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Structured Nonconvex Optimization of
Large-Scale Energy Systems Using PIPS-NLP

Naiyuan Chiang, Cosmin G. Petra, and Victor M. Zavala

Abstract—We present PIPS-NLP, a software library for the
solution of large-scale structured nonconvex optimization prob-
lems on high-performance computers. We discuss the features of
the implementation in the context of electrical power and gas
network systems. We illustrate how different model structures
arise in these domains and how these can be exploited to achieve
high computational efficiency. Using computational studies from
security-constrained ACOPF and line-pack dispatch in natural gas
networks, we demonstrate robustness and scalability.

Index Terms—high-performance computing, optimization, non-
convex, structures, power systems, natural gas, networks

I. INTRODUCTION

Structures are pervasive in engineering optimization. Ex-
amples include multistage stochastic optimization, networks,
optimal control, state and parameter estimation, and partial
differential algebraic equations. The combination of these struc-
tures induces modular and heterogeneous linear algebra systems
within optimization algorithms that can be exploited to achieve
high computational efficiency. In this context, interior-point
algorithms are particularly attractive because the structure of
the linear system remains unchanged along the search, thus
simplifying the implementation of decomposition and precon-
ditioning strategies. In the context of energy systems, structure-
exploiting interior-point implementations have been developed
for stochastic economic dispatch [6], security-constrained AC-
and DCOPF [7], [4], and natural gas optimization problems [3].

One of the main challenges arising in implementing mod-
ular linear algebra in nonconvex optimization is the need to
detect and mitigate negative curvature. Negative curvature arises
from nonconvexities of the constraints and objective functions.
This, if not properly handled, can attract the algorithm to
undesired stationary points (i.e., maxima instead of minima).
To our knowledge, the only structured nonconvex optimization
implementation that deals with negative curvature is the one of
Laird and coworkers [5], [11]. In their implementation, inertia of
arrowhead linear systems is inferred by monitoring the inertia of
the diagonal blocks and of the Schur complement. This strategy,
however, requires the use of specific linear algebra solvers capa-
ble of estimating inertia and can be thus restrictive. For instance,
linear solvers for graphics processing units (GPUs) implemented
in the MAGMA library [8] and iterative solvers implemented
in the PETSc library do not provide inertia information [1].
In addition, inertia detection cannot be easily generalized to
problems with heterogeneous structures.

PIPS-NLP, the implementation that we present here, uses a
filter line-search interior-point algorithm coupled to a modular
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linear algebra kernel that exploits heterogeneous structures.
The algorithm bypasses the need for inertia information by
performing a curvature test to the Hessian matrix along the
computed step. This simple feature enables modular implemen-
tations because it does not impose restrictions on the linear
algebra solvers that can be used. We discuss heterogenous
structures arising in energy systems and how these can be
exploited by PIPS-NLP. In addition, we demonstrate that the
implementation can tackle large-scale nonconvex problems and
that the implementation is scalable.

The paper is structured as follows. In Section II we describe
the PIPS-NLP implementation which includes the filter line-
search algorithm, the curvature detection strategy, and differ-
ent strategies to exploit modular linear algebra. In Section
III we present computational studies for challenging security-
constrained ACOPF problems and stochastic optimal control
problems arising in line-pack management in natural gas net-
works. Conclusions and directions of future work are presented
in Section IV.

II. PIPS-NLP

In this section we discuss the filter line-search interior-point
algorithm implemented in PIPS-NLP and the curvature detection
strategy used to deal with nonconvexities. We also describe
different structures that can be exploited by the linear algebra
kernel.

