
2% . __ __ l!iB 
ELSEWIER Comput. Methods Appl. Mech. Engrg. 163 (1998) 193-204 

Computer methods 
in applied 

mechanics and 
englneerlng 

Projection techniques for iterative solution of Ax =b with 
successive right-hand sides 

Paul F. Fischer 
Division of Applied Mathematics, Brown University, Providence, RI 02912, USA 

Received 4 October 1996 

Abstract 

Projection techniques are developed for computing approximate solutions to linear systems of the form Ax” =b”, for a sequence 

n = 1, 2, , e.g. arising from time discretization of a partial differential equation. The approximate solutions are based upon previous 
solutions, and can be used as initial guesses for iterative solution of the system, resulting in significantly reduced computational expense. 

Examples of two- and three-dimensional incompressible Navier-Stokes calculations are presented in which x” represents the pressure at 
time level t”, and A is a consistent discrete Poisson operator. In flows containing significant dynamic activity, these projection techniques 

lead lo as much as a two-fold reduction in solution time. 0 1998 Elsevier Science S.A. All rights reserved. 

1. Introduction 

We consider iterative solution of a sequence of linear problems having the form: 

Pn: &” =b” , n = {1,2,. . .} (1) 

where A is an m X m matrix, and 5” is assumed to be a solution which is evolving with some parameter, e.g. 

time, in the case where (1) represents an implicit substep in numerical solution of a time dependent partial 
differential equation. When A is sufficiently sparse and not amenable to eigenfunction decomposition techniques 

(e.g., fast Poisson solvers), iterative methods are generally preferable to direct factorizations, both from the 
standpoint of storage and operation count. For the particular class of problems defined by (I), direct methods 

benefit from amortization of the one-time cost of matrix-factorization. However, they derive no benefit from the 
fact that successive problems might have very similar solutions, whereas iterative methods can exploit this 
possibility as a good initial guess can lead to a significant reduction in the number of iterations required to bring 
the residual to within the specified tolerance. 

In this paper we present simple techniques for extracting information from previous problems, Pk, 
n-liken- 1, to generate initial guesses to the current problem, LP,,. The first approach is to simply remove 
any component of 6” for which the solution is already known by projecting b” onto the set of vectors 
&‘-‘, _ . , b”-‘}, h aving associated solutions &’ - ‘, . _ _ , 5” - ’ 
component of &” orthogonal to span w-‘, . 

}, and to solve the problem corresponding to the 
. . , b”-‘}. The second approach is a refinement of the first, which 

seeks the best approximation to x” in span b”-l,. . . , gnml } with respect to a norm tailored to the convergence 
properties of the conjugate gradient method for the case when A is symmetric positive definite. 

The idea of using information generated from previous right-hand sides to speed iterative solution processes is 
not new. It is of course standard to solve only for the change in the solution, A$’ = x” -xn-l (e.g. [S]). It is 

possible to improve upon this basic approach through higher-order extrapolation in time. However, projection 
techniques are superior to those based upon extrapolation in that they yield the best possible approximation 
within a given basis. Moreover, while extrapolation techniques run the risk of generating a poor initial guess, 
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this is not possible with the methods proposed here, as the projection is guaranteed to reduce the error in a 
relevant norm provided that x” has some component in spar@- ‘, . . . , x”- ‘}. In the case where &” is not well 

represented in this space, the projection will be void and the residual unchanged. 
If Krylov based iterative methods are used to solve (1) it is also possible to generate an initial guess by 

projecting onto the resultant (orthogonal) Krylov bases, as suggested by many authors, dating back to Lanczos 
[lo]. Widlund and O’Leary [15] proposed this idea in the context of three-dimensional Helmholtz solvers. 

Simon [21] and Saad [20] considered this approach in the context of Lanczos methods. Saad showed in 

particular that, in exact arithmetic, it is possible to generate a sequence of A-conjugate bases without resorting to 

full orthogonalization during each successive solve. In [22] Van der Vorst also presented several techniques for 

exploiting previously generated Krylov spaces. These techniques have been exploited in several engineering 

contexts, including time-dependent structural problems by Farhat et al. [4]; boundary element problems by 

Prasad et al. [17]; and fluid dynamics applications by Vuik [23]. A clear analysis of the potential of these 

methods has been recently presented by Saad [ 191 and by Chan and Wan [l]. The case of multiple systems for 

which the right-hand sides are available simultaneously has also been extensively studied; however, we do not 

consider that case here. 

