure 1: Finite computational domain on [0, 1024] x [0,512] nm?.

3 Numerical Scheme

Let us define the computational domain on [0, L;] x [0, L,], where L, = 1024 nm and L, = 512 nm. The
grid points are defined by

 Lyi

L
Tr; = Nz vJ

(i=0,..,Ny—1) and y; = -22(j =0,..,N, —1). (19)
Ny

Consider a metal cylinder with radius 25 nm whose center is placed at £ = 767.5 nm and y = 255.5 nm in
the computational domain (see Figure 1). The parameters of the equations in (14) for the metallic region are
chosen as e, = 8.926, T, = —3.08 x 10'* Hz, and w, = 1.7577 x 10'6 Hz, as in [17], [18]. Since we simulate



infinite-space solutions on a finite computational domain, we introduce an artificial absorbing layer in order
to avoid the reflection from outgoing waves. The thickness of the absorbing layer is set to 28 nm and 40 nm
in the z- and y-direction, respectively. We use the uniaxial perfectly matched layer (UPML) formulation [27],
[29]; in this region the field intensity vanishes as it reaches to the boundary of the computational domain.
Thus, it is reasonable to consider this problem as a periodic problem and to apply Fourier approximations
globally in the computational domain.

The pseudospectral time—domain (PSTD) scheme [12], [13] we use involves second order explicit leap-
frogging in time, just as ordinary FDTD, but replaces the spatial derivatives by the Fourier pseudospectral
differentiation operators, denoted by D, and D, below. At the time level t” = nAt, our scheme is written
as follows:

1 1
En+§ _ E’n—g B B
=% — = DJHI-TL (20)
1 1
En+§ _ En7§ B _
F]’n—i—l _ _Hn B 1 _ 1
pmt——= = D,E*' -, B}, (22)
Tn+1l _ Tn Tn+1 n B
jn+1 _ jn jn+1 + jn _
y y _ Yy y n+1/2
N = a + BET (24)

where the vector representations of the fields and parameters are defined, respectively, by

E? = [(E)o0, (Bz)10s s (Bg)ijs - (Bz)Nu—1n,—1)"  for (Bg)ij = Eqx(zs,y5), (25)

€=¢€; =€(zi,y;), a=ay=oaz,y;) and B =B =pB(xi,y;) (26)

Note that a common, evenly spaced nonstaggered spatial grid is assumed for all field variables which is
simpler than the FDTD/Yee [30] gridding scheme.

3.1 Spatial Derivative

The Fourier pseudospectral differentiation operator in two dimensions in (20)—(24) can be represented by
using a one-dimensional derivative operator. Let us consider a smoothly differentiable function f(z) with
period 2, specified at N discrete grid points zo, ..., 2;, ..., ZN—1, Where x; = 27rf/N . Fourier pseudospectral
approximation of the function f(z) is defined by

N-1

fu(@) =Y fz)(2), (27)

=0

where II;(z;) = ;; and IL;(z) is a Lagrange interpolation polynomial of degree N [12]. The polynomials

K3

IT; () are given explicitly by

IO;(z) = % sin[N(z — z;)/2] cot [(x — x;)/2]. (28)

In the pseudospectral method, the first derivatives dfn(z)/dz at the grid points r; are obtained in terms of
the values f(z;) by simply differentiating (27):

d T N-1 d]___[A T A~




where D is a N x N matrix with elements

Tdr ) eui
2

P = g S cot(w; — ;) (i # ).

(30)

On the other hand, the trigonometric polynomial II;(x) of degree N has the equivalent representation [12]
defined by

1 N/2-1
M) =~ Y ekome. (31)
k=—N/2

Using (31), one can rewrite equation (27) as follows:

@ = 3 st S e 5 e (32
N =0 & NszN/ze _szN/Z o
defining
I Pt .
fe= g 20 flaems, (33)
1=0

which is in fact the discrete Fourier coefficient of f(x). Thus one also can evaluate derivatives using equation
(32) to obtain

dfn(z;) 1 et . F ik
dt N Z ik fie™. (34)

k=—N/2

Note that fn(z;) = f (m]),j =0,1,...,N—1, but their derivative "g—;" is not necessarily exact with % on the
grids z;.

For the sake of convenience, here we use the physical space expression (29), rather than (34), for the
spatial derivative D, with respect to z in the scheme (20)—(24) using the one-dimensional derivative matrix
D, = [(ﬁz)ﬂ] for i,7 = 0,...,N, — 1 associated with N, points on the interval [0,L,]. Expressed as a
matrix-vector product, the spatial derivative D, reads

D,

o
)
sl
Il
S]]

(35)

~

D,

D, is applied to each row [Eoj, E1j, ... En,—1;]7,j = 0,..., N, — 1, in the computational grid of Figure 1. To
compute the derivative with respect to y, one applies the corresponding one-dimensional IV, X N, matrix ﬁy
to each column [Ej, Ej1, ..., Ein,—1]7,i =0, ..., N, — 1. This can be conveniently expressed as D, = I ® D,
and D, = D, ® I using the tensor product ® defined in [5]. Let A = [a;;] and B = [b;;] be k x | and m x n
matrices, respectively. Then their tensor product is given in block matrix form as

anB ai2B -+ ayB
ang CLQQB s ang

A®B= . . . (36)
ale akQB s ale



3.2 Uniaxial Perpectly Matched Layer (UPML)

In the UPML region as shown in Figure 1, the fields are also planewave in nature and satisfy the Maxwell’s
equations. The following artificial permittivity and permeability tensors are assigned to the frequency—
domain representation (1)—(5) in that region: € = €5 and jip = po8 where the diagonal tensor § is