Consider the general nonlinear programming problem (NLP)
of the form

min f(x) (II.1a)
s.t. c(x) = 0, (�) (II.1b)

x � 0 (⌫) (II.1c)

here, x 2 <n are primal variables, � 2 <m are multipliers
for equality constraints, and ⌫ 2 <n are multipliers for the
bound constraints. The functions f : <n ! < and c : <n !
<m are smooth and possibly nonconvex. To solve the NLP, we
use an interior-point logarithmic barrier framework. The barrier
subproblem is given by

min 'µ(x) := f(x)� µ
nX

j=1

lnx(j)

s.t. c(x) = 0, (�)

(II.2)

where µ > 0 is the barrier parameter and x(j) is the j
th

entry
of vector x. We consider a framework that solves a sequence
of barrier problems (II.2) and drives the barrier parameter µ
monotonically to zero. To solve each barrier problem, we apply
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Newton’s method to the Karush-Kuhn-Tucker system:

r
x

'µ(x) +r
x

c(x)� = 0 (II.3a)
c(x) = 0 (II.3b)

x � 0. (II.3c)

We denote the iterates at counter k as (x
k

,�
k

). In the filter line-
search strategy of [9], the primal search direction d

k

and the
multipliers �+

k

are obtained by solving the following linearized
augmented system:


W

k

(�) JT

k

J
k

� 
d
k

�+
k

�
= �


g
k

c
k

�
. (II.4)

Here, c
k

:= c(x
k

), J
k

:= r
x

c(x
k

)T , g
k

:= r
x

'µ

k

, W
k

(�) :=
H

k

+ ⌃
k

+ �I, H
k

:= r
xx

L(x
k

,�
k

), L(x
k

,�
k

) := 'µ(x
k

) +
�T

k

c(x
k

), and ⌃
k

:= X�2
k

, and X
k

:= diag(x
k

). We use the
approximation ⌃

k

⇡ X�1
k

V
k

with V
k

:= diag(⌫
k

) to obtain
better behavior of the algorithm. We also define the regular-
ization parameter � � 0; and, to enable compact notation, we
define the augmented matrix

M
k

(�) :=


W

k

(�) JT

k

J
k

�
. (II.5)

A. Filter Line-Search
We use the filter line-search framework proposed by Wäechter

and Biegler [9] to promote global convergence. We define a two-
dimensional filter of the form F := {✓(x),'(x)} with ✓(x) =
kc(x)k and '(x) := 'µ(x) for fixed barrier parameter µ. The
filter is initialized as

F0 := {(✓,') | ✓ � ✓max} (II.6)

with a given parameter ✓max > 0. Given a step d
k

, a line-
search is started from counter `  0 and ↵

k,0 = ↵max

k

 1 to
define trial iterates x

k

(↵
k,`

) := x
k

+ ↵
k,`

d
k

. We consider the
following conditions to check wheter a trial iterate should be
accepted.

• Filter Condition (FC):

(✓(x
k

(↵
k,`

)),'(x
k

(↵
k,`

))) /2 F
k

• Switching Condition (SC):

m
k

(↵
k,`

) < 0 and
[�m

k

(↵
k,`

)]s' [↵
k,`

]1�s' > 
✓

[✓(x
k

)]s✓

• Armijo Condition (AC):

'(x
k

(↵
k,`

))  '(x
k

) + ⌘
'

m
k

(↵
k,`

).

• Sufficient Reduction Condition (SRC):

✓(x
k

(↵
k,`

))  (1� �
✓

)✓(x
k

) or
'(x

k

(↵
k,`

))  '(x
k

)� �
'

✓(x
k

).

Here, 
✓

> 0, s
✓

> 1, s
'

� 1, and ⌘
'

2 (0, 1) are given
constants, and

m
k

(↵) := ↵gT
k

d
k

(II.7)

is a linear model of '(·) at x
k

in the direction d
k

. Note that the
direction d

k

is of descent for the objective function if m
k

(↵) <
0 for ↵ 2 (0, 1].

Satisfying the filter condition (FC) is the first requirement
to accept a trial iterate x

k

(↵
k,`

). We say that the trial iterate is
contained in the filter if (✓(x

k

(↵
k,`

)),'(x
k

(↵
k,`

))) 2 F
k

. If this
is the case, the trial iterate improves neither the objective nor the
constraint violation. The step then is rejected, the step size ↵

k,`

is reduced, and we increase counter ` `+1. If the trial iterate
is not contained in the filter then it makes progress in either the
constraint violation or the objective function, so we continue to
test additional conditions. In particular, we check whether the
switching condition (SC) holds. We have two cases:

• Case I: If (SC) holds then the step d
k

is a descent direction
and we check whether (AC) holds. If (AC) holds, then we
accept the trial iterate x

k

(↵
k,`

). If not, we decrease the
step size.