The present technique differs from the Krylov based algorithms in that the approximation space is simply the 

span of the previous solutions. The proposed method is quite similar to reduced bases methods used in nonlinear 

finite element problems (e.g. [7,16]). Although the Krylov-based techniques offer potential for greater reduction 

in iteration count, the dimension of the required basis sets can become quite large, and there is no clear way to 

continue or update the set of basis vectors for a continuing sequence of right-hand sides once orthogonality is 

lost, short of resorting to some type of re-orthogonalization. Moreover, the simplicity of present approach allows 

it to be implemented as a black box, requiring only calls to the iterative solver, ‘solve_A’ and, for reasons to be 

discussed, the forward operator application, ‘multipZy_by_A’. It is thus quite versatile in situations where the 
solver/preconditioner is very complex. We have found the method particularly effective in constrained evolution 

problems such as unsteady incompressible fluid flows and volume-preserving mesh deformation problems. 

The outline of the paper is as follows. In Section 2 we describe two projection techniques for generating 
initial guesses 2 =x” based on 1 previous solutions &k, IZ - 1 s k G n - 1. In Sections 3 and 4 we describe an 
application of the technique to the incompressible Navier-Stokes equations and present performance results for 

several fluid dynamics calculations. In Section 5 we analyze the method for a model problem. Finally, we make 

some concluding remarks regarding memory usage in Section 6. 

2. Projection methods 

2.1. Method 1 

We begin by assuming that we have stored a set of vectors B, = @,, , . . , &} and solution vectors 

x, = &, . . . , &} satisfying: 

A&= ik k={l,...,Z}. (2) 

To simplify the orthogonalization, B, is assumed to be orthonormal: 

where aij is the Kroenecker delta, and ( . ) is an appropriately weighted inner-product. B, and X, are assumed to 
be derived from the 1 most recent problems, pk, k = II - 1, . . . , II - 1, i.e. span{B,} = spa&‘-‘, . . . , b”-‘}. 
However, any set of independent vectors satisfying (2)-(3) would constitute a valid basis for approximation. 

The algorithm is based upon the following Gram-Schmidt procedure: 

At time level n, input b”: 

a;=@“,&), k=l,..., 1 

&b”-C& 
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solve A_ = 6 to tolerance E 

L&-+C.n** 

update {B,, X,1 

return 5” (4) 

The computation of 6 is simply standard Gram-Schmidt orthogonalization of b” with respect to B,. The Q;‘S are 

computed in a group prior to modifying b” so that the inner-products may be carried out in a single O(log, P) 

data exchange of an I-vector when the computation is performed on a P-processor distributed memory 

computer. If necessary, it is possible to employ a more stable modified Gram-Schmidt procedure [2,22] for the 

computation of 6, at the expense of 1 individual vector reductions. However, we have not found this to be 

necessary in any application to date. 

To complete the procedure (4), we require a mechanism for updating the basis sets (B,, r31,}. Initially, the sets 

are empty, and can be filled with the first 1 solutions and data. In fact, since b I&, k = (1, . . , I} by 

construction, the vector pair @,g} seems like a likely candidate to add to the basis set. However, this will 

generally not be stable because A_ = 6 is not satisfied exactly. This situation can be corrected by re-computing 
the required inhomogeneity, i.e. setting & = A& and enforcing (3) via a second Gram-Schmidt procedure. 

Additionally, we need a strategy for deciding which vectors to keep when the size of the basis set exceeds 

available memory capacity. There are several possibilities, e.g. retaining those vectors which repeatedly capture 

most of the energy in b”. Initial trials indicate that a reasonable approach is to save just the solution to the 

current problem, 5” = X + C CY&, which is a near optimal linear combination of elements in the current basis 

set. 
We summarize the update procedure as follows. If L is taken to be the maximum number of vector pairs to be 

stored, i.e. I d L, then at each time step: 

If (1= L) then: &+-A$/IIA$ll 

Z*+&“lllAZ”ll 

I=1 

else: &AZ 

ai, = (6, &) , k = 1, . . . , I 

z=z+1 

endif (5) 

Here, 11. II = ( . )I”. The procedure re-initializes {B,, X,} with the most recent solution pair when the memory 

limits are exceeded, and then reconstructs a set which satisfies (2)-(3). 