SySz8, " 0 0
3= 0 swszs;1 0 . (37)
0 0 Sp8y87 1

This artificial tensor assignment eliminates reflections for waves propagating across the UPML boundary.
The refletionless nature is retained for any given tensor elements, sz, . [27], [29]. For UPML to be an
absorber, the diagonal elements of § can be chosen as

Oz

o o
Se =Ky +——,8, =K, +—L, and s, =K, + —, (38)
1WeQ 1WEQ 1WeQ

where the constants X, . are real. The effect from the abrupt change of UPML conductivity, o, y,2,
from non-UPML to UPML region can be reduced by smoothly increasing UPML conductivity. We choose
polynomial gratings as follows ; for example, assuming z = z( at the interface of non-UPML and UPML
region and considering s, for x — x9 <0,

_(z—m0\" / _(m+1)In[R(0)]
Oz = ( d ) O, max> and Oz,max = 277d . (39)

where 1 = y/uo/€ and d is the thickness of PML slab. We use empirically optimized UPML parameters.
That is m =1, Kz 4., = 1, and R(0) = 10~'2. UPML tensor elements are designed to act on a specific wave
propagation, corresponding to a subscript propagation component; for example, s, acts on wave propagating
in z—direction. For two—dimensional computations on z—y plane, we set s, = s, = 1 for z—directed domain
boundary and s, = s, = 1 for y—directed domain boundary. Then, the frequency domain representation of
the UPML tensor can be incorporated with PSTD updating scheme through the constitutive relation [29].

3.3 Computations

We obtained computational results using the Fourier pseudospectral time-domain (PSTD) method (20)—(24)
with the UPML formulations (37)—-(39) in the absorbing layer. Specifically, we examined snapshots of the
field components E, E, in a local domain Q = [640,896] x [128, 384] nm?, the region within the dotted line
in Figure 1, and frequency-domain field distributions E, H at a frequency wq defined in Q as follows :

B(a, y,w0) = / €0 Bz, y, t)dt, (40)
0

(2, y, wo) = / €0 E(z,y, t)dt. (41)
0

For snapshots, we used modulated Blackman-Harris pulses [9] covering the range of frequencies [)\—c0 —-a, % +a]
Hz, where a =1.800e14, A\g =340 nm and ¢ = \/ﬁ
To ensure the numerical stability in time, we used an allowable time step as in [9], [20], [24],

At < — 2V eminlo___ 42)
me/1/Ax2 + 1/ Ay?

where €ni, = min{eg, €g€ }- However, a rigorous stability analysis for our problem is not provided in this
paper.

Note that, because of a hard line source used in the simulation, the pulse width and the final time must be
chosen so that retroreflected waves from the line-source cannot get into the local domain Q. The snapshots




for the field components E, and E, at time 11.48e-15 sec with At =1.3514e-18 required 8,495 iterations in
time and a total CPU time of 7669.9 sec for Ax = Ay = 1 nm (see Figures 8-11 at the end of the paper).

For frequency-domain simulations, we used the range of frequencies [)\i0 —b, )\—co +b] Hz, where b =7.365¢e14,
Ao =340 nm for the source pulse. The pulse width should be short enough to avoid retroreflected waves from
the source getting into the local domain 2, and the total physical simulation time must be chosen so that
the fields go to zero at the end of simulation, avoiding a time-window effect. We obtained the distributions
of the time-averaged electric field by computing the magnitude of the equation (40). We used the compact
line source [21] at the sinusoidal frequency wg = 2}\% Hz. The same size of At required 22,200 iterations in
time and a total CPU time of 7893.9 sec for finer grid sizes Az = Ay = 0.5 nm (see Figures 12-14 at the
end of the paper).

However, we observe nonphysical oscillations in the PSTD solutions. In our problem configuration, the
solution is piecewise smooth as a result of the discontinuity in the dielectric function along the interface
of the cylinder. Hence, we cannot obtain an accurate approximate solution with the standard Fourier
pseudospectral method, although that is a good method for analytic and periodic functions. In the next
sections, we introduce a cost-effective reconstruction technique as a postprocessing method and use it to
increase the order of accuracy for our PSTD solutions by reducing the nonphysical oscillations.

4 Gegenbauer Reconstructions in Finite Spaces

Although the results by Fourier pseudospectral time-domain simulations are obscured by oscillations aris-
ing from the Gibbs phenomenon, one can recover accurate reconstructions by using either Fourier-Padé
approximations [26] or Gegenbauer polynomials [15], [23].

Here, we consider Gegenbauer reconstructions. This method requires a priori knowledge of the location
of the discontinuity. In the present application, the discontinuity location, which arises from the jump in
dielectric function, is specified as part of the problem definition, and Gegenbauer reconstruction is therefore
appropriate.