• Case II: If (SC) does not hold then we check whether
(SRC) holds. If (SRC) holds, then we accept the trial iterate
x
k

(↵
k,`

). If not, we decrease the step size.
If the trial iterate x

k

(↵
k,`

) is accepted in Case II, then the
filter is updated as

F
k+1 :=

F
k

[ {(✓,') | ' � '(x
k

)� �
'

✓(x
k

), ✓ � (1� �
✓

)✓(x
k

)}
(II.8)

with parameters �
'

, �
✓

2 (0, 1); otherwise, we leave the filter
unchanged: F

k+1 = F
k

. If the trial step size ↵
k,`

becomes
smaller than ↵min

k

and the step has not been accepted then the
algorithm reverts to a restoration phase. A strategy to obtain
↵min

k

is proposed in [9].

The combination of the switching condition (SC) and the
Armijo condition (AC) is key. These conditions enforce progress
in the objective function if a direction d

k

is of descent and
the predicted progress for the objective is large compared with
the constraint violation. In the absence of these conditions, the
filter can accept points that make progress only on the constraint
violation and not on the objective and thus the iterates will be
attracted to maximizers instead of minimizers.

B. Negative Curvature
The missing piece in the filter line-search algorithm described

is a step computation mechanism that guarantees the delivery
of steps that decrease the objective function at least when the
constraint violation is sufficiently small. To this end, imple-
mentations such as IPOPT [9] accept the step d

k

only if the
inertia of the augmented matrix M

k

(�) is correct for a given
value of the regularization parameter �. In particular, IPOPT
checks that the number of positive eigenvalues is n and that
the number of negative eigenvalues is m, which guarantees that
the Hessian W

k

(�) projected on the null space of the Jacobian
J
k

is positive definite. Positive definiteness of the projected
Hessian (also known as reduced Hessian) in turn guarantees
that the direction d

k

is of descent for a sufficiently small
constraint violation. Inertia information is obtained from direct
factorization procedures of symmetric indefinite linear solvers
such as MA57 and Pardiso.

The inertia detection strategy is used to determine the regu-
larization parameter � as follows: If the inertia of the augmented
matrix for � = 0 is not correct, then � increased and the
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augmented matrix is factorized again. The factorization proce-
dure is repeated until the inertia is correct. The number of trial
factorizations can be significant and, because the factorization
of the augmented matrix is the most expensive step in the
algorithm, computational performance can be greatly affected.
Note also that if the regularization parameter � is too large the
quality of the step can degrade because the regularized Hessian
becomes a poor of the true Hessian, thus deteriorating progress.

While the inertia detection strategy is theoretically sound,
it focuses on the properties of the augmented matrix M

k

(�)
alone and can thus discard directions d

k

that are of descent
but for which the inertia of the augmented matrix is not
correct. Note also that inertia estimates can vary depending
on the implementation and algorithmic parameters of different
linear solvers (e.g., MA57 vs. Pardiso). Furthermore, if the
augmented matrix has modular structures or if we use iterative
or unsymmetric solvers, inertia information will not be available.
This situation is important because many libraries targeted to
hybrid high-performance computing architectures are actively
being developed.

To bypass the need for inertia information, PIPS-NLP per-
forms the following curvature test,

dT
k

W
k

(�)d
k

� dT
k

d
k

, (II.9)

for a parameter  > 0. If this test is satisfied, then we
accept the step d

k

; if this is not satisfied, we increase the
regularization parameter � and compute a new step d

k

(using the
new regularized augmented matrix). The procedure is repeated
until the curvature test is passed. We can justify the curvature
test by analyzing the augmented system (II.4). If we multiply
the first row by dT

k

, we obtain

dT
k

W
k

(�)d
k

� cT
k

�+
k

= �dT
k

g
k

, (II.10)

where we use the second row to deduce that dT
k

AT

k

= �cT
k

.
When the constraint violation ✓(x

k

) = kc(x
k

)k is sufficiently
small and the curvature test holds, we have that �dT

k

g
k

⇡
dT
k

W
k

(�)d
k

� dT
k

d
k

� 0. Consequently, the direction d
k

is
of descent and the switching (SC) and Armijo condition (AC)
will hold for some step size ↵

k,`

. This feature is remarkable
and it highlights the fact that the filter mechanism provides
great flexibility. In particular, if the constraint violation is
large, the curvature test is not relevant and the algorithm can
make progress by accepting steps that decrease the constraint
violation. Once it reaches a certain threshold, however, the
curvature test will guarantee descent and the algorithm will
accept only those steps for which progress in the objective
function is achieved.