2.2. Method 2: A-conjugate projection 

The procedure of the preceding section follows the intuitive line of reasoning that if b” is well approximated 
by i = E c&, then $’ will be well approximated by i = Z a,Zj. The degree of approximation can be quantified 

by noting that b is the L, projection of b” onto B,, which implies that X is the best approximation to 5” in X, with 
respect to the AZ-norm: [k//,2 = (&, &)I’*. If A is symmetric positive definite and conjugate gradient iteration 

is employed, it is sensible to begin with a projection which minimizes the distance between 5” and X, in the 
A-norm, lb]], = (z, Ax)“*, since the conjugate gradient method seeks approximations which successively 
minimize the error in the A-norm [6]. 

The derivation of the resultant projection method is based upon a straightforward minimization procedure. 
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Assuming as before that we have a set of previous solution vectors X, = &}, i = 1, . . . ,1, we seek coefficients a: 
such that the approximation given by 

I 

X=X cu;lj _ 
i=l 

minimizes the error in the A-norm: 

(6) 

(7) 

The minimization procedure is simplified if we insist that the xi’s are A-conjugate and normalized to satisfy 

-;Agj = 6, . (8) 

Requiring a vanishing first variation of (7) with respect to ai leads to 

q =,;A2 =gg ) - i = 1,. . . , 1. (9) 

Thus, given a set of vectors X, = gi} satisfying (8), the best approximation to x” is found by simply projecting 
4” onto X,. This forms the kernel of Method 2: 

At time level n, input b”: 

ai =,?Tb” ) i = 1,. . . ) 1 

x+x ffzi 

it,” - Ai 

solve * =& to tolerance E 

$t_ +x _ 

update {Xl} 

return xn _ (10) 

Notice that the storage for this procedure is roughly half that of Method 1 as it only requires X,, and not B,. 

However, one additional A-multiply is required prior to the soZve_A stage. 
As before, we need a mechanism to update the set X,. To satisfy (8) it is necessary to project the most recent 

solution, x”, onto X: and normalize the result. If we do not insist upon a modified Gram-Schmidt procedure, 
this can be done with a single multiply by A as follows. If L is taken to be the maximum number of vector pairs 
to be stored, i.e. I s L, then at each time level: 

If (1 = L) then: _,tx”/lF& 

It1 

else: aj =ZTG, i=l,...,l 

ltl+l 

endif (II) 

Note that in (11) the required normalization satisfies IIG - E CY$~)II, = (gTG - E CY~)“~ due to the A-conjugate 
relationship (8) and can therefore be computed with no additional A multiplies. 
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3. Navier-Stokes impiementation 

We have implemented the above projection techniques in spectral-element solution of the incompressible 

Navier-Stokes equations: 

1 
$+, .vrl= -vp+$%l in 0 , 

v-u=0 in 0 , 
(12) 

where u is the velocity vector, p the pressure, and Re = (&5)/v the Reynolds number based on a characteristic 

velocity and length scale, and kinematic viscosity. 

Spatial discretization is based upon decomposition of the computational domain into K spectral elements 
which are locally mapped to [-1, lid in gd. Within each element, the geometry, solution, and data are 

expanded in terms of high-order tensor-product polynomial bases in each coordinate direction. Variational 

projection operators are used to discretize the elliptic equations arising from a semi-implicit treatment of (12) 

and a consistent variational formulation is used for the pressure/divergence treatment. The velocity is 

represented by Nth-order Lagrange polynomials on the Gauss-Lobatto-Legendre quadrature points, with Co 

continuity enforced at element interfaces. The pressure is represented by polynomials of degree N - 2 based 

upon the Gauss-Legendre quadrature points. Temporal discretization is based upon an operator splitting in 

which the nonlinear convective terms are treated explicitly via a characteristic/sub-cycling scheme, and the 

viscous and divergence operators are treated implicitly. The discretization leads to the following linear Stokes 

problem to be solved at each time step: 

HE,-DFp=BBJi’, i=l,..., d, _ 

Dig, = 0 
(13) 

Here, H is the discrete equivalent of the Hehnholtz operator, {- 1 /Rev2 + 1 /At}; B is the mass matrix 

associated with the velocity mesh; D = (D1, . . . , 0,) is the discrete gradient operator; and underscore refers to 

basis coefficients. Further details of spectral element discretizations for the Navier-Stokes equations may be 

found in [ 111. 