4.1 Gibbs Phenomenon

We briefly revisit the prototype problem of Gibbs oscillation. Consider a nonperiodic analytic function
f(z) in [-1,1]. Now, assume that the point values f(z;), where z; = 2j/N,j = 0,..., N — 1, are known
but the function f(z) is not. This is equivalent to knowing the first N discrete Fourier coefficients fj,
—N/2 <k < N/2-1, of the function f(z) defined by

N-1
Fe =" flaj)e mhes, (43)
7=0
Then the classical Fourier sum
N/2-1
In@ = D fret™ (44)
k=—N/2

reconstructs the point values everywhere in —1 < z < 1.

The finite Fourier expansion converges exponentially as N increases when the approximated function
is analytic (i.e., inifinitely smooth) and periodic [13]. If f(z) is either discontinuous or nonperiodic, how-
ever, then fx(z) is not a good approximation to f(z). Away from the discontinuity or the boundary, the
convergence is only O(4), and there is an overshoot close to the discontinuity or the boundary that does
not diminish with increasing N [13]; this is referred to as the Gibbs phenomenon [11]. The phenomenon
manifests itself in many situations, including the problem we present in this paper.



4.2 Review of Gegenbauer Approximations

Gottlieb and Shu showed that, knowing the first N Fourier coefficients, one can reconstruct a rapidly con-
verging series based on the expansions in Gegenbauer polynomials [15]. The point values of f(z) everywhere
in —1 < x <1 can be recovered with exponential accuracy in the maximum norm up to the discontinuity or
the boundary.

The Gegenbauer series for the function f(z), based on the Gegenbauer polynomials C%(x), which are
orthogonal over the range z € [—1, 1] with the weight function (1 — 55'2)(1_% for any constant a > 0, is defined
by

fl@) =) b0 (), (45)
n=0
where the continuous Gegenbauer coeflicient is defined by
~ 1 L 1
b= e [ (=) ici@@is, (16)
n J—1

with the normalization constant

1 F(a + %)
(@)(n+ a)

T(n + 2a)

(47)
The Gegenbauer polynomials can be expressed by Rodrigues’s formula [1], and more conventionally they can
be computed by the following recurrence formula [1]:

nCY¥(z) =2(n+a—1)zC5 1 (z) — (n +2a —2)C5_5(z). (48)
They achieve their maximum at the boundary
ICh (@) <|CR(D)], —-1<z<l (49)

For large o and n, h% and C%(1) are almost of the same size, which is proven by using Stirling’s formula
[1], [14]. In Figure 2, Gegenbauer polynomials of degree n = 5 are shown for different a. As « increases,
the amplitude of C¢(x) dramatically increases at the boundary. On the other hand, the weight functions
rapidly approach zero near the boundary as « increases. The convergence rate of the infinite series depends
on the rate of decay in the magnitude of the coefficients. A rigorous proof of the exponential convergence of
the Gegenbauer series to an analytic function f(z) is shown in [14], [15].

Note that more commonly used Chebyshev and Legendre polynomials are important subclasses of the
Gegenbauer polynomials with the relations

Tn(z) = n lim T(2a)C3(2), Ln(z) = Ci (2), (50)

where T},(z) and L,(z) represent Chebyshev and Legendre polynomials of degree n, respectively. Figure 2
shows some profiles of them for degree n = 1,2, ...,5. They are obtained by using a cost-effective version for
computing the Gegenbauer polynomials; this method is discussed in Section 3 and 4. For computation of
the Chebyshev polynomials, following the relation in (50), « is chosen as 1.0e-11 for the limit relation, which
gives polynomial accuracy to 7 digits.

The sum of the first M + 1 terms of the Gegenbauer expansion in (45), denoted by

M A
g (@) =Y bCi(z), (51)
n=0

converges exponentially to an analytic function f(z) in [-1,1]. In practice, however, the continuous coef-
ficients b must be computed and they are computed in a discrete sense. Assume that we are given only
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Figure 2: First row: From left, Gegenbauer polynomials C¢(z) and weight functions (1—22)2=3 for various a.
Second row: Subclasses of Gegenbauer polynomials, from left, Legendre polynomials L, (z) and Chebyshev
polynomials T, (z) for n = 1,2,...,5.

an approximation of f(x), the Fourier pseudospectral data, in our problem. It was shown that the Fourier
finite expansion (44) can be used to approximate Bg Now we define the discrete Gegenbauer coefficients
b2, instead of the continuous Gegenbauer coefficients b2, by substituting f(z) by fx(z) in (46). Then the
discrete Gegenbauer finite expansion is expressed as

M
gin(@) =D bCn(a), (52)
n=0
where the discrete Gegenbauer coefficients are defined by using fn(z) as follows:

b2 = -1 / (1— 2224 02 (x) fy (2)d. (53)

h3 J -1

In fact, one can represent the discrete Gegenbauer coefficient in terms of the discrete Fourier coefficients.
Plugging (44) into (53), one obtains the following

L |
a & r 1 ! 2\a—i ~a imkz
b = kZN i (@ [1(1 )2 o (a)e dm) , (54)

where the integration part has an explicit form [3] for k # 0 as
1 ! 2ya— % Mo iTkT 2 a;n
(1-29)*"2C5 (x)e™dz = T'(a)(—)*"(n + @) Jnta(k7), (55)