The curvature test presented here requires only an inner-outer
product of the step and the Hessian of the form dT

k

W
k

(�)d
k

to check whether the direction is of descent and this can be
computed inexpensively. Because this test does not require
inertia information, one can use any type of solver available for
the augmented system. This includes decomposition approaches,
iterative solvers, and dense solvers. In addition, we avoid the
need for additional factorizations in highly nonconvex problems
and ill-posed problems, as we demonstrate in Section III.

C. Linear Algebra Structures
We now focus our attention on how structures arising in

optimization models permeate down to the augmented system
(II.4). Consider the NLP problem of the form

min f0(x0) +
X

p2P
f
p

(x
p

, x0) (II.11a)

s.t. c0(x0) = 0 (�0) (II.11b)
c
p

(x
p

, x0) = 0, p 2 P (�
p

) (II.11c)
x0 � 0 (⌫0) (II.11d)
x
p

� 0, p 2 P (⌫
p

). (II.11e)

Here, P := {1...P} is a set of partitions with variables x
p

2
<np and the interface or coupling variables are x0 2 <n0 . A
similar notation is used for the multipliers. The linear algebra
system of this problem can be permuted to the following block-
bordered-diagonal (BBD) form,
2

666664

K0 BT

1 BT

2 . . . BT

P

B1 K1

B2 K2
...

. . .
B

P

K
P

3

777775

2

666664

�w0

�w1

�w2
...

�w
P

3

777775
= �

2

666664

r0
r1
r2
...
r
P

3

777775

(II.12)

where �w0 = (�x0,��0), �w
p

= (�x
p

,��
p

),

K0 =


W0(�) JT

0

J0

�
, K

p

=


W

p

(�) JT

p

J
p

�

B
p

=


Q

p

T
p

�
, (II.13a)

J0 = r
x0c0(x0), Jp = r

xpcp(x0, xp

), T
p

= r
x0cp(x0, xp

),
W0(�) = rx0,x0L+X�1

0 V0+�I, W
p

(�) = r
xp,xpL+X�1

p

V
p

+
�I, and Q

p

= r
x0,xpL. The BBD system can be solved in

parallel by forming the Schur complement and then solving the
Schur system to obtain a step for the coupling variables �w0.
The step for the rest of the variables can then be recovered by
solving block systems in parallel.

The BBD structure is typically exploited in security-
constrained ACOPF and two-stage stochastic economic dispatch
where each partition corresponds to a contingency or scenario
and the coupling variables are the so-called first-stage, design,
or here-and-now variables. This structure can also be induced
by partitioning the network in deterministic ACOPF or eco-
nomic dispatch models. One should bear in mind, however, that
the computational efficiency obtained by exploiting the BBD
structure is limited by the number of the coupling variables. If
coupling is large, then Schur decomposition will not be efficient
compared with direct factorization of the augmented matrix.

The BBD structure can be induced recursively. For instance,
consider that each partition p 2 P can be further partitioned
into P

p

partitions with associated sets P
p

, p 2 P . This approach
creates the variable partitions x

p

= (x
p,0, xp,1, ..., xp,Pp), p 2 P

and partitions for objective and constraints as

f
p

(x0, xp

) = f
p,0(x0, xp,0) +

X

j2Pp

f
p,j

(x0, xp,0, xp,j

), p 2 P

(II.14a)

c
p

(x0, xp

) =

⇢
c
p,0(x0, xp,0) p 2 P
c
p,j

(x0, xp,0, xp,j

), j 2 P
p

, p 2 P (II.14b)
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We thus obtain an NLP of the form

min f0(x0) +
X

p2P

0

@f
p,0(x0, xp,0) +

X

j2Pp

f
p,j

(x0, xp,0, xp,j

)