The solution of (13) is simplified by a Stokes operator splitting which decouples the viscous and 

pressure/divergence constraint [ 121. This splitting leads to the solution of a standard Helmholtz equation for 

each velocity component, while the resulting system for the pressure is similar to (13) save that H is replaced by 

1 /At B. The resulting system can be efficiently treated by formally carrying out block Gaussian elimination 

(Uzawa decoupling) for p, leading to - 

Ep=g, (14) 

where 

(15) 

and g is the inhomogeneity resulting from the time-split treatment of (12). E corresponds to a consistent Poisson 

operator for the pressure and, though symmetric-positive definite, is less well conditioned than the Helmholtz 

problems for the velocity components. Consequently, solution of (14) dominates the Navier-Stokes solution 

time. The advantage of the Stokes splitting is that no system solves are required when applying E, as B is 

diagonal. 
The consistent Poisson problem (14) is solved via a two-level iteration scheme developed by Ronquist [ 181 in 

which a coarse-grid operator is folded into a global conjugate-gradient iteration through deflation [ 13,141. The 

coarse (subscript c) and fine (subscript f) decomposition is effected through a subdomain-motivated prolongation 
operator J E %! m x K, where m = K(N - l)d is the number of pressure degrees-of-freedom. The column space of 
the prolongation operator J is intended to approximate the span of the low eigenmodes of the E system; for this 
particular problem, J maps element-piecewise-constant functions to the m nodes of the underlying spectral 
element discretization. The pressure is then expressed as p = Jfc +p_,, leading to an algebraic reformulation of 
the original problem as solvable fine and coarse subprobiems, 
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E,p, =g - JE,'JTg , - _ - 

EC p, = JTg - JTEp, , (17) _ 

respectively. Here, E, = E - EJE,’ JTE, and EC = JTEJ. The fine system (16) is solved by conjugate-gradient 

iteration. Once p_r is established, the coarse-grid problem is solved (directly) for P_~, and the procedure is 

complete. With appropriate application of a local, element-based preconditioner to E,, the condition number of 

the fine system is significantly reduced relative to the originating E matrix. 

The projection methods of Section 2 are implemented at the level of Eq. (14), rather than being applied 

directly to (16). At each time step, we solve for the change in pressure Ap” =p” -p”-’ . Thus, in the notation of 
Section 2, we take A = E, z” = Ap” and 6” =g” - Epnml. 

- - - 
- - - 

4. Numerical results 

We first consider the problem of two-dimensional start-up flow past a cylinder at Re = (DU,)/v = 200. The 

discretization consists of K = 116 spectral elements of degree N = 9 (m = 7424), with time step At = 0.0168, 

non-dimensionalized with respect to U, and D. The tolerance for the &-norm of the pressure residual was set to 

3 X 10m6, a value commensurate with the achievable discrete divergence of the resultant velocity field in 32-bit 
precision. 

In Fig. 1 we plot the required number of pressure iterations per step, JV~, for the cases L = 0, 2, and 20, using 

the A-conjugate projection technique of Section 2.2. For clarity, a 50 step windowed average is presented. Over 

the non-dimensional time simulated, t = 0 to 150, the flow passes through three transient regimes: symmetric 

wake formation, wake destabilization, and periodic (von Karman) vortex shedding. The first and third regimes 

are characterized by a high level of dynamic activity, while the second is relatively quiescent, as illustrated in 

the lower half of Fig. 1 by the time trace of u at a point in the near wake region of the cylinder. In flows devoid 

of dynamics, the pressure at time tn is well represented by p”-‘. Hence, little improvement results from 
incorporating information from more than one time step, as seen& the quiescent regime (t z 10-50). However, 

for flows having a richer dynamical structure, the enriched basis of the projection method provides potential for 

significant savings, as seen in the von Karman street regime in which a two-fold reduction in iteration count is 
attained for L = 20. Increasing the number of basis functions to L = 30 brings no further significant reduction in 

this case. 
Table 1 compares the average iteration count per step in the von Karman street regime for several values of 

Re and At. In all cases, the Method 2 (Z, = 20) yields a slight improvement over Method 1 (Z, = 20) and roughly 

a 50% reduction over the standard case (L = 0). This is typical of the performance observed in other two- and 

three-dimensional flows of similar complexity. In large three-dimensional flows, the savings in pressure 

iterations typically translates into a 50% reduction in CPU time [5]. 