@ -1 km

where I'(z) is the gamma function and J,(z) is the Bessel function of first kind. For k¥ = 0, one uses the

10



orthogonal property of the Gegenbauer polynomials. Thus we have

N
Ny

b2 = fodon + D fkr(a)(%)ai”(n + @) Jnga (k). (56)
k=—%& ,k#£0

There are two contributing errors to the discrete Gegenbauer finite approximation gj; , the truncation
error and the regularization error. The truncation error results from the difference between the (M +1) term
Gegenbauer expansion g§; of the function f(z), and the approximation gf;  through replacing the function
f(x) by the truncated Fourier expansion fy(z) in the coefficients. The regularization error is introduced
by the truncated Gegenbauer expansion g%, to the function f(z). Thus one can decompose the error of the
approximation gf; x to f(z) as the following and make it exponentially small

If = gaenll < IIf = g3ll + lgir — gz wll, (57)

by showing the two terms on the right-hand side to be exponentially small, separately. Define the truncation
error as follows:

M
lofis =gl = _yaax, 12 (07 - )G @)1 (58)

which is exponentially small in maximum norm over [—1, 1] if both a and M grow linearly with N [14], [15].
Then the regularization error is defined by

M
I = g8l = g 17(0) = 3 B3 o) (59)

which is again exponentially small for &« = yM with any positive constant « [14], [15].

Note that, for a fixed @ and N, the approximation gf y, of course, converges to fn(x) as M increases
to infinity, which is not the desired result. Rather, one must consider simultaneous variations in M, a and
N to achieve the exponential convergence. In applications, the number of Fourier coefficients, N, is fixed.
Thus o and M are free parameters to be chosen depending on N and also on the size of each subdomain.
The optimum relation between the parametes and other factors has been analyzed analytically in [15]. In
real computation, however, it requires adjustment. Few computational studies of optimizing parameters
have been done so far. In this paper, we show successful computational results obtained by appropriate
parameters chosen from many numerical experiments. These results are discussed in Section 5.

The suggested procedure to obtain the discrete Gegenbauer finite expansion g n generally consists of
the following steps:

Step 1. Compute the first M + 1 discrete Gegenbauer coefficients b% in (54) by using fn(z).

Step 2. Construct the series (52) cost-effectively by expressing the Gegenbauer polynomials in terms of
trigonometric functions.

In the next sections, we first discuss the detailed procedure for single-domain and multidomain reconstruction
in one dimension and then extend the procedure to two dimensions.

4.3 Single-Domain Reconstruction

Here, we focus on a cost-effective Gegenbauer reconstruction to compute g§; x for a single domain on [-1, 1].
Let us define the following notation for formula (55):

2
For k#0, Bux = (@))% (n+ ) Jnsalk),
FOI'k:O, Bn,k = (Snk- (60)
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Then the discrete Gegenbauer coefficients b% in (56) can be written in matrix form as

bS‘ Bo,iﬂ BO,—%+1 BO,%—l ~f%
a

bt Bl,—% 31,7%+1 B1,%—1 f—z_N_H
o -

bSr BM7_% BM,_% BM,%—1 N

Applying the even and odd property of the Bessel function, we have By, , = B, _. For a real function f(z),
the Fourier coefficients are f;, = f_x. Thus we have

1 %—1
by = B,_xfx+ Y Barfe++Boofo+ Y Buih
k=—(%-1) k=1
|
= B, xf x+Boofo+ (Bnkfr + Bk fr)- (61)
k=1

By taking the conjugate of (N/2 — 1) terms of By, xf, we can now reduce the computational cost for
computing the Gegenbauer coefficients from O(N) to O(N/2).

Next, following the procedure introduced in [23], we take the explicit form of the Gegenbauer polynomials
expanded by the trigonometric polynomials, instead of using the conventional recurrence formula [3]: for
xz =cosf € [-1,1] with 0 € [—7, 7],

Ci(cosf) = Z Ay €OS(M — 2m)80), (62)

m=0
where

i T(a +m)T(a +n —
G = (am!(?l T(:)!I‘:(a)m)' (63)

Let us consider a set of grids x;, 1 = 0, ..., N — 1. Then the approximate Gegenbauer expansion on grids z; is

M
ghnla) = D brCS(cosz;)

n=0
M n

= Z b (Z Am,n cOS[(n — 2m)(cos™* wz)]> . (64)
n=0 m=0

Let T; m = cos(m#;) for 0; = cos™" z; and g; = g§y y(:). Assuming that M is even for the sake of simplicity,
we can express the Gegenbauer reconstruction on the grids z; in matrix form as follows:

1

go To,0 Top - Tom ago O afy 0o .. aa%,M by
g1 Ti o Ty Ty, m 0 2a8 0 2af; ... 0 by
o S 0 0 2§ 0 .. 0
L0 .20y,
gN_1 Tno1o Tn-1g oo Tnoawm 0 0 0 0 0 2ayy, b%,

To discuss the computational cost, we denote the first N x (M + 1) matrix in the right side of the above
equation by T and the second (M + 1) x (M + 1) matrix by A, that is,

g = TAb, (65)