1

A

(II.15a)
s.t. c0(x0) = 0 (�0) (II.15b)

c
p,0(x0, xp,0) = 0, p 2 P (�

p,0) (II.15c)
c
p,j

(x0, xp,0, xp,j

) = 0, j 2 P
p

, p 2 P (�
p,j

) (II.15d)
x0 � 0 (⌫0) (II.15e)
x
p,0 � 0, p 2 P (⌫

p,0) (II.15f)
x
p,j

� 0, j 2 P
p

, p 2 P (⌫
p,j

). (II.15g)

One can show that this problem yields an augmented system
of the form (II.12) but in which each diagonal block K

p

has a
BBD structure of the form:

K
p

=

2

666664

K
p,0 BT

p,1 BT

p,2 . . . BT

p,Pp

B
p,1 K

p,1

B
p,2 K

p,2
...

. . .
B

p,Pp K
p,Pp

3

777775
, p 2 P.

(II.16)

Problems with recursive BBD structures arise in multistage
stochastic optimization. In these problems, each scenario is
further partitioned in multiple scenarios. Recursive BBD struc-
tures also arise in security-constrained ACOPF and stochastic
economic dispatch if we partition the network in each con-
tingency/scenario or in deterministic variants if we partition a
subnetwork recursively into additional subnetworks.

Consider now the structure

min f(x, u) (II.17a)
s.t. c(x, u) = 0, (�) (II.17b)

x � 0 (⌫
x

) (II.17c)
u � 0, (⌫

u

). (II.17d)

In this structure, u is assumed to be of the same dimension
as the number of degrees of freedom of the problem. In other
words, if u is fixed, then c(x, u) = 0 is a square system of
equations. The augmented system of this problem has the form,
2

4
W

xx

(�) W
xu

JT

x

W
ux

W
uu

(�) JT

u

J
x

J
u

3

5

2

4
�x
�u
��

3

5 = �

2

4
r
x

r
u

r
�

3

5 . (II.18)

By construction, the Jacobian J
x

= r
x

c(x, u) is square; and, if
it is nonsingular, then we can construct the following null-space
matrix:

Z =


�J�1

x

J
u

I

�
. (II.19)

The step for u can then be obtained by solving a reduced
system of the form ZTW (�)Z�u = r

Z

where r
Z

is an
appropriate right-hand side vector and ZTW (�)Z is the reduced
Hessian. Having the step for u, we compute the step for x from
�x = �J�1

x

(c
k

+ J
u

�u). Note that this approach requires
factorizations of J

x

and of the reduced Hessian ZTW (�)Z
instead of factorizations of the entire augmented matrix M

k

(�).

Because of this, this approach can yield significant speed-ups
when the number of degrees of freedom u is small.

The reduced space structure arises in PDE-constrained opti-
mization in which c(x, u) = 0 is a set of discretized PDEs and u
are the controls. We will see that this structure arises in optimal
control of natural gas networks. This structure is encountered
in DAE-constrained optimization problems such as those arising
in predictive control for automatic generation control (AGC). In
addition, note that most problems can be cast in reduced space
form as long as the constraints are square and the Jacobian
with respect to x is nonsingular. For instance, in ACOPF, we
can choose active and reactive generation as controls u. If the
network is connected, the power flow problem c(x, u) = 0, is
square and well-posed and the Jacobian is nonsingular for fixed
u.

We can now consider cases with embedded structures. As an
example, consider problems arising in stochastic optimization
of PDEs, stochastic predictive control, and security-constrained
ACOPF. In these cases, the controls are coupling variables and
also degrees of freedom. These problems have the following
structure:

min f0(u0) +
X

p2P
f
p

(x
p

, u0) (II.20a)

s.t. c0(u0) = 0 (�0) (II.20b)
c
p

(x
p

, u0) = 0, p 2 P (�
p

) (II.20c)
u0 � 0 (⌫0) (II.20d)
x
p

� 0, p 2 P (⌫
p

). (II.20e)

Here, the Jacobian r
xpcp(xp

, x0) is assumed to be nonsingular.
In this case, each block in the BBD system (II.12) has the form
in (II.18).