Fig. 1. Pressure iteration count and time history of velocity for impulsively started flow past a cylinder at Re = 200. 



P.F. Fischer I Comput. Methods Appl. Mech. Engrg. 163 (1998) 193-204 199 

Table 1 
Iteration count for flow past a cylinder 

Re At 

100 0.01 

200 0.01 

100 0.04 

200 0.04 

Standard Method 1 

65 45 

90 48 

125 65 

159 89 

(ratio) 

(0.68) 

(0.53) 

(0.52) 

(0.56) 

Method 2 

39 

43 

61 

85 

(ratio) 

(0.59) 

(0.48) 

(0.49) 

(0.53) 

As a second example, we consider the benchmark problem of computing the growth rate of small amplitude 

three-dimensional Tollmien-Schlichting (TS) waves in plane Poiseuille flow at Re = 1500, e.g. [9]. The domain 

consists of two-flat plates separated by a distance 2h, periodic boundary conditions in the streamwise and 

spanwise directions with periodicity lengths 2nh. The initial condition is a parabolic profile with unit centerline 

velocity, with a superimposed three-dimensional TS wave corresponding to the least damped eigenmode having 

amplitude 10m4 and horizontal wave numbers cy and /3 of unity. For the spectral element calculation with 

K = 54, N = 7, and non-dimensional time step Ar = 0.00625, the observed growth rate is Im(ws,) = -0.028273, 

‘1 * “1. ” “1” 1 ’ . I 
I n 4. u 

step Z”nltZ 
129 I., lea 

Fig. 2. Iteration count (a), initial residual (b), and eight-processor iPSC/860 CPU time (c) for the A-conjugate projection technique applied 

to the three-dimensional Tollmien-Schlichting wave benchmark problem with K = 54 elements of order N = 7. 
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compared to Im(%T) = -0.028230 predicted by linear theory. The calculations were performed in 64-bit 

arithmetic and the pressure tolerance was set to 10 -I3 in order to observe high-order spatial and second-order 

temporal convergence rates. 
In Fig. 2(a) we compare the required number of pressure iterations for the A-conjugate projection method 

(L = 80) to the standard case (t = 0). For this problem, the projection method reduces the number of iterations 

from roughly 60 to as few as one per time step, with an average of 3.3. A peak of roughly 20 iterations results 

when the basis set is restarted, e.g. at step 83. The addition of more basis vectors does not further reduce the 

iteration count other than by reducing the frequency of restart. The corresponding pre-solver residual and 

Navier-Stokes solution times shown in Fig. 2(b) and (c) indicate respective fifty- and four-fold reductions. The 

computations were carried out on an eight-node Intel iPSC / 860. We note that the savings attained is typical for 

this particular class of problems. However, the performance of the projection techniques for these convergence 

benchmarks is exceptional and does not reflect the reduction attained in more general engineering flows. 

5. Analysis 

From the examples of the previous section it is clear that the projection techniques are capable of providing a 

significant reduction in work. We now analyze a model problem which illustrates the leading order terms 

contributing to the quality of the projected approximation. In particular, we show that for constrained evolution 

problems such as the unsteady Stokes problem, projection techniques based upon previous solutions can have 

potential advantages over those using Krylov bases in the originating operator. 

5. I. Constrained problems 

We consider a simplified model of the incompressible Navier-Stokes equations: 

(18) 

Here, H is assumed to the SPD Helmholtz operator, H = I + v At A, where A is the (negative) discrete 

Laplacian. C is assumed to be a non-symmetric convection operator, C = I + At ULB, where 9 is some form of 

discrete gradient. Note that (18) is representative of any evolution problem: Hg’+’ = Cg’, subject to the 

constraint Du’+’ - = 0. The crucial observation is that, if (18) represents an evolution equation, then the spectrum 

of H - ‘C will be contained within a region of diameter O(At) near (1,0) in the complex plane. 