12



Fourier Gegenbauer Errors
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Figure 3: From the left: Fourier approximation, its Gegenbauer reconstruction, and pointwise errors. Re-
construction CPU time = 0.22 sec and 0.42 sec for M = 4,a = 3 and M = §,a = 6, respectively, on an
AMD Athlon of 1 GHz.

where g = [go,81,--8n—1]T and b = [b3,b%,...,0%]7. The number of operations for the matrix-vector

multiplication Ab is w, and the multiplication with T is N(M+1). Then, for M = SN (0< 8 < 1)
(i-e., proportional to N), the total cost is O(33(8 4+ 4)N?). On the other hand, the conventional recurrence

formula (48) costs O(33N?). Since % ~ 1, the fast version reduces the computational cost by one-third.
In summary, the reconstruction procedure comprises the following general steps:
Step 1. Compute the first M + 1 discrete Gegenbauer coefficients (61).

Step 2. Construct the Gegenbauer finite sum on grids following (65).

Example 1. We apply the reconstruction technique to Fourier pseudospectral data of a nonperiodic
function f(z) =z on [—1,1], assuming that we are given N = 128 discrete Fourier coefficients, as defined in
(43), on the grids ; = =14 2i/N,i =0, ..., N — 1. Figure 3 shows the Fourier approximation with N = 128
modes, its reconstructed results, and their pointwise errors. Since the function f(z) is nonperiodic, the
standard Fourier method gives only O(+;) away from the boundary and O(1) convergence at the boundary,
and oscillations are severe near the boundary. Since fn(z;) is exact with f(z;) on grids z;, the point
values are evaluated on y; = —1+i/N,i =0,...,2N — 1 in order to see the oscillations and their resolution
clearly. After reconstruction with the parameters m = 4,a = 3, the original function f(z) = z is recovered
successfully. As the parameters increase to m = 8, a = 6, the errors drop exponentially up to the boundary.
Reconstruction CPU times are provided.

4.4 Multidomain Reconstruction

Consider a piecewise analytic function f(z) that is integrable in [0,L]. Suppose that f(z) has known
discontinuities at * = do and # = d; in [0,L]. Then we divide the global domain into three subdomains,
denoted by Q; = [0,do], Q2 = [do, d:], and Q» = [dy, L], and carry out the Gegenbauer reconstruction in each
subdomain. First, we define a set of grids in the global domain defined by z; = %, 7=0,1,...,N—1and
assume that the point values f(z;) (j = 0,1,..., N — 1) are given. Then we obtain the Fourier coefficients
fk(—% <k< % — 1) by applying a discrete fast Fourier transform, so that the classical Fourier finite sum
everywhere in [0, L] is defined by

n@) =Y fre e (66)
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Let us denote a subdomain by Qg = [a,b] and define a local variable, for £ € [-1,1], z* = @{ + @

Let € = 222 and § = 2£2. The Fourier finite sum using the variable ¢ is

-1

In@@) = D fref™eEro), (67)

k=-4

w2

Now we define the Gegenbauer coefficients in each subdomain:

10 = s [ (=€ AR @) (68)

-1
Then plugging (67) into (68) and using the explicit formula (55) for the integration part, we denote

e

imkd 1 . )
Fork#0. B, = S [ (a-€icieen
n -1
i 2
= €mkér(a)(—)ain(n+a)Jn+a(keﬂ'),
kme
For k=0, By = Onk. (69)

Then, the local Gegenbauer coefficients are expressed in a matrix form:

Qs Qs Qs 7
bgs Bo,—% Bo,—%-u Bo,%—1 f—Q_N
Qs BQs BQS BQS r3
by 1,-X 1,-¥4p1 1,¥ 1 f%-i-l
bl B Bo: . B fn
M M,-X g V. S -1

Next, we evaluate the point values in each subdomain as follows. Let x* = {mf,,mj} be a subset of

{z;})5", which is in Q,. Define T}, = cos[m(cos™&;)] for & = ;Z.zf — 2. Note that the Gegenbauer

coefficients are newly computed in each subdomain and the reconstructed point values, denoted by g?s, on
grid set x° in each subdomain are obtained by

g T3 TP o Tiy ag 0 az 0 .. amy by
: 0 20 0 2a3 ... 0 bl
_ 0 0 204]2 0 0
o 0 . 2a1M
: e . : 0 .. 0 :
g TSy TSy - Ty 0 0 0 0 0 2am by

Let N be the number of the elements in x* and D the number of discontinuities. Then the first N* x (M +1)
matrix in the right-hand side of the equation above is denoted by T*® and the second (M + 1) x (M + 1)
matrix by A®. Then

g° = TSASb®, (70)

where g* = [g5*,..97*]7 and b® = [b5*,b7",....b37]7. The number of operations for the matrix-vector

multiplication A*b?® is (MHLM. However, one has to compute this procedure for each subdomain, so the

s w where S(> D) stands for the number of

amount of work for this procedure is M5 = 3°7_,
N*(M®42)(M°+4)
1

subdomains. After multiplication with T®, the total amount of work is in each subdomain.
Thus, denoted by Mmax = max{M?*}, for Mmax = BN, (0 < f < 1) (i.e., proportional to N), the total cost
is O(1B(SB + 4)N?). On the other hand, the conventional recurrence formula costs O(3S3N?).