Many structures can be envisioned by combining the basic
constructs presented here. For instance, one might consider
security-constrained predictive control for AGC in which the
network is partitioned in each contingency. One might also
consider co-optimizing a natural gas and a power grid network
in which each subnetwork is a partition with its own controls.
We could consider adding a stochastic structure on top of these
structures.

The ability to communicate structures to the optimization
solver has other advantages beyond computational efficiency. In
particular, it can enable a more modular model construction.
For instance, if two or more modelers have access only to
the data of their local network, they can express the problem
independently and identify which are the coupling variables
to solve a centralized problem. Note also that this approach
is beneficial because optimization modeling languages (e.g.,
AMPL) can take a significant amount of time to process large-
scale models. By specifying structures, a modeler also becomes
more disciplined in the sense that one can validate that the model
is well-posed. For instance, one can validate that the number
of degrees of freedom is correct or that the square simulation
model c(x, u) = 0 is well-posed. Such validation is important
in complex models where the choice of degrees of freedom or
partitioning of the network is not unique, as is the case in natural
gas networks [10].
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III. COMPUTATIONAL STUDIES

In this section we illustrate the performance of PIPS-NLP
in challenging large-scale nonconvex problems. We first ana-
lyze performance of the curvature test strategy against inertia
correction using security-constrained ACOPF problems. We
demonstrate that inertia information is not needed to ensure
convergence of the algorithm. We also demonstrate that, in
some difficult cases, using inertia information can in fact lead
to inefficiencies.

A. Security-Constrained ACOPF
We use a traditional security-constrained ACOPF formulation

with polar constraints. We also consider two different objectives:
total active generation cost and total voltage magnitude. Numer-
ical studies are built based on the 6-, 24-, 57-, 118-, and 300-bus
IEEE test systems from MATPOWER [12].

1) Curvature Detection: We first compare the performance
of inertia detection (IC) with that of curvature detection (dWd).
We get inertia information from the linear solver MA57 [13]. All
results reported in this section are run on a standard computer
with 10 GB of RAM, 2.7 GHz Intel Core i7 processor, running
64-bit Linux. Table I shows the number of iterations and number
of regularization trials required for solving the test problems.
For each case study, we test using real power generation cost
(Gen) and total voltage magnitude (Vol) as objectives. If a test
case does not require inertia correction or curvature correction
we put a zero in the table to indicate that both strategies behave
the same way. This case indicates that, while the problem is
nonconvex, the solver does not encounter negative curvature
along the search. When the value is non-zero, the fraction
a/b denotes the number of regularizations necessary a and the
number of interior-point (IPM) iterations b. As can be seen, the
use of the total voltage objective induces more regularization.
This indicates that this objective leads to ill-posedness (multiple
solutions have similar objective values). The curvature detection
strategy in some cases does not require regularization at all,
whereas the inertia detection strategy does. Note, however,
that in some cases curvature detection requires more iterations.
While we cannot conclude that a particular strategy is superior,
we can conclude that the curvature detection strategy remains
robust even in the absence of inertia information, which is the
key feature sought to enable structure exploitation.

TABLE I
NUMBER OF REGULARIZATIONS AND NUMBER OF IPM ITERATIONS FOR

INERTIA AND CURVATURE DETECTION.

IC dWd
Problem Contingencies Gen Vol Gen Vol
IEEE-6 11 0 0 0 0

IEEE-24 37 0 0 0 0
IEEE-57 79 0 6/28 0 0/26
IEEE-118 177 11/47 6/43 3/52 13/63
IEEE-118 159 8/46 6/32 3/51 0/43

For the IEEE-300 system, we found that the inertia esti-
mates obtained from MA57 varied significantly under different
pivoting tolerances, whereas the curvature detection strategy
remains robust. This situation occurs even when considering the
traditional deterministic ACOPF problem. Results are shown in

Table II. These results are relevant because we can see that
inertia information in some cases can be unreliable. In addition,
the results indicate that the curvature detection strategy can
enable faster solution times by relaxing the pivoting tolerance
without compromising the convergence of the algorithm.

TABLE II
NUMBER OF IPM ITERATIONS AND EXTRA FACTORIZATIONS DUE TO

REGULARIZATION (EXTRA FACT) AS A FUNCTION OF PIVOTING
TOLERANCES FOR MA57 FOR IEEE-300.