Formally, inverting the Stokes operator on the left of (18) yields 

1+1 
u - (I[ H-‘(I-P)C 0 4’ 

1+1 = 
F E-‘DH-‘C 0 I(_) p’ ’ (19) 

where E = DH-‘DT is the Schur complement system governing the pressure, and I - P = I - DTE-‘DH-’ is a 

projection operator which ensures that the solution 41 ‘+’ satisfies the constraint DE Icl ~0. Let M=H-‘([- 

P)C. The solution at time level 1 + 1 is then 

U - I+’ = M’+‘uO (20) 

!T 
[+I = E-lDH-LM’Uo, 

- (21) 

Aside from a multiplicative factor, p ‘+’ is a monomial of degree 1 in the matrix M times go. 
Applying the projection method of Section 2.2 to the problem Ep’+’ = DH-‘Cg’, yields an approximation i 

satisfying: p E span(p’, . . . , p’}, 
- 

- - 

I/p’+’ -& s l/g’+’ -& V g E span(P’, . . . , ~‘1. (22) - - 
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Assuming that (21) is exactly satisfied by the elements of the approximation space, then j satisfies: - 

I!$+’ -& c M-YM - ~,-,[~1)41°11~-~ VP,_,(x) E P,_,(x) (23) 

G c[[@4]u0[[, v &) E P,(X) . (24) 

Here, c is a constant independent of 1 and weakly dependent on At. p,_,(x) is the space of all polynomials of 
degree 2 - 1 or less in the argument x and @, is the space of all manic polynomials of degree 1 in the argument: 

P,[M] = M’ + a,_,M’-’ + *. . + a,z . 

We can readily determine a bound on JIP,[M]~~IJ~ when C is SPD, corresponding to the case of unsteady 
Stokes flow. In this case, the eigenvalues of M are non-negative real. M has several zero eigenvalues as a result 
of the embedded projection operator (I- P). However, these have no impact on the bound for j]~i[M]gi]j2 
provided uL E 9?(M), which is always true for i > 0. (This suggests that the first solution field might not be a 
good candidate for the approximation space if 11’ is not divergence free; in practice we always avoid using the 
first few fields as candidate basis vectors.) The remaining relevant (i.e. nonzero) part of the spectrum of M is 
bounded on the positive real axis by the extremal eigenvalues of H-‘C, hmin and A,,,. A classic mini-max 
result based on Chebyshev polynomials (e.g. [3]) gives 

IIF,[M]g0112 d 2( Amax ; A,,,)‘(/~0112 . (25) 

Consequently, given the definitions of H and C, we would expect the reduction in lb’+’ -& to scale as At’. In 
the case when C is nonsymmetric, it is more difficult to establish the bound explicitly (in p$ticular, with regards 
to the relevance of the null-space of M). However, one might expect that the results will not change drastically 
for problems which continue to be evolutionary in nature. 

We illustrate the predicted O(At’) convergence behavior by reconsidering the cylinder calculation of Fig. 1 in 
the von Karman street regime. In this case, C is both non-symmetric and nonlinear because the full 
Navier-Stokes equations are being treated. At each step, the iteration tolerance is set to lo-l3 in order to 
simulate the case where (21) is satisfied exactly. The spectral element discretization consists of K = 186 
elements of order N = 9, for a total of m = 11904 pressure degrees-of-freedom. In Fig. 3 we plot the residual 
reduction ratio: 

a 2 4 * I 1. II 14 16 

projection number, I 

Fig. 3. Measured and predicted residual reduction ratios (left) for unsteady two-dimensional flow past a cylinder (Re, = 200) with iteration 

tolerance set to lo-“, and time step size At = 0.0125 to 0.05, corresponding to Courant numbers of U At/Ax = 1 to 4. Corresponding 

pressure iteration counts (right). 