In summary, the reconstruction procedure for multidomain case is as follows :
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Fourier Gegenbauer Errors
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Figure 4: From the left columns: Fourier approximations, their Gegenbauer reconstructions, and pointwise
errors. Reconstruction CPU time: 0.47 sec (M =4,a = 3) and 0.90 sec (M = 8, «a = 10) for f;(z), and 0.72
sec (M =4,a =3) and 1.38 sec (M = 8,a = 16) for f3(z) on an AMD Athlon of 1 GHz.

Step 1. Compute the first M + 1 discrete Gegenbauer coefficients (68) in a subdomain.
Step 2. Construct the Gegenbauer finite sum (70) on the grids in the subdomain.
Step 3. Repeat Step 1 and Step 2 in the remaining subdomains, separately.

Example 2. Consider the following discontinuous functions, and assume that we are given only N = 128
discrete Fourier coefficients, as defined in (43), for each function:

a2 42(-1<z<—3)
[ z+1(-1<z<0) N e iy 2

Figure 4 shows the Fourier approximations with N = 128, their reconstructed results and the pointwise
errors for the functions. For discontinuous functions, the standard Fourier approximation gives only 0(%)
convergence away from the discontinuities and O(1) convergence near the discontinuities, as shown in the error
plot. Reconstructions are carried out for the function f;(x) with two subdomains and for the function fs(x)
with three subdomains. For the reconstructed ones with increasing parameters, the errors drop exponentially
up to discontinuities.

Example 3. Consider the following piecewise analytic function f3(x), and assume that we are given
only N = 256 discrete Fourier coefficients:

([ (z4+0.43)%2(-1 <z < —0.43)
40(z +0.43)%(—0.43 < z < —0.33)
10(z + 0.23)%(-0.33 < z < —0.23)
—5(x2 — 0.0529)(—0.23 < z < 0.23) (72)
—5(z — 0.23)%(0.23 < z < 0.33)
—30(x — 0.43)2(0.33 < = < 0.43)
0.5(z — 0.43)2(0.43 <z < 1).

\
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Figure 5: From the left: Fourier approximation, its Gegenbauer reconstruction, and pointwise errors. Pa-
rameters for Gegenbauer reconstruction are chosen as M = 10,4,5,8,5,4,8 and o = 6,4,5,8,5,4,6 for 7
subdomains. Reconstruction CPU time: 3.83 sec on an AMD Athlon of 1 GHz.

Figure 5 shows the Fourier approximation with N = 256, its reconstructed result and the pointwise errors.
Reconstructions are carried out with 7 subdomains whose interfaces are indicated by the vertical dotted lines.
Parameters are chosen as M = 10,4,5,8,5,4,8 and o = 6,4, 5,8, 5,4, 6 in the order from the left subdomain.
The error for the reconstructed one drops up to discontinuities and kinks compared to the Fourier result.

4.5 Reconstruction Time

Since the reconstruction requires to compute the Gegenbauer coefficients in each subdomain, we first examine
the computation time to obtain a set of the (M + 1) Gegenbauer coefficients with N Fourier data in a single
subdomain. Figure 6 shows the cases of M =1, ...,20 for N = 32,64, 128, 256 for a fixed a = 1. For different
a, the CPU time is scaled by a constant number. One can estimate the total reconstruction time. If the CPU
time to perform a one subdomain reconstruction is ¢j; y, then the total cost to perform this reconstruction
in domain is ) cj, x which is in fact proportional to the time obtained by multiplying the number of the
subdomains to the maximum of the subdomain reconstruction CPU times: i.e., ¢S, ¢ = max{cj; n}-

5 Two-Dimensional Reconstruction

In this section, we extend the use of the cost-effective version of the Gegenbauer reconstruction technique to
two-dimensional problems.

5.1 Global Domain [—1,1]?

The Gegenbauer finite sum in two dimensions has the following form. For z = cos#,y = cosn in a domain
Q = [-1,1]?, denoting a = (ag,ay) and M = (M,, M,), we have

951,n (2, y) Z Z by (G (2)C (y), (73)
n=0 1=0
where
Co(cosf) = Z ay, , cos(n — 2m)6, (74)
m=0
and
a., T(la+m)T(a+n—m) (75)

ml(n —m)T2(a)
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Figure 6: CPU time for computing the (M + 1) Gegenbauer coefficients with the parameters M =1, ..., 20,
N = 32,64,128,256 and a = 1 on an AMD Athlon of 1 GHz.

where I' is the gamma function. The coefficients b ; for the Gegenbauer finite sum in two dimensions are
defined by

1 tort ] . o
i = g [ (=)A= OR @G ) e p)dody. (76)
n l — —

5.2 Subdomains Q; = [a,, b;] X [ay,b,] C [0, L]?

Consider the computational domain [0, L]2. Define a set of grids z; = ]I\“,—:(z =0,..,N;—1)and y; = JI\‘,—i(J =
0,...,N, —1). Now, assume that the point values f(z;,y;) are known but the function f(x,y) is not. Then

the discrete Fourier coeflicients fkw,ky, —% <k ky < % — 1 are obtained by

N-—-1

2

27k

o vi (77)

i

Z'2 km €T; —
f -'L'zay] L e
i—0 j—0

and the two-dimensional Fourier finite sum everywhere in Q = [0, L]? is

~ 2mky .27rky

In(w,y) = ko k,€ T €LY (78)