IC dWd
Pivoting Tolerance Iter Extra Fact Iter Extra Fact

1⇥ 10�8 24 9 24 0
1⇥ 10�6 24 15 24 0
1⇥ 10�4 25 8 24 0
1⇥ 10�2 24 11 24 0

2) Scalability: To demonstrate the scalability of PIPS-NLP,
we parallelize the security-constrained ACOPF problem on the
Fusion Cluster at Argonne National Laboratory by exploiting
the BBD structure of the augmented system. We use the IEEE-
118 problem with 159 contingencies as the case study. The
scalability results are shown in Table III. We observe strong
scaling, which indicates that the computational time decreases
as we increase the number of processors by the same factor.
Moreover, while the curvature detection strategy requires more
iterations compared with inertia detection, it also requires less
extra factorizations. For this case, we estimated the inertia of
the BBD system using Haynsworth formula as proposed in [5].

TABLE III
SCALABILITY OF SECURITY-CONSTRAINED ACOPF FOR IEEE-118.

dWd IC
MPI Proc Iter Extra Fact Time(s) Iter Extra Fact Time(s)

8 43 0 32.97 32 6 28.00
16 43 0 17.65 32 6 14.63
32 43 0 9.32 32 6 7.65
40 43 0 7.34 32 6 6.27
80 43 0 4.56 32 6 3.78

160 43 0 2.97 32 6 2.46

We also solved the IEEE-300 system with 271 contingencies.
This problem contains 995,770 variables and 832,326 equality
constraints. The results are presented in Table IV. We found that
the Jacobian matrix of this problem is nearly rank-deficient and
the algorithm thus requires significantly more iterations. We can
see, however, that strong scaling is retained. We can also see that
curvature detection requires more iterations but the solution time
is less than that of inertia detection because significantly fewer
regularizations are needed. In a parallel computing context this
result is relevant because curvature detection reduces the number
of times that the Schur system needs to be assembled and solved,
which is the parallelization bottleneck (serial component).

B. Line-Pack Gas Dispatch
We now present scalability results for stochastic line-pack

dispatch problems for natural gas networks. Here, the gas
demands from power plants is assumed to be uncertain. These
demands can be driven, for instance, by uncertainty in wind
power capacity which in turn drives fast-ramping power plants.
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TABLE IV
SCALABILITY OF SECURITY-CONSTRAINED ACOPF FOR IEEE-300.

dWd IC
MPI Proc Iter Extra Fact Time(s) Iter Extra Fact Time(s)

16 185 23 607.17 100 145 641.32
136 162 10 72.19 100 144 89.10
272 155 16 41.57 100 143 63.18

The objective is to satisfy these uncertain gas demands for each
possible scenario by building up storage (line-pack) inside the
pipeline in such a way that it minimizes compression power.
This problem can be cast as a stochastic optimal control problem
in which the dynamic model is given by a complex set of partial
differential equations (PDEs) describing the transport of gas in
each pipeline in the network. We present here only the basic
features of the problem. For a detailed description, we refer the
reader to [10]. The dynamic equations for each link (pipeline)
have the form:

@p
`

@t
+

1

A
`

p
`

⇢
`

@f
`

@x
= 0 (III.21a)
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Here, p
`

, f
`

, ⇢
`

are the link pressures, flows, and densities,
respectively. These variables are function of space and time. The
set of links L is split into passive L

p

(with no compression) and
active links L

a

(with compression). The inlet and outlet flows
for each link are f in

`

and fout

`

. The node pressures are given by
✓
n

. The flows of the pipelines are connected through a network
balance of the form:
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Here, s
i

are supply flows and d
j

(!) are the stochastic demand
flows in scenario !. The power consumed by each compressor
is given by:
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= f in

`
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p

T

 ✓
✓
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`

✓
snd(`)

◆ ��1
�

� 1

!
. (III.24)

As can be seen, this problem is nonlinear and computationally
intensive because of the large number of PDEs. This problem
has the key property, however, that the number of degrees of
freedom (controls) is small compared with the complexity of
the PDEs. The controls are the boost pressures �✓

`

, ` 2 L
a

. In
addition, it has the natural BBD structure induced by stochastic
optimization formulations in which the boost pressures are the

here-and-now variables coupling all the scenarios (we make one
decision for the controls for all scenarios). In the stochastic
case we replicate the PDE equations for each scenario. The gas
line-pack problem also presents network structure that can be
exploited by partitioning.