202 P.F. Fischer I Compur. Methods Appl. Mech. Engrg. 163 (1998) 193-204 

r (At) ~ IL@ -p_‘)II, 
I 

IIEp'II, ’ 
(26) 

as a function of the number of basis vectors, 1. Three cases are shown, At = 0.05, 0.025 and 0.0125, 

corresponding to Courant numbers ranging from 4 to 1. Also plotted are the quantities r,(0.05)/2’ and 

r,(0.05)/4’, shown as modeE 1 and model 2. Initially, the models scale directly as rJ0.025) and r,(O.O125), 

respectively, as should be the case according to (25). However, the residual does not decrease indefinitely 

because the approximation space only satisfies (21) to a finite tolerance and because the convection operator 

contributes non-negligible terms to the residual (particularly for larger At) which are unaccounted for in the 

preceding analysis. For reference, the associated pressure histories are also shown in Fig. 3 (right). The flow has 

been restarted at a time of t = 150 (see Fig. 1). For each curve, the projection technique was initiated at the same 

time, corresponding to (restarted) step numbers 10, 20 and 40 respectively. The impact of the projection scheme 

on the iteration count is clearly visible at those steps. 

Fig. 4 shows the residual reduction ratio when the pressure tolerance is varied. The time step size is 

At = 0.0125. The rate of convergence is observed to be the same as in Fig. 3. However, the magnitude of the 

residual reduction ratio decreases when less stringent tolerances are imposed; the approximation space fails to 

satisfy (21) exactly and the favorable polynomial approximation properties are lost. In essence, one is trying to 

construct a divergence-free flow field, 41, with a set of basis functions which are not completely divergence-free 

and the net improvement over the initial approximation is limited. The associated pressure histories are shown in 

Fig. 4 (right). Note that even though the 2-norm of the residual is not significantly reduced in the (At = 0.0125, 

to1 = 10e5) case, the pressure count is reduced slightly more than two-fold. 

5.2. Other evolution problems 

Finally, we comment on the possibility of using an approximation space of the form span&‘, . . . , gl-‘} to 

generate approximations to the unconstrained evolution equation: 

k&+’ = c& . (27) 

Proceeding as before, one would obtain a bound involving the term \I~JH -’ C]u”I12, to be minimized over the 
space of manic polynomials. By contrast, if one were to base the initial guess upon the Krylov subspace 

n a 4. 5. n 

step number, n 

Fig. 4. Measured and predicted residual reduction ratio (left) as in Fig. 3, with iteration tolerance varying from lo-’ to lo-” and fixed time 

step size At = 0.0125. Corresponding pressure iteration counts (right). 
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K: = &‘, (zT’H)g[, . . . ) (H-‘H)k-‘g’}, g enerated by conjugate gradient solution of the previous time step 

using preconditioning matrix l? - ‘, the boupd would be determined in terms of a polynomial in Z? - ‘H. Since 

one has complete freedom in choosing g - , there is no a priori reason to expect the spectrum of HP ‘C to be 

more compact than that of fi -‘lX In fact, the opposite is likely to be true, implying that the prior Krylov 
subspace will have better approximation properties than an equivalently dimensioned previous-solution space, 

and one would expect that an approximation scheme based upon prior solutions to be less efficient than one 

based upon a prior preconditioned Krylov space. 

However, in the constrained problem analyzed above, the conditioning of E and the conditioning of 

H -‘(I - P)C are largely decoupled. Depending on the nature of the constraint, it is quite possible that the 
spectrum of H-‘(I - P)C will be more compact than that of the preconditioned matrix, E - ‘E, due to the fact 

that H-‘(I - P)C represents an evolution operator. In this case, the solution space will be a more efficient 

approximation space than the Krylov subspace generated by the most recent solve. 

6. Concluding remarks 

We remark that the O(mL) memory requirement for the projection methods may at first seem quite high. 

However, this must be examined in the context of the application. First, the present application is for a general 

geometry Navier-Stokes solver, rather than just a linear equation solver. Consequently, the total memory 

requirements are already quite high, as it is necessary to store the grid coordinates, metrics, Jacobians, etc. as 

well as several scalar and vector fields. In addition, efficient iterative solvers generally require significant storage 

for preconditioners-with memory costs scaling at least as m. Thus, the relative increase in memory demanded 

by saving a set of basis vectors may not be prohibitive. Secondly, on dedicated distributed memory machines. 

these algorithms provide a classic example of superlinear speedup; for a problem of fixed size, increasing the 

number of processors results in increased memory, thus allowing an increased value of L and corresponding 

decrease in NE. Our preference is to regard this fact as a flaw in the fixed-problem-size parallel performance 

metric, rather than to claim that projection techniques are a pathway to super-linear parallel algorithms. It is 

nonetheless a classic example of a space-time trade-off which can have a very real impact in many 

circumstances. 
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