Let us denote a subdomain by Q;; = [as,bs] X [ay,by], where a, and b, are the known discontinuities in -
direction and a, and b, in y-direction. Define local variables, for {,n € [-1,1]x[—1,1],z* = (b”;a”) &+ (b“;a”)
and y* = (by;ay)n + (bygay). Let ¢, = bt §, = bette o = b”;”” and &, = b’”LTay Then the Fourier
finite sum in the subdomain ) is expressed by

In(a’(€),y'(n) = oy €17H o8 Dginba ), (79)
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Plugging (77) into (79), we have

-1 N[ F-1 /N1 o ' . o
fN(ms(E)uyt(n)) = Z (Z f(xi:yj)eil Lm“”l') ezrkmf(,’:) e*’Tyyie“rkyy ()

= In(@®(€),y;)e” T ¥ | ek’ ()] (80)

and the Gegenbauer coefficients in the subdomain Q have the form

X i1
. 1 ! ay— L ~ay S _i2rky im t
byt = e 1(1—92) 2O () | DY | Do b (n,yy)e T Y| e ) Ly (81)
B ky=—% =
where

1 ! -1 o s

R I R GINCGRAES (82)
l —

Then, for a fixed y;, the one-dimensional Gegenbauer reconstruction in the z-direction is written as

g Zb n,y;)C3= (£). (83)

Finally, the two-dimensional reconstruction form is

g (20 (¢ Z yaondU (84)
where
N
Qs .t 1 ! Nay, — L ~a 2 st Z21rky ) ink z( )
bn,l’ = A (1 -y ) Y 201 y(n) Z Z g y]) vi | eimhvy () | gy,
n J—1 Pyt
Now (69) and (70), the local Gegenbauer coefficients are given in matrix form as
t~ AT
- =BT (BY) (85)

where b=t = [bgfl’t], f = fir, BY = [BY) ], and BY = [B{f;y], as defined in (70). Then the two-
dimensional Gegenbauer reconstruction can be summarized in matrix form as follows:

g = [TLAL(TIAL® 7T = TIAL (%) (AL (TL)", (56)
where gt = [gs;’t]T TS = [ T¢,] = [cos(m(cos™ &))], and T} = [Tf,.] = [cos(m(cos—' ;)] for & =
bl — 2 =te and 7y = 72— _ay nt — b +a” , respectively.

A practical way to perform the two—d1mens1ona1 reconstruction is that we only need to perform the one—
dimensional procedure. The Matlab program for the two—dimensional problem is the same as the one for
one—dimensional problem, with a outside “for loop”. We first perform a one-dimensional reconstruction, say
in the xz—direction, obtaining one—dimensional reconstructions of the Fourier data in the other direction (say
in the y—direction). We then perform a reconstruction in the other direction:

Step 1. Compute the one-dimensional discrete Fourier coefficients w.r.t. = for a y;.

Step 2. Compute the first M + 1 discrete Gegenbauer coefficients in a subdomain.

Step 3. Construct the Gegenbauer finite sum on the grids in the subdomain.

Step 4. Repeat Steps 2-3 in the remaining subdomains, separately, for the fixed y;.

Step 5. Repeat Steps 1-4 for each y;, and store all the data for the next step.

Step 6. Compute the one-dimensional discrete Fourier coefficients w.r.t. y for a ;.

Step 7. Repeat Steps 2-5 for all z;, separately.
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6 Application

We applied the cost-effective Gegenbauer reconstruction technique to the two-dimensional Fourier pseu-
dospectral time-domain solutions obtained by (20)—(24), shown in the first columns of Figures 8-14. The
reconstructed results are demonstrated in the second columns of Figures 8-14 associated with the PSTD
results. Those figures are for the region within the dotted box in the computational domain shown in Figure
1.

Figures 8-11 show snapshots for the field components E, and E, at time = 11.48e-15 sec. The data size in
the box is 256 x 256 in the case of N, = 1024, N,, = 512 (i.e., Az = Ay = 1 nm). The Fourier-pseudospectral
solutions show nonphysical oscillations throughout the domain across the cylinder and strong oscillations
close to the surface of the nanocylinder. Figures 9 and 11 show the one-dimensional slices of Figure 8, along
the specified axes across the cylinder. The vertical dotted lines indicate the metal cylinder interfaces for
PSTD results and the subdomain interfaces for the Gegenbauer postprocessed results. Since the Gegenbauer
reconstructions should be carried in the region where the solution is smooth, the subdomain interfaces need
to include the metal interfaces. Thus one can use three subdomains at minimum in the presence of the
cylinder and one subdomain in the absence of the cylinder. Here, for the sake of simplicity, we divide two—
dimensional subdomains as shown in Figure 7. The one-dimensional slices show five subdomains in z— and
y—direction, respectively. The structure of the PSTD solution is different in different slices and their each
subdomain. Thus different parameters for M and « are assigned in each slice and each subdomain. At this
stage, the parameters are chosen by observation through numerical experiments. Full reconstructions in two
dimensions are shown in the right columns in Figures 8 and 10 and one—dimensional reconstructed results
are in the right columns in Figures 9 and 11. The one- and two-dimensional reconstruction results show
successful improvement in reducing the oscillations.