To demonstrate the performance of PIPS-NLP, we first con-
sider a system with 13 nodes and 12 pipelines and 10 com-
pressors. The system spans 1,600 km and the pipelines have
diameters of 0.9 m. We present computational results for this
problem under two settings: in the first case we exploit only
the stochastic structure (Table V) while in the second case
we exploit the stochastic and the reduced space structure of
the problem (Table VI). This problem has 96 scenarios and a
total of 1,930,752 variables. Strong scaling is observed in both
cases and exploiting the reduced space structure decreases the
computational time by a factor of nearly 3. We also note that
despite the nonlinearity of the equations, the algorithm did not
require regularization in this case.

TABLE V
SCALABILITY OF PIPS-NLP EXPLOITING STOCHASTIC STRUCTURE.

Scenarios n Obj Iter Time(hh:mm:ss) MPI Proc
96 1,930,752 1.39⇥102 42 01:13:16 8
96 1,930,752 1.39⇥102 42 00:38:18 16
96 1,930,752 1.39⇥102 42 00:24:55 24
96 1,930,752 1.39⇥102 42 00:19:23 32
96 1,930,752 1.39⇥102 42 00:12:42 48
96 1,930,752 1.39⇥102 42 00:06:48 96

TABLE VI
SCALABILITY OF PIPS-NLP EXPLOITING STOCHASTIC AND REDUCED

SPACE STRUCTURE.
Scenarios n Obj Iter Time(hh:mm:ss) MPI Proc

96 1,930,752 1.39⇥102 42 00:29:54 8
96 1,930,752 1.39⇥102 42 00:14:45 16
96 1,930,752 1.39⇥102 42 00:10:00 24
96 1,930,752 1.39⇥102 42 00:07:36 32
96 1,930,752 1.39⇥102 42 00:05:14 48
96 1,930,752 1.39⇥102 42 00:02:54 96

We now illustrate the performance of PIPS-NLP in a de-
terministic line-pack dispatch problem in which we partition
the network. This study is done for the Belgium natural gas
network system presented in Figure 1 [2]. This problem is
significantly more complex but, as can be seen, the network can
be partitioned trivially at the Peronnes node and the resulting
subnetworks are connected. The largest problem solved has
around 1.2 million variables per partition (2.4 million total)
for the deterministic case. We study the performance of PIPS-
NLP as we increase the resolution of the discretization of the
PDEs. We denote as N

x

as the number of discretization points.
We compare the performance of the direct factorization of
MA57 with that of Schur decomposition. The computational
times are presented in Table VII. As can be seen, for low
discretization resolutions both strategies have essentially the
same computational times. When the discretization resolution
is high, however, the factorization time of MA57 becomes
significant, and network partitioning becomes beneficial. Note
that increasing N

x

has an effect similar to that of increasing the
size of the network. This indicates that partitioning can become
valuable in tackling very large networks.
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Fig. 1. Belgium natural gas network. Dark dots are compression stations.

TABLE VII
COMPUTATIONAL TIMES FOR LINE-PACK DISPATCH OF BELGIUM NATURAL

GAS NETWORK.

N
x

MA57 Time (hr:mm:ss) Schur Time (hh:mm:ss)
50 00:00:08 00:00:08

100 00:00:19 00:00:19
500 00:03:24 00:02:46

1000 00:13:17 00:07:33
3000 01:50:08 00:53:32

IV. CONCLUSIONS AND FUTURE WORK

We have presented PIPS-NLP, a scalable solver that exploits
modular linear algebra structures in nonconvex optimization
problems. We have provided computational studies arising in
energy systems to demonstrate that the solver is robust and
scalable. A crucial feature of PIPS-NLP is that it does not
require inertia information, which enables the use of different
linear algebra libraries. As part of future work we will seek to
demonstrate scalability in multilevel implementations including
multistage stochastic problems and recursive network partition-
ing.
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