The total CPU time of the PSTD simulations for the snapshots of E, and E, is 7669.9 sec on an AMD
Athlon of 1 GHz. The total CPU times of the Gegenbauer reconstructions for the snapshots of E, and E,
are 164.40 sec and 164.79 sec, respectively, since the reconstruction parameters are not the same ; see Figures
8 and 10. Note that the postprocessing time is insignificant compared to the total PSTD simulation time.
Throughout the additional reconstruction procedure at low—cost, one can successfully extract highly reliable
results.

Often one Fourier transforms the time—domain results to obtain frequency—domain results, available over
a range of frequencies from one time—domain simulation. Such frequency—domain results are useful for many
purposes, including estimating optical spectra. Figure 12-14 display the absolute magnitude of the time-
averaged electric field corresponding to w = % Hz, A = 340 nm. The first columns in Figure 12-14 show the
PSTD results for the case of Az = Ay = 0.5 nm. The second columns show the Gegenbauer reconstructions
to the Fourier data N = 512 from PSTD results. We divide two—dimensional subdomains in a similar manner
as in Figure 7. In the third columns, we also present FDTD results inferred with a much smaller grid spacing
of 0.1 nm. Taking a close look at the one—dimensional slices in Figure 13 and 14, we observe that FDTD
does not suffer much from Gibbs oscillations away from the metal surface/air interfaces and it converges
to better than 5% accuracy(excluding the metal surface boundaries). However, near the metal surface/air
interfaces, oscillations are observed. Remarkably, the Gegenbauer—postprocessed results with the PSTD data
size N = 512 eliminate the non—physical oscillations of the original PSTD calculation and the reconstructed
results agree well with the finer resolution FDTD results aways from the metal boundary. Moreover, one
can confirm that the Gegenbauer-postprocessed results successfully capture reasonable profiles of the field
response up to the metal interfaces whereas FDTD results does not : see Figures 13 and 14.

7 Discussion

Parameter optimization is important for the Gegenbauer reconstruction technique to be useful in practice.
In this problem, for the one—dimensional reconstructions in the absence of the cylinder, = 1 or 2 and
M = 10-20 were chosen. For the one-dimensional reconstructions in the presence of the cylinder, it required
relatively larger o such as o = 6-18 and relatively smaller M such as M = 6-10: see Figures 9 and 11.
Similar pattern has been applied for the reconstructed results shown in Figure 12-14. Thus one might obtain
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Figure 7: Subdomains in two dimensions : solid lines are the one—dimensional slices and dotted lines are the
interfaces of the subdomains.

consistent results, in general, by choosing relatively small « and large M for smooth region and relatively
large a and small M in the subdomains adjacent to discontinuities.

Accordingly, we introduce an idea to implement an automated reconstruction algorithm which automati-
cally assigns optimized parameters during reconstruction procedure. From the observation of the reconstruc-
tion behaviors depending on M and a and the lesser sensitivity with changing the size of the subdomains,
we might fix parameters a priori for more structured region and relatively smooth region in different way.

Then, with the initially given parameters, we might be able to carry out the reconstructions until they
give better resolutions by changing the parameters or adjusting the number(or sizes) of subdomains near
the discontinuities. In order to measure the improvement of the reconstructed solutions, we consider using
smooth indicators from the WENO method [28]. This idea will be further discussed in a future paper.

8 Conclusion

We have presented a cost-effective Gegenbauer reconstruction technique applicable when one has a priori
knowledge of the problem discontinuities. In one dimension, exponential convergence of the Gegenbauer
reconstructions was demonstrated for a nonperiodic and some piecewise analytic functions. We extended
the method to two dimensions and applied it as a postprocessing to the oscillatory Fourier pseudospectral
solutions which simulate electromagnetic waves interacting with a metallic nanowire where strong surface
plasmon excitations can occur. Successful reduction of the oscillations in Fourier pseudospectral solutions are
obtained after the Gegenbauer reconstructions. Comparisons of the reconstructed results to a finer resolution
FDTD result are also provided. Surprisingly, the Gegenbauer reconstructions provide reasonable profiles of
the field response up to the metal surface in contrast with the finer resolution FDTD results.

Further development to seek an automated parameter—optimizing reconstruction method is an important
goal for future work.
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Figure 12: Distributions of time-averaged electric field |E|: PSTD (left) and Gegenbauer (middle) with
Az = Ay = 0.5 nm and FDTD (right) with Az = 0.1 nm.
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Figure 13: One-dimensional slices in z-direction of the distributions of time-averaged electric field |E|:
PSTD (left) and Gegenbauer (middle) with Az = Ay = 0.5 nm, and FDTD (right) with Az = Ay = 0.1

nm.
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Figure 14: One-dimensional slices in y-direction of the distributions of time-averaged electric field |E|:
PSTD (left) and Gegenbauer (middle) with Az = Ay = 0.5 nm, and FDTD (right) with Az = Ay = 0.1
nm.